Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
Abstract
1. Introduction
2. Design and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wang, J.; Li, X.; Chen, J.; Yu, F.; He, J.; Wang, J.; Zhao, Z.; Li, G.; Chen, X.; et al. Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors 2022, 22, 677. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Upadhyay, A.; Cheng, Y.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Ultra-Wideband Far-Infrared Absorber Based on Anisotropically Etched Doped Silicon. Opt. Lett. 2020, 45, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, X.; Caratenuto, A.; Li, J.; Zhou, S.; Ran, R.; Chen, F.; Wang, Z.; Wan, K.; Xiao, G.; et al. A New Strategy towards Spectral Selectivity: Selective Leaching Alloy to Achieve Selective Plasmonic Solar Absorption and Infrared Suppression. Nano Energy 2022, 92, 106717. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ren, H.; Chen, J.-D.; Hou, H.-Y.; Liu, H.M.; Tian, S.; Chen, W.-S.; Ge, H.-R.; Li, Y.-Q.; Mao, H.; et al. Efficient and Stable Flexible Organic Solar Cells via the Enhanced Optical-Thermal Radiative Transfer. Adv. Funct. Mater. 2023, 33, 2212260. [Google Scholar] [CrossRef]
- Jeon, N.; Hernandez, J.J.; Rosenmann, D.; Gray, S.K.; Martinson, A.B.F.; Foley IV, J.J. Pareto Optimal Spectrally Selective Emitters for Thermophotovoltaics via Weak Absorber Critical Coupling. Adv. Energy Mater. 2018, 8, 1801035. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, J.; Liu, X.; Zhang, H.; Wang, D.; Chen, Z.; Zhang, D.; Fan, T. Bio-Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Adv. Funct. Mater. 2018, 28, 1705309. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Xiao, C.; Fu, L.; Zhou, H.; Fan, T.; Zhang, D. A Bioinspired Bilevel Metamaterial for Multispectral Manipulation toward Visible, Multi-Wavelength Detection Lasers and Mid-Infrared Selective Radiation. Adv. Mater. 2023, 35, 2302844. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral Camouflage for Infrared, Visible, Lasers and Microwave with Radiative Cooling. Nat. Commun. 2021, 12, 1805. [Google Scholar] [CrossRef]
- Ding, D.; He, X.; Liang, S.; Wei, W.; Ding, S. Porous Nanostructured Composite Film for Visible-to-Infrared Camouflage with Thermal Management. ACS Appl. Mater. Interfaces 2022, 14, 24690–24696. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Zhong, Y.; Zhang, L.; Wang, B.; Feng, X.; Xu, H.; Mao, Z. Hierarchical Gradient Structural Porous Metamaterial with Selective Spectral Response for Daytime Passive Radiative Cooling. Adv. Funct. Mater. 2024, 34, 2406393. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Xie, F.; Wu, X.-E.; Zhao, S.; Jiang, Q.; Zhang, S.; Wang, B.; Li, Y.; Gao, D.; et al. A Dual-Selective Thermal Emitter with Enhanced Subambient Radiative Cooling Performance. Nat. Commun. 2024, 15, 815. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhou, Y.; Qin, B.; Qin, R.; Qiu, M.; Li, Q. Night-Time Radiative Warming Using the Atmosphere. Light-Sci. Appl. 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.T.; Han, J.; Li, K.; Guo, C.; Lin, H.; Jia, B. Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond. Nano Energy 2021, 80, 105517. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Li, Z.; Zhang, H.; Yang, Z.; Zhou, H.; Fan, T. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling. Adv. Funct. Mater. 2020, 30, 1907562. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, H.; Qin, B.; Zhu, R.; Zhang, J.; Ghosh, P.; Wang, Z.; Qiu, M.; Li, Q. High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management. Nano-Micro Lett. 2025, 17, 199. [Google Scholar] [CrossRef]
- Sanjay, S.; Mohd, B.; Michael, S.; Christian, M. On-Board Detection of Fast-Moving Targets Using an MWIR Sensor on a Small Satellite. In Proceedings of the Artificial Intelligence and Image and Signal Processing for Remote Sensing, Edinburgh, UK, 16–20 September 2025. [Google Scholar]
- Shaveisi, M.; Aliparast, P.; Ng, S.S. Light Trapping in InAsSb-Based Barrier Photodetectors for Enhanced Mid-Wave Infrared Bio-Medical Sensing: A Study on Jurkat Biomarker Detection. In Proceedings of the 2023 5th Iranian International Conference on Microelectronics (IICM), Tehran, Iran, 25–26 October 2023. [Google Scholar]
- Argirusis, N.; Achilleos, A.; Alizadeh, N.; Argirusis, C.; Sourkouni, G. IR Sensors, Related Materials, and Applications. Sensors 2025, 25, 673. [Google Scholar] [CrossRef]
- Jha, R.K. Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2022, 22, 6–15. [Google Scholar] [CrossRef]
- Padilla, W.J.; Averitt, R.D. Imaging with Metamaterials. Nat. Rev. Phys. 2022, 4, 85–100. [Google Scholar] [CrossRef]
- Patten, E.A.; Goetz, P.M.; Vilela, M.F.; Olsson, K.; Lofgreen, D.D.; Vodicka, J.G.; Johnson, S.M. High-Performance MWIR/LWIR Dual-Band 640 × 480 HgCdTe/Si FPAs. J. Electron. Mater. 2010, 39, 2215–2219. [Google Scholar] [CrossRef]
- Kousis, I.; Pisello, A.L. Toward the Scaling up of Daytime Radiative Coolers: A Review. Adv. Opt. Mater. 2023, 11, 2300123. [Google Scholar] [CrossRef]
- Hossain, M.M.; Gu, M. Radiative Cooling: Principles, Progress, and Potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, H.; Taylor, S.; Liu, S.; Liu, Y.; Wang, R.; Wang, L. Selective Color Metamaterial Absorber Made of Aluminum Nanodisk Arrays by Excitation of Magnetic Polaritons. ES Mater. Manuf. 2022, 17, 63–72. [Google Scholar] [CrossRef]
- Ahmed, W.W.; Cao, H.; Xu, C.; Farhat, M.; Amin, M.; Li, X.; Zhang, X.; Wu, Y. Machine Learning Assisted Plasmonic Metascreen for Enhanced Broadband Absorption in Ultra-Thin Silicon Films. Light-Sci. Appl. 2025, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qin, Z. Multifunctional Plasmonic Metamaterial Absorber in the Middle Infrared Range for Polarization Detection. Opt. Commun. 2025, 574, 131124. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Zuo, P.; Tian, H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials 2023, 16, 3083. [Google Scholar] [CrossRef]
- Guo, H.; Yang, X.; Zhu, D. Easy-to-Manufacture In-Line 2D Nano Antenna for Enhanced Radiation-Cooled IR Camouflage. ACS Photonics 2023, 10, 1405–1415. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, M.; Zhao, X.; You, R. Fabrication and Modulation of Flexible Electromagnetic Metamaterials. Microsyst. Nanoeng. 2025, 11, 14. [Google Scholar] [CrossRef]
- Cha, J.; Lee, G.; Lee, D.; Kim, D.-S.; Kim, S. A Progressive Wafer Scale Approach for Sub-10 Nm Nanogap Structures. Sci. Rep.-UK 2025, 15, 11323. [Google Scholar] [CrossRef]
- Qian, C.; Kaminer, I.; Chen, H. A Guidance to Intelligent Metamaterials and Metamaterials Intelligence. Nat. Commun. 2025, 16, 1154. [Google Scholar] [CrossRef]
- Larciprete, M.C.; Centini, M.; Li Voti, R.; Bertolotti, M.; Sibilia, C. Polarization insensitive infrared absorbing behaviour of one-dimensional multilayer stack: A fractal approach. Opt. Express. 2014, 22, A1547–A1552. [Google Scholar] [CrossRef]
- Tong, H.; Li, H.; Huang, H.; Wu, A.; Cao, T.; Guo, D. Achievement of Low Infrared Emissivity Photonic Crystal Design on [CdSe/SiO2]N Periodic Films. Opt. Laser Technol. 2022, 156, 108557. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, H.; Wang, B.; Zhang, J.; Tang, H.; Li, Q.; Shen, Z.; Yang, H.; Shan, D.; Zhao, Y.; et al. Enhancing Coupling Resonance in Multilayer MIM Structure and F-P Cavity Mode for Mid-Infrared Band Applications. Plasmonics 2024, 19, 2333–2343. [Google Scholar] [CrossRef]
- Babayigit, C.; Boztug, C.; Kurt, H.; Turduev, M. Fabry–Pérot Microtube Cavity Structure for Optical Sensing at Mid-Infrared Spectrum. IEEE Sens. J. 2020, 20, 2390–2397. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, W.; Tang, X.; Zhu, D.; Luo, F. Effects of Substrate Roughness on Infrared-Emissivity Characteristics of Au Films Deposited on Ni Alloy. Thin Solid Films 2011, 519, 3100–3106. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-Loss Plasmonic Metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Li Voti, R. Optimization of a perfect absorber multilayer structure by genetic algorithms. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 11. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q.; Huang, J.; Xu, H.; Lu, Y.; Song, W. Scalable-Manufactured Metamaterials for Simultaneous Visible Transmission, Infrared Reflection, and Microwave Absorption. ACS Appl. Mater. Interfaces 2022, 14, 33933–33943. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, Y.; Zhou, Y.; Qiu, M.; Li, Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 2023, 12, 246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Huang, H.; Wang, X.; Tian, C.; Huang, Z.; Zhong, Z.; Liu, S. Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials 2025, 15, 678. https://doi.org/10.3390/nano15090678
Wu S, Huang H, Wang X, Tian C, Huang Z, Zhong Z, Liu S. Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials. 2025; 15(9):678. https://doi.org/10.3390/nano15090678
Chicago/Turabian StyleWu, Shenglan, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong, and Shuang Liu. 2025. "Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film" Nanomaterials 15, no. 9: 678. https://doi.org/10.3390/nano15090678
APA StyleWu, S., Huang, H., Wang, X., Tian, C., Huang, Z., Zhong, Z., & Liu, S. (2025). Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film. Nanomaterials, 15(9), 678. https://doi.org/10.3390/nano15090678