Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review
Abstract
1. Introduction
2. Strategic Framework for Enhancing Dielectric Constant of PEN
2.1. Polymer Molecular Structure Design
2.2. Organic Filler/PEN Composites
2.3. Ceramic Filler/PEN Composites
2.4. Conductive Filler/PEN Composites
2.5. Hot-Stretching of PEN Composites
3. Strategic Framework for Enhancing Breakdown Strength of PEN
3.1. Copolymerization Strategy
3.2. Thermal Crosslinking Strategy
3.3. High-Insulation Filler/PEN Composites
3.4. Multilayer Films
3.5. Hot-Stretching of PEN Composites
4. Conclusions and Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Agbabiaka, O.G.; Adegun, M.H.; Chan, K.-Y.; Zhang, H.; Shen, X.; Kim, J.-K. BN-PVDF/rGO-PVDF Laminate Nanocomposites for Energy Storage Applications. Nanomaterials 2022, 12, 4492. [Google Scholar] [CrossRef] [PubMed]
- Baivier, C.; Hammami, I.; Benzerga, R.; Graça, M.P.F.; Costa, L.C. Barium Titanate/Gadolinium Ferrite: A New Material Composite to Store Energy. Nanomaterials 2023, 13, 1955. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Dang, Z.; Hou, Q.; Zhang, Z.; Feng, Z.; Yu, Y.; Hua, X.; Wei, R. Rational design of porous organic polymers for cycloaddition between CO2 and epoxides. Eng. Sci. 2025, 35, 1349. [Google Scholar]
- Feng, C.; Liu, T.; Bu, X.; Huang, S. Enhanced Ferroelectric, Dielectric Properties of Fe-Doped PMN-PT Thin Films. Nanomaterials 2021, 11, 3043. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Dong, Q.; Zhang, D.-L.; Pei, J.-Y.; Dang, Z.-M. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Compos. Sci. Technol. 2022, 218, 109193. [Google Scholar] [CrossRef]
- Guo, D.; Tan, B.; Jiang, X.; Gao, G.; Lin, Y. Multifunctional polyimide/boron nitride nanosheet/Ti3C2Tx MXene composite film with three-dimensional conductive network for integrated thermal conductive, electromagnetic interference shielding, and Joule heating performances. Compos. Sci. Technol. 2024, 254, 110690. [Google Scholar] [CrossRef]
- Ji, M.; Min, D.; Li, Y.; Yang, L.; Wu, Q.; Liu, W.; Li, S. Improved energy storage performance of polyimide nanocomposites by constructing the meso- and macroscopic interfaces. Mater. Today Energy 2023, 31, 101200. [Google Scholar] [CrossRef]
- Li, D.; Meng, X.; Zhou, E.; Chen, X.; Shen, Z.; Guo, Q.; Yao, Z.; Cao, M.; Wu, J.; Zhang, S.; et al. Ultrahigh Energy Density of Antiferroelectric PbZrO3-Based Films at Low Electric Field. Adv. Funct. Mater. 2023, 33, 202302995. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Hu, R.; Chen, X.; Niu, Y.; Wang, H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem. Eng. J. 2022, 435, 135059. [Google Scholar] [CrossRef]
- Liang, X.; Li, Q.; Ren, Y.; Xie, W.; Tang, A.; Yang, H. Nanoclay Reinforced Polymer Composite Dielectrics for Ultra-Balanced Electrostatic Energy Storage. Adv. Funct. Mater. 2024, 34, 202408719. [Google Scholar] [CrossRef]
- Lv, Z.; Lu, T.; Liu, Z.; Hu, T.; Hong, Z.; Guo, S.; Xu, Z.; Song, Y.; Chen, Y.; Zhao, X.; et al. NaNbO3-Based Multilayer Ceramic Capacitors with Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2024, 14, 202304291. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.T.; Jeong, D.Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 201803665. [Google Scholar] [CrossRef]
- Peng, S.; Wang, R.; Liang, Z.; Du, X. Significantly enhanced energy storage performance in multi-layer polyimide films with nano dielectric layer. J. Energy Storage 2024, 99, 113381. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R.; Xie, A.; Tian, A.; Fu, J.; Zhang, Y.; Zhang, S. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains. Adv. Funct. Mater. 2019, 29, 201903877. [Google Scholar] [CrossRef]
- Ren, Z.; Shi, Z.; Tang, Q.; Xia, S.; Sun, L.; Fan, R.; Cui, H.; Wang, H. Core-shell TiO2@Au Nanofibers Derived from a Unique Physical Coating Strategy for Excellent Capacitive Energy Storage Nanocomposites. Adv. Funct. Mater. 2024, 34, 202401907. [Google Scholar] [CrossRef]
- Song, J.; Qin, H.; Qin, S.; Liu, M.; Zhang, S.; Chen, J.; Zhang, Y.; Wang, S.; Li, Q.; Dong, L.; et al. Alicyclic polyimides with large band gaps exhibit superior high-temperature capacitive energy storage. Mater. Horiz. 2023, 10, 2139–2148. [Google Scholar] [CrossRef]
- Sun, L.; Shi, Z.; He, B.; Wang, H.; Liu, S.; Huang, M.; Shi, J.; Dastan, D.; Wang, H. Asymmetric Trilayer All-Polymer Dielectric Composites with Simultaneous High Efficiency and High Energy Density: A Novel Design Targeting Advanced Energy Storage Capacitors. Adv. Funct. Mater. 2021, 31, 202100280. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Pan, J.; Wang, Y.; Wei, C.; Li, X.; Ma, T.; He, N.; Dong, J.; Nan, D. In-situ amino-functionalized and reduced graphene oxide/polyimide composite films for high-performance triboelectric nanogenerator. J. Colloid Interface Sci. 2024, 675, 488–495. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites. Nanomaterials 2023, 13, 1337. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhang, T.; Nie, M.; Liu, S.; Liu, X. Design and properties of high-performance polyaryl ether nitrile dielectric polymer materials for enhanced energy storage via tailored bisphenol monomers. Mater. Today Commun. 2025, 43, 111714. [Google Scholar] [CrossRef]
- Guo, N.; Liu, J.; Xin, S.; Du, C.; Liu, J.; Zhang, Y.; Xi, Y.; Wei, R.; Wang, L.; Li, D. Petal-Shaped Graphene Porous Films with Enhanced Absorption-Dominated Electromagnetic Shielding Performance and Mechanical Properties. ACS Appl. Mater. Interfaces 2024, 16, 36923–36934. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ju, T.; Li, R.; Duan, Y.; Duan, Y.; Wei, J.; Zhu, L. High-κ and High-Temperature Dipolar Glass Polymers Based on Sulfonylated and Cyanolated Poly(Arylene Ether)s for Capacitive Energy Storage. Adv. Electron. Mater. 2022, 9, 202200414. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, Y.; Xu, M.; Lei, Y.; Liu, X. Studied on mechanical, thermal and dielectric properties of BPh/PEN-OH copolymer. Compos. Part B Eng. 2016, 106, 294–299. [Google Scholar] [CrossRef]
- Huo, Y.; He, Z.; Wang, C.; Zhang, L.; Xuan, Q.; Wei, S.; Wang, Y.; Pan, D.; Dong, B.; Wei, R.; et al. The recent progress of synergistic supramolecular polymers: Preparation, properties and applications. Chem. Commun. 2021, 57, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Yang, C.; Lei, X.; Hua, X.; Wang, L.; Wei, R. Sandwich-structured dielectrics constructed from carbon nanotube and polyarylene ether nitrile composite layers demonstrating positive and negative permittivity. Polym. Compos. 2024, 45, 14644–14657. [Google Scholar] [CrossRef]
- Tong, L.; Wang, Y.; You, Y.; Tu, L.; Wei, R.; Liu, X. Effect of Plasticizer and Shearing Field on the Properties of Poly(arylene ether nitrile) Composites. ACS Omega 2020, 5, 1870–1878. [Google Scholar] [CrossRef]
- Wang, L.; Bai, Z.; Liu, C.; Wei, R.; Liu, X. Porous fluorinated polyarylene ether nitrile as ultralow permittivity dielectrics used under humid environment. J. Mater. Chem. C. 2021, 9, 860–868. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Liu, C.; Zhou, X.; Liu, C.; Cheng, M.; Wei, R.; Liu, X. Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chem. Eng. J. 2020, 384, 123231. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.L.; Feng, Y.; Hou, Y.F.; Zhang, T.D.; Fei, W.D.; Yin, J.H. Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films. Ceram. Int. 2015, 41, 13582–13588. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, J.; Jiang, W.; Jiang, Z.; Jiang, L.; Zhou, Y.; Zhang, Y. Roll-to-Roll Production of High-Performance All-Organic Polymer Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Funct. Mater. 2024, 35, 202414616. [Google Scholar] [CrossRef]
- Wang, L.; Wei, R.; Luo, Y.; Liu, C.; Liu, X.; Li, D. Construction of alternating multilayer films with stable absorption-dominated electromagnetic shielding performance and reinforced mechanical properties via interface engineering. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107862. [Google Scholar] [CrossRef]
- Tu, L.; You, Y.; Tong, L.; Wang, Y.; Hu, W.; Wei, R.; Liu, X. Crystallinity of poly(arylene ether nitrile) copolymers containing hydroquinone and bisphenol A segments. J. Appl. Polym. Sci. 2018, 135, 46412. [Google Scholar] [CrossRef]
- Wei, R.; Liu, K.; Liu, Y.; Wang, Z.; Jiao, Y.; Huo, Q.; Hua, X.; Wang, L.; Wang, X. Controlled Distribution of MXene on the Pore Walls of Polyarylene Ether Nitrile Porous Films for Absorption-Dominated Electromagnetic Interference Shielding Materials. Small 2024, 21, 202407142. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Bai, X.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Patil, R.R.; Guo, Z. Recent Advances of Asymmetric Supercapacitors. Adv. Mater. Interfaces 2020, 8, 202001710. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Z.; Liu, J.; Liu, C.; Li, X.; Zhang, Y.; Wang, W.; Ma, J.; Sun, Z. Selective ozone catalyzation modulated by surface and bulk oxygen vacancies over MnO2 for superior water purification. Appl. Catal. B Environ. 2024, 343, 123526. [Google Scholar] [CrossRef]
- Yue, W.; Cai, Y.; Zhao, H.; Guo, Q.; Wang, D.; Jia, T. Enhanced energy storage density of Bi3.25La0.75Ti3O12 thin films by preferred orientation and interface engineering. Ceram. Int. 2024, 50, 13644–13651. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, Z.; Zhang, H.; Han, W.; Ma, J.; Wei, R.; Hua, X. Dielectric Properties of Azo Polymers: Effect of the Push-Pull Azo Chromophores. Int. J. Polym. Sci. 2018, 10, 4541937. [Google Scholar] [CrossRef]
- Zeng, J.; Yan, J.; Li, B.-W.; Zhang, X. Improved breakdown strength and energy storage performances of PEI-based nanocomposite with core-shell structured PI@BaTiO3 nanofillers. Ceram. Int. 2022, 48, 20526–20533. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Jiang, G.; Wei, H.; Zhang, Z.; Ren, J. Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers. Nanomaterials 2023, 13, 2322. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Z.; Deng, H.; Fu, Q. Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. 2021, 5, 238–249. [Google Scholar] [CrossRef]
- Long, C.; Wei, R.; Huang, X.; Feng, M.; Jia, K.; Liu, X. Mechanical, dielectric, and rheological properties of poly(arylene ether nitrile)–reinforced poly(vinylidene fluoride). High Perform. Polym. 2016, 29, 178–186. [Google Scholar] [CrossRef]
- Wei, R.; Li, K.; Ma, J.; Zhang, H.; Liu, X. Improving dielectric properties of polyarylene ether nitrile with conducting polyaniline. J. Mater. Sci. Mater. Electron. 2016, 27, 9565–9571. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, B.; Liu, K.; Hou, Q.; Dang, Z.; Yang, C.; Hua, X.; Yu, Q.; Wang, L.; Wei, R. One-pot synthesis of copper phthalocyanine polymer: An efficient CO2 fixation catalyst. Mater. Today Commun. 2024, 41, 110875. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Liu, X. Facile fabrication of multilayer films of graphene oxide/copper phthalocyanine with high dielectric properties. RSC Adv. 2015, 5, 88306–88310. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Liu, X. Preparation and dielectric properties of copper phthalocyanine/graphene oxide nanohybrids via in situ polymerization. J. Mater. Sci. 2016, 51, 4682–4690. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Pu, Z.; Chen, L.; Liu, X. Controllable high dielectric permittivity of poly(arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction. Mater. Lett. 2013, 93, 199–202. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Liu, X. Dielectric properties of copper phthalocyanine nanocomposites incorporated with graphene oxide. J. Mater. Sci. Mater. Electron. 2017, 28, 7437–7448. [Google Scholar] [CrossRef]
- Yan, L.; Pu, Z.; Xu, M.; Wei, R.; Liu, X. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4. J. Electron. Mater. 2017, 46, 5608–5618. [Google Scholar] [CrossRef]
- Yang, R.; Li, K.; Tong, L.; Jia, K.; Liu, X. The relationship between processing and performances of polyarylene ether nitriles terminated with phthalonitrile/trifunctional phthalonitrile composites. J. Polym. Res. 2015, 22, 0860. [Google Scholar] [CrossRef]
- Gao, F.; Wei, R.; Zhou, L.; Luo, W.; Li, Z.; Pang, L.; Li, S.; Hua, X.; Wang, L. Improved dielectric properties of poly(arylene ether nitrile) with sulfonated poly(arylene ether nitrile) modified CaCu3Ti4O12. Polym. Compos. 2023, 44, 8658–8668. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Liu, C.; Tu, L.; You, Y.; Wei, R.; Liu, X. Polyarylene Ether Nitrile and Barium Titanate Nanocomposite Plasticized by Carboxylated Zinc Phthalocyanine Buffer. Polymers 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhong, J.; Yang, J.; Ma, Z.; Liu, X. Flexible Polyarylene Ether Nitrile/BaTiO3 Nanocomposites with High Energy Density for Film Capacitor Applications. J. Electron. Mater. 2010, 40, 141–148. [Google Scholar] [CrossRef]
- Tang, H.; Wang, P.; Zheng, P.; Liu, X. Core-shell structured BaTiO3@polymer hybrid nanofiller for poly(arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability. Compos. Sci. Technol. 2016, 123, 134–142. [Google Scholar] [CrossRef]
- You, Y.; Wang, Y.; Tu, L.; Tong, L.; Wei, R.; Liu, X. Interface Modulation of Core-Shell Structured BaTiO3@polyaniline for Novel Dielectric Materials from Its Nanocomposite with Polyarylene Ether Nitrile. Polymers 2018, 10, 1378. [Google Scholar] [CrossRef]
- Wei, R.; Yang, R.; Xiong, Z.; Xiao, Q.; Li, K.; Liu, X. Enhanced Dielectric Properties of Polyarylene Ether Nitriles Filled with Core–Shell Structured PbZrO3 Around BaTiO3 Nanoparticles. J. Electron. Mater. 2018, 47, 6177–6184. [Google Scholar] [CrossRef]
- You, Y.; Han, W.; Tu, L.; Wang, Y.; Wei, R.; Liu, X. Double-layer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Adv. 2017, 7, 29306–29311. [Google Scholar] [CrossRef]
- Tu, L.; You, Y.; Liu, C.; Zhan, C.; Wang, Y.; Cheng, M.; Wei, R.; Liu, X. Enhanced dielectric and energy storage properties of polyarylene ether nitrile composites incorporated with barium titanate nanowires. Ceram. Int. 2019, 45, 22841–22848. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, P.; Feng, M.; Wei, R.; Liu, X. Cross-linked sulfonated poly(arylene ether nitrile)s with low swelling and high proton conductivity. Macromol. Res. 2017, 25, 1199–1204. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Wang, L.; Hao, Q.; Hua, X.; Wei, R. Enhancing energy storage density of poly(arylene ether nitrile) via incorporating modified barium titanate nanorods and hot-stretching. Nano Res. 2024, 17, 7574–7584. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; You, Y.; Wang, Y.; Wei, R.; Liu, X. Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties. Nanomaterials 2019, 9, 1667. [Google Scholar] [CrossRef]
- Tang, H.; Ma, Z.; Zhong, J.; Yang, J.; Zhao, R.; Liu, X. Effect of surface modification on the dielectric properties of PEN nanocomposites based on double-layer core/shell-structured BaTiO3 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 311–317. [Google Scholar] [CrossRef]
- Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhang, J.; Ma, Y.; et al. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C. 2018, 6, 12446–12467. [Google Scholar] [CrossRef]
- Yang, R.; Xiao, Q.; You, Y.; Wei, R.; Liu, X. In situ catalyzed and reinforced high-temperature flexible crosslinked ZnO nano-whisker/polyarylene ether nitriles composite dielectric films. Polym. Compos. 2016, 39, 2801–2811. [Google Scholar] [CrossRef]
- You, Y.; Zhan, C.; Tu, L.; Wang, Y.; Hu, W.; Wei, R.; Liu, X. Polyarylene Ether Nitrile-Based High-k Composites for Dielectric Applications. Int. J. Polym. Sci. 2018, 10, 5161908. [Google Scholar] [CrossRef]
- Gu, H.; Xu, X.; Dong, M.; Xie, P.; Shao, Q.; Fan, R.; Liu, C.; Wu, S.; Wei, R.; Guo, Z. Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 2019, 147, 550–558. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, H.; Ma, C.; Xu, X.; Wang, Y.; Wang, Z.; Wei, R.; Liu, H.; Liu, C.; Shao, Q.; et al. Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy. Carbon 2019, 142, 131–140. [Google Scholar] [CrossRef]
- Han, W.; Gao, F.; Zhou, L.; Wang, L.; Hua, X.; Xue, X.; Li, Z.; Luo, W.; Pang, L.; Wei, R. Flexible fluorinated multi-walled carbon nanotube/polyarylene ether nitrile metacomposites with negative permittivity. J. Mater. Chem. C 2022, 10, 171–179. [Google Scholar] [CrossRef]
- Li, K.; Tong, L.; Yang, R.; Wei, R.; Liu, X. In-situ preparation and dielectric properties of silver-polyarylene ether nitrile nanocomposite films. J. Mater. Sci. Mater. Electron. 2016, 27, 4559–4565. [Google Scholar] [CrossRef]
- Zheng, P.; Pu, Z.; Yang, W.; Shen, S.; Jia, K.; Liu, X. Effect of multiwalled carbon nanotubes on the crystallization and dielectric properties of BP-PEN nanocomposites. J. Mater. Sci. Mater. Electron. 2014, 25, 3833–3839. [Google Scholar] [CrossRef]
- Jin, F.; Feng, M.; Jia, K.; Liu, X. Aminophenoxyphthalonitrile modified MWCNTs/polyarylene ether nitriles composite films with excellent mechanical, thermal, dielectric properties. J. Mater. Sci. Mater. Electron. 2015, 26, 5152–5160. [Google Scholar] [CrossRef]
- Pu, Z.; Huang, X.; Chen, L.; Yang, J.; Tang, H.; Liu, X. Effect of nitrile-functionalization and thermal cross-linking on the dielectric and mechanical properties of PEN/CNTs–CN composites. J. Mater. Sci. Mater. Electron. 2013, 24, 2913–2922. [Google Scholar] [CrossRef]
- Huang, X.; Feng, M.; Liu, X. Synergistic enhancement of dielectric constant of novel core/shell BaTiO3@MWCNTs/PEN nanocomposites with high thermal stability. J. Mater. Sci. Mater. Electron. 2013, 25, 97–102. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.; Jia, K.; Liu, X. Preparation of TiO2–MWCNT core/shell heterostructures containing a single MWCNT and their electromagnetic properties. Compos. Interfaces 2015, 22, 343–351. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, R.; You, Y.; Zhang, H.; Wei, R.; Liu, X. Crystalline, Mechanical and Dielectric Properties of Polyarylene Ether Nitrile with Multi-Walled Carbon Nanotube Filled with Polyarylene Ether Nitrile. J. Nanosci. Nanotechno. 2018, 18, 4311–4317. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Hou, Q.; Dang, Z.; Yu, Y.; Yang, C.; Tang, B.; Zhou, Q.; Hua, X.; Wei, R.; et al. Quaternary ammonium salt functionalized copper phthalocyanine-graphene oxide hybrids for cocatalyst-free carbon dioxide cycloaddition. Adv. Compos. Hybrid Mater. 2024, 8, 40. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, W.; Liu, X. Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route. J. Polym. Res. 2014, 21, 358. [Google Scholar] [CrossRef]
- Li, J.; Pu, Z.; Wang, Z.; Long, Y.; Jia, K.; Liu, X. High Dielectric Constants of Composites of Fiber-Like Copper Phthalocyanine-Coated Graphene Oxide Embedded in Poly(arylene Ether Nitriles). J. Electron. Mater. 2015, 44, 2378–2386. [Google Scholar] [CrossRef]
- Wang, J.; Wei, R.; Tong, L.; Liu, X. Effect of magnetite bridged carbon nanotube/graphene networks on the properties of polyarylene ether nitrile. J. Mater. Sci. Mater. Electron. 2016, 28, 3978–3986. [Google Scholar] [CrossRef]
- Wei, R.; Wang, J.; Zhang, H.; Han, W.; Liu, X. Crosslinked Polyarylene Ether Nitrile Interpenetrating with Zinc Ion Bridged Graphene Sheet and Carbon Nanotube Network. Polymers 2017, 9, 342. [Google Scholar] [CrossRef]
- You, Y.; Huang, X.; Pu, Z.; Jia, K.; Liu, X. Enhanced crystallinity, mechanical and dielectric properties of biphenyl polyarylene ether nitriles by unidirectional hot-stretching. J. Polym. Res. 2015, 22, 211. [Google Scholar] [CrossRef]
- You, Y.; Tu, L.; Wang, Y.; Tong, L.; Wei, R.; Liu, X. Achieving Secondary Dispersion of Modified Nanoparticles by Hot-Stretching to Enhance Dielectric and Mechanical Properties of Polyarylene Ether Nitrile Composites. Nanomaterials 2019, 9, 1006. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Du, X.; Mao, H.; Tang, X.; Wei, R.; Liu, X. Synergistic enhancement of mechanical, crystalline and dielectric properties of polyarylene ether nitrile-based nanocomposites by unidirectional hot stretching–quenching. Polym. Int. 2017, 66, 1151–1158. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.; Jia, K.; Liu, X. Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications. RSC Adv. 2015, 5, 51975–51982. [Google Scholar] [CrossRef]
- Mao, H.; You, Y.; Tong, L.; Tang, X.; Wei, R.; Liu, X. Dielectric properties of diblock copolymers containing a polyarylene ether nitrile block and a polyarylene ether ketone block. J. Mater. Sci. Mater. Electron. 2017, 29, 3127–3134. [Google Scholar] [CrossRef]
- Wei, R.; Huo, Q.; Liu, K.; Elnaggar, A.Y.; El-Bahy, S.M.; El-Bahy, Z.M.; Ren, J.; Wang, L.; Wu, Z. Distributing fluorinated carbon nanotube on pore walls of polyarylene ether nitrile porous films for advanced electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2024, 7, 196. [Google Scholar] [CrossRef]
- Mao, H.; You, Y.; Tong, L.; Tang, X.; Wei, R.; Liu, X. Dielectric properties of poly(arylene ether nitrile ketone) copolymers. High Perform. Polym. 2018, 31, 901–908. [Google Scholar] [CrossRef]
- Hu, W.; You, Y.; Tong, L.; Tu, L.; Wang, Y.; Wei, R.; Liu, X. Preparation and physical properties of polyarylene ether nitrile and polyarylene ether sulfone random copolymers. High Perform. Polym. 2018, 31, 686–693. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Feng, Y.; Gao, F.; Luo, Y.; Li, S.; Wei, R.; Wang, L. Covalently cross-linked CaCu3Ti4O12 and poly(arylene ether nitrile) hybrids with enhanced high temperature energy storage properties. Mater. Today Commun. 2024, 38, 108544. [Google Scholar] [CrossRef]
- Wei, R.-B.; Zhan, C.-H.; Yang, Y.; He, P.-L.; Liu, X.-B. Polyarylene Ether Nitrile and Titanium Dioxide Hybrids as Thermal Resistant Dielectrics. Chin. J. Polym. Sci. 2020, 39, 211–218. [Google Scholar] [CrossRef]
- Wei, R.; Liu, Y.; Gao, F.; Feng, Z.; Huo, Q.; Liu, K.; Zhang, Z.; Lei, X.; Wang, L. Enhancing high-temperature energy storage performance of poly(arylene ether nitrile) hybrids synergistically via phthalonitrile modified boron nitride and carbon nanotube. Adv. Compos. Hybrid Mater. 2024, 7, 50. [Google Scholar] [CrossRef]
- You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X. Controllable Fabrication of Poly(Arylene Ether Nitrile) Dielectrics for Thermal-Resistant Film Capacitors. Macromolecules 2019, 52, 5850–5859. [Google Scholar] [CrossRef]
- Yang, R.; Wei, R.; Li, K.; Tong, L.; Jia, K.; Liu, X. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability. Sci. Rep. 2016, 6, 36434. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Tu, L.; You, Y.; Zhan, C.; Wang, Y.; Liu, X. Fabrication of crosslinked single-component polyarylene ether nitrile composite with enhanced dielectric properties. Polymer 2019, 161, 162–169. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Feng, X.; Lin, G.; Bai, Z.; Liu, X. Dielectric properties of polyarylene ether nitrile composites based on modified boron nitride. J. Phys. Conf. Ser. 2022, 2338, 012035. [Google Scholar] [CrossRef]
- Nomura, K.; Terwilliger, P. Self-dual Leonard pairs. Spec. Matrices 2019, 7, 1–19. [Google Scholar] [CrossRef]
- Tu, L.; Xiao, Q.; Wei, R.; Liu, X. Fabrication and Enhanced Thermal Conductivity of Boron Nitride and Polyarylene Ether Nitrile Hybrids. Polymers 2019, 11, 1340. [Google Scholar] [CrossRef]
- Pu, L.; Zeng, J.; Long, Y.; Zhang, H.; Huang, X.; Liu, J. Ultra-high power density in poly(arylene ether nitrile)-based composites containing barium titanate and boron nitride nanosheets. Polym. Compos. 2023, 44, 8141–8152. [Google Scholar] [CrossRef]
- Xiao, Q.; Han, W.; Yang, R.; You, Y.; Wei, R.; Liu, X. Mechanical, dielectric, and thermal properties of polyarylene ether nitrile and boron nitride nanosheets composites. Polym. Compos. 2017, 39, 24518. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhan, C.; You, Y.; Tong, L.; Wei, R.; Liu, X. Preparation and thermal conductivity of copper phthalocyanine grafted boron nitride nanosheets. Mater. Lett. 2018, 227, 33–36. [Google Scholar] [CrossRef]
- You, Y.; Chen, S.; Yang, S.; Li, L.; Wang, P. Enhanced Thermal and Dielectric Properties of Polyarylene Ether Nitrile Nanocomposites Incorporated with BN/TiO2-Based Hybrids for Flexible Dielectrics. Polymers 2023, 15, 4279. [Google Scholar] [CrossRef]
- Lan, T.; Zhang, W.; Wang, Y.; Liu, S.; Liu, C.; Tong, L.; Liu, X. Dielectric films with good dielectric breakdown strength based on poly(arylene ether nitrile) enhanced by nano boron nitride and graphene oxide via noncovalent interaction. J. Phys. Chem. Solids 2021, 151, 109906. [Google Scholar] [CrossRef]
- He, L.; Zheng, Y.; Xu, X.; Liu, X.; Tong, L. Highly efficient thermal conductivity of polyarylene ether nitrile composites via the introduction of hybrid fillers and tailored cross-linked structure. Polymer 2024, 307, 127245. [Google Scholar] [CrossRef]
- Tang, X.; You, Y.; Mao, H.; Li, K.; Wei, R.; Liu, X. Energy Storage of Polyarylene Ether Nitriles at High Temperature. Electron. Mater. Lett. 2018, 14, 440–445. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhu, H.; Luo, H.; Zhai, X.; Huan, Y.; Yan, J.; Wang, K.; Liu, C.; Cheng, H.; et al. Synergically improved energy storage performance and stability in sol–gel processed BaTiO3/(Pb,La,Ca)TiO3/BaTiO3 tri-layer films with a crystalline engineered sandwich structure. J. Adv. Ceram. 2023, 12, 2300–2314. [Google Scholar]
- Wang, Z.; Wei, R.; Liu, X. Fluffy and Ordered Graphene Multilayer Films with Improved Electromagnetic Interference Shielding over X-Band. ACS Appl. Mater. Interfaces 2017, 9, 22408–22419. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, C.; Zhang, C.; Feng, Y.; Li, W.; Chi, Q.; Chen, Q.; Fei, W. Self-polarization and energy storage performance in antiferroelectric-insulator multilayer thin films. Compos. Part B-Eng. 2021, 221, 109027. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, Y.; Shi, J.; Zhou, J.; Bai, K.; Li, Y.; Ma, R.; Liu, J.; Dastan, D.; Liu, X.; et al. Sandwich-structured relaxor ferroelectric nanocomposite incorporated with core-shell fillers for outstanding-energy-storage capacitor application. J. Alloys Compd. 2024, 1003, 175642. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, H.; Xin, S.; Pan, Z.; Ding, X.; Li, Z.; Fan, X.; Liu, J.; Li, P.; Yu, J. Polyimide-Based Composite Films with Largely Enhanced Energy Storage Performances toward High-Temperature Electrostatic Capacitor Applications. ACS Appl. Energy Mater. 2022, 5, 10297–10306. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Wang, J.; Zhen, X.; Lei, C.; Shen, Z.; Zhang, X.; Nan, C.W. Ultrahigh Capacitive Energy Storage in a Heterogeneous Nanolayered Composite. Adv. Funct. Mater. 2024, 34, 202410823. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Li, W.; Song, R.; Zhang, Y.; Zhao, W.; Wang, Z.; Peng, Y.; Fei, W. Enhanced energy storage properties of amorphous BiFeO3/Al2O3 multilayers. J. Mater. Res. Technol. 2021, 11, 1852–1858. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.-m.; Wu, W.-w.; Khesro, A.; Liu, P.; Mao, M.; Song, K.; Sun, R.; Wang, D. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J. 2022, 446, 136926. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Birkhölzer, Y.A.; Houwman, E.P.; Koster, G.; Rijnders, G. Enhancing the Energy-Storage Density and Breakdown Strength in PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3-Derived Antiferroelectric/Relaxor-Ferroelectric Multilayers. Adv. Energy Mater. 2022, 12, 202200517. [Google Scholar] [CrossRef]
- Ren, S.; Yuan, S.; Huang, M.; Pang, L.; Li, W.; Wang, X.; Zhou, D.; Zhao, Y. Cost-effective strategy for high-temperature energy storage performance of polyimide nanocomposite films. J. Energy Storage 2024, 95, 112524. [Google Scholar] [CrossRef]
- Sun, Z.; Houwman, E.P.; Wang, S.; Nguyen, M.D.; Koster, G.; Rijnders, G. Revealing the effect of the Schottky barrier on the energy storage performance of ferroelectric multilayers. J. Alloys Compd. 2024, 981, 173758. [Google Scholar] [CrossRef]
- Li, D.-L.; Liu, C.-Y.; Lan, K.-Y.; Li, Y.; Xu, L.; Zhong, G.-J.; Huang, H.-D.; Li, Z.-M. Scalable In-situ Microfibrillar dielectric films: Achieving exceptional energy density and efficiency. Energy Storage Mater. 2024, 72, 103717. [Google Scholar] [CrossRef]
- Li, D.-L.; Liu, C.-Y.; Li, Y.; Xu, L.; Lei, J.; Zhong, G.-J.; Huang, H.-D.; Li, Z.-M. In Situ Well-Aligned Microfibrils and Mother–Daughter Crystals as Promising Blocks to Suppress Carrier Transport in Polypropylene Dielectric Films. Macromolecules 2024, 57, 10208–10218. [Google Scholar] [CrossRef]
- Zheng, M.-S.; Zheng, Y.-T.; Zha, J.-W.; Yang, Y.; Han, P.; Wen, Y.-Q.; Dang, Z.-M. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 2018, 48, 144–151. [Google Scholar] [CrossRef]
- Gao, F.; Zhou, L.; Liu, K.; Feng, Z.; Huo, Q.; Yang, C.; Zhang, T.; Mao, Y.; Li, D.; Wang, L.; et al. Improving energy storage properties of polyarylene ether nitrile with coral-like CaCu3Ti4O12 nanorods. Chem. Eng. J. 2024, 493, 152830. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, B.; Wang, Z.; Jiao, Y.; Hou, Q.; Dang, Z.; Hua, X.; Wei, L.; Wang, L.; Wei, R. Enhanced dielectric performances of strontium barium titanate nanorod composites via improved interfacial compatibility. J. Colloid Interface Sci. 2025, 680, 85–95. [Google Scholar] [CrossRef]
- Tu, Y.; Yang, Y.; Zheng, Y.; Guo, S.; Shen, J. Polyvinylidene Fluoride Based Piezoelectric Composites with Strong Interfacial Adhesion via Click Chemistry for Self-Powered Flexible Sensors. Small 2024, 20, 202309758. [Google Scholar] [CrossRef]
- Wu, C.; Zuo, L.; Tong, L.; Liu, X. Effect of isothermal heat treatment and thermal stretching on the properties of crystalline poly (arylene ether nitrile). J. Phys. Chem. Solids 2022, 160, 110335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, G.; Jiao, Y.; Wang, Z.; Bao, S.; Hua, X.; Wang, L.; Tang, B.; Xiong, Z.; Wei, R. Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review. Nanomaterials 2025, 15, 696. https://doi.org/10.3390/nano15090696
Liu Y, Liu G, Jiao Y, Wang Z, Bao S, Hua X, Wang L, Tang B, Xiong Z, Wei R. Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review. Nanomaterials. 2025; 15(9):696. https://doi.org/10.3390/nano15090696
Chicago/Turabian StyleLiu, Yongxian, Guangjun Liu, Yayao Jiao, Zaixing Wang, Shumin Bao, Xiufu Hua, Lingling Wang, Bo Tang, Zhiyuan Xiong, and Renbo Wei. 2025. "Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review" Nanomaterials 15, no. 9: 696. https://doi.org/10.3390/nano15090696
APA StyleLiu, Y., Liu, G., Jiao, Y., Wang, Z., Bao, S., Hua, X., Wang, L., Tang, B., Xiong, Z., & Wei, R. (2025). Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review. Nanomaterials, 15(9), 696. https://doi.org/10.3390/nano15090696