Next Article in Journal
Synergistic Effect of Functionalized Nanokaolin Decorated MWCNTs on the Performance of Cellulose Acetate (CA) Membranes Spectacular
Next Article in Special Issue
PDE5 Inhibitors-Loaded Nanovesicles: Physico-Chemical Properties and In Vitro Antiproliferative Activity
Previous Article in Journal
Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile
Previous Article in Special Issue
Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK) siRNA Cancer Therapy
Open AccessArticle

Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

1
Department of Biomedical Engineering and Marine-Integrated Bionics Research Center, Pukyong National University, Busan 608-737, Korea
2
Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea
3
Department of Mechanical Engineering, Myong-Ji University, San 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, Korea
4
Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
*
Authors to whom correspondence should be addressed.
Academic Editor: Luigi Pasqua
Nanomaterials 2016, 6(4), 78; https://doi.org/10.3390/nano6040078
Received: 25 March 2016 / Revised: 11 April 2016 / Accepted: 14 April 2016 / Published: 20 April 2016
(This article belongs to the Special Issue Nanomaterials for Cancer Therapies)
Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis) spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR). The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells) using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy. View Full-Text
Keywords: astaxanthin; breast cancer; gold nanoparticle; cytotoxicity; photoacoustic imaging astaxanthin; breast cancer; gold nanoparticle; cytotoxicity; photoacoustic imaging
Show Figures

Graphical abstract

MDPI and ACS Style

Bharathiraja, S.; Manivasagan, P.; Quang Bui, N.; Oh, Y.-O.; Lim, I.G.; Park, S.; Oh, J. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles. Nanomaterials 2016, 6, 78. https://doi.org/10.3390/nano6040078

AMA Style

Bharathiraja S, Manivasagan P, Quang Bui N, Oh Y-O, Lim IG, Park S, Oh J. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles. Nanomaterials. 2016; 6(4):78. https://doi.org/10.3390/nano6040078

Chicago/Turabian Style

Bharathiraja, Subramaniyan; Manivasagan, Panchanathan; Quang Bui, Nhat; Oh, Yun-Ok; Lim, In G.; Park, Suhyun; Oh, Junghwan. 2016. "Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles" Nanomaterials 6, no. 4: 78. https://doi.org/10.3390/nano6040078

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop