Mesoscopic Quantum Effect: The Interaction of Electron Phenomena at the Mesoscopic Scale
Funding
Conflicts of Interest
References
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A., Jr.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef]
- Deng, J.; Chen, K.; Chen, C.; Zheng, C.; Zhang, B.; Guo, L.; Wang, T.; Chen, K.; Liu, L.; Gong, W. Enhanced Piezoelectric Properties and Conduction Mechanism in Na0.5Bi2.5Nb2O9, Piezoelectric Ceramics. Nanomaterials 2025, 15, 1293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, W.; Cheng, S.-D.; Wang, S.; Jiang, Y.; Li, G.; Ju, M.; Shen, B.; Chen, B.; Dou, Z.; et al. Multiscale Structural Engineering Boosts Piezoelectricity in Na0.5Bi2.5Nb2O9-Based High-Temperature Piezoceramics. ACS Appl. Mater. Interfaces 2024, 16, 19150–19157. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, T.; Zhou, Z.; Ding, Y.; Qin, Y.; Fu, Z.; Ruan, X.; Gao, Z.; Lv, X.; Wu, J. Ultrahigh piezoelectricity and temperature stability in piezoceramics by synergistic design. Nat. Commun. 2025, 16, 1527. [Google Scholar] [CrossRef]
- Anbari, A.P.; Delcheh, S.R.; Kashif, M.; Ranjbari, A.; Karbalaei Akbari, M.; Zhuiykov, S.; Heynderickx, P.M.; Verpoort, F. Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics. Nanomaterials 2025, 15, 1097. [Google Scholar] [CrossRef]
- Wang, J.; Tai, L.; Zhou, W.; Chen, H.; Liu, J.; Jiang, S. Facile Preparation of Three-Dimensional Cubic MnSe2/CNTs and Their Application in Aqueous Copper Ion Batteries. Nanomaterials 2024, 14, 1621. [Google Scholar] [CrossRef]
- Yang, C.; He, J.; Chen, S.; Li, Q.; Lin, X. Enhancing Antioxidant and Cytotoxic Properties of CeO2 Through Silver Decoration: A Study on Ag@CeO2 Nanocomposites. Nanomaterials 2025, 15, 748. [Google Scholar] [CrossRef]
- Shen, H.; Ouyang, Y.; Zhang, L.; Li, J.; Wang, S. Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications. Nanomaterials 2024, 14, 1757. [Google Scholar] [CrossRef]
- Rangel-Vázquez, N.A.; Bonilla-Petriciolet, A.; Márquez-Brazón, E.A.; Huerta, Y.; Zavala-Arce, R.; Rodríguez-Macías, J.D. DFT-Based Functionalization of Graphene with Lithium-Modified Groups for Enhanced Hydrogen Detection: Thermodynamic, Electronic, and Spectroscopic Properties. Nanomaterials 2025, 15, 1234. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Song, J.; Wu, S.; Liu, L.; Zhai, X. Preheating Modeling of Forming Region and Design of Electrode Structure During Integral Electric Hot Incremental Forming. Nanomaterials 2025, 15, 698. [Google Scholar] [CrossRef]
- Mu, L.; Han, J.; Yang, Y. A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles. Nanomaterials 2025, 15, 568. [Google Scholar] [CrossRef]
- Liu, L.; Qi, J.; Wang, D.; Yuan, J.; Shi, D.; Xiong, Z.; Ye, T.; Cai, Y.; Zhang, L. Deriving High-Energy-Density Polymeric Nitrogen N10 from the Host–Guest ArN10 Compound. Nanomaterials 2025, 15, 249. [Google Scholar] [CrossRef]
- de Melo, P.M.M.C.; Marini, A. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz. Phys. Rev. B 2016, 93, 155102. [Google Scholar] [CrossRef]
- Jeon, D.; Lee, S.H.; Lee, S.-N. Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications. Nanomaterials 2025, 15, 908. [Google Scholar] [CrossRef]
- Ullah, F.; Fredj, Z.; Sawan, M. Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends. Nanomaterials 2025, 15, 873. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, W.; Zhang, Y.; Tang, F.; Yang, L.; Ye, X. Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens. Nanomaterials 2025, 15, 453. [Google Scholar] [CrossRef]
- Huy, V.P.H.; Bark, C.W. Self-Powered Deep-Ultraviolet Photodetector Driven by Combined Piezoelectric/Ferroelectric Effects. Nanomaterials 2024, 14, 1903. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Q.; Chen, L.; Zakaria, R.; Park, M.-S.; Tan, C.L.; Zhu, L.; Xu, Y. Influence of PCBM Nanocrystals on the Donor-Acceptor Polymer Ultraviolet Phototransistors. Nanomaterials 2024, 14, 1748. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, L.; Smaluk, V.; Shaftan, T. Optimize Electron Beam Energy toward In Situ Imaging of Thick Frozen Bio-Samples with Nanometer Resolution Using MeV-STEM. Nanomaterials 2024, 14, 803. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Smaluk, V.; Shaftan, T.; Wang, T.; Bouet, N.; D’amen, G.; Wan, W.; Musumeci, P. Simulation Study of High-Precision Characterization of MeV Electron Interactions for Advanced Nano-Imaging of Thick Biological Samples and Microchips. Nanomaterials 2024, 14, 1797. [Google Scholar] [CrossRef]
- Dai, B.; Wang, C.; Chen, J.; Su, X.; Shi, Y.; Zeng, Y.; Wang, Y.; Chen, K. Large Polaron Condensation in a Pseudo-Bilayer Quantum Hall Composite. Nanomaterials 2024, 14, 688. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, R.; Fang, S.; Hu, Y.; Yang, H.; Chen, J.; Su, X.; Chen, K.; Liu, L. Electrical Quantum Coupling of Subsurface-Nanolayer Quasipolarons. Nanomaterials 2024, 14, 1540. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Huang, Y.-F.; Chi, F.; Yi, Z.-C.; Liu, L.-M. Negative Differential Conductance Induced by Majorana Bound States Side-Coupled to T-Shaped Double Quantum Dots. Nanomaterials 2025, 15, 1359. [Google Scholar] [CrossRef]
- Hirose, Y. Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process. Nanomaterials 2025, 15, 1297. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Wu, C.; Xie, F.; Fan, Z.; Li, X. Nanoarchitectonics and Theoretical Evaluation on Electronic Transport Mechanism of Spin-Filtering Devices Based on Bridging Molecules. Nanomaterials 2025, 15, 759. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, K.; Liu, L. Mesoscopic Quantum Effect: The Interaction of Electron Phenomena at the Mesoscopic Scale. Nanomaterials 2026, 16, 28. https://doi.org/10.3390/nano16010028
Chen K, Liu L. Mesoscopic Quantum Effect: The Interaction of Electron Phenomena at the Mesoscopic Scale. Nanomaterials. 2026; 16(1):28. https://doi.org/10.3390/nano16010028
Chicago/Turabian StyleChen, Kai, and Laijun Liu. 2026. "Mesoscopic Quantum Effect: The Interaction of Electron Phenomena at the Mesoscopic Scale" Nanomaterials 16, no. 1: 28. https://doi.org/10.3390/nano16010028
APA StyleChen, K., & Liu, L. (2026). Mesoscopic Quantum Effect: The Interaction of Electron Phenomena at the Mesoscopic Scale. Nanomaterials, 16(1), 28. https://doi.org/10.3390/nano16010028

