Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications
Abstract
1. Introduction
2. Mechanism and Properties of Avalanche Multiplication Effect
3. Typical Device Structures Based on the Avalanche Multiplication Effect
3.1. Schottky Junction
3.2. Stepwise Junction
3.3. Heterojunction
3.4. Top Gate-Controlled Homojunction
Structures | Device | R (A/W) | RT (ms) | λ (nm) | IDark (A) | M | T (K) | Threshold Voltage (V) | EQE (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bulk materials | Si | 50–120 | 0.1–2 × 10−6 | 400–1100 | 0.1–1 × 10−9 | 20–400 | 300 | 150–400 | 77 | [4] | |
Ge | 2.5–25 | 5–8 × 10−7 | 800–1650 | 5–50 × 10−8 | 50–200 | / | 20–40 | 55–75 | [5] | ||
InGaAs | / | 1–5 × 10−7 | 1100–1700 | 1–5 × 10−8 | 10–40 | / | 20–30 | 60–70 | [6] | ||
Two-dimensional materials | Schottkyjunction | WSe2 | / | 0.05 | 520 | 10−14 | 5 × 105 | 300 | 15 | 60 | [52] |
MoTe2-WS2-MoTe2 | 6.02 | 475 | 400–700 | 9.3 × 10−11 | 587 | 295 | 10.4 | 1406 | [49] | ||
InSe | 11,000 | 1 | 405–785 | 5 × 10−9 | 500 | / | 1.3 | / | [50] | ||
BP | 130 | / | 500–1100 | 2 × 10−6 | 7 | 300 | 14.7 | 31,000 | [53] | ||
InSe | / | 0.06 | 400–800 | 1.3 × 10−9 | 152 | / | 12 | 866 | [51] | ||
Stepwise junction | WSe2 | / | / | 520 | 1 × 10−15 | 470 | 300 | 1.6 | / | [55] | |
WSe2 | / | / | / | / | 104 | 300 | 4 | / | [56] | ||
Heteroj-unction | WSe2/MoS2 | 8.8 × 10−5 | / | 532–1030 | / | 1300 | 300 | 6.5 | / | [57] | |
Gr-MoTe2-Gr | 5 | 0.03 | 600–1350 | / | / | 300 | / | 40 | [58] | ||
Gr-MoTe2-Gr | 0.03 | 6.15 × 10−3 | 550 | 6 × 10−8 | / | 300 | / | / | [59] | ||
BP/InSe | 80 | / | 4000 | / | 104–105 | 10–180 | 4.8 | 2480 | [60] | ||
Top Gate-controlled homojunction | WSe2 | / | / | / | / | 106 | 300 | 0.88 | / | [67] |
Device | Subthreshold Swing (mV/dec) | On/Off Ratio | Ion | Ioff | Ref. |
---|---|---|---|---|---|
WSe2 | 2.73 | 106 | 2.29 × 10−3 A | 1 × 10−9 A | [67] |
MoS2 | 0.7 | 107 | 10−6 A/μm | 10−13A/μm | [61] |
Gr/InAs | <0.6 | 106 | 2.3 × 10−4 A/μm | / | [65] |
MoS2 | 11 | 106 | 10−6 A | 10−12 A | [62] |
Gr/BP/InSe | 0.4 | >105 | 1× 10−6 A/μm | 1.2 × 10−11A/μm | [66] |
MoS2 | 2.5 | 106 | 5.4 × 10−6 A/μm | 1 × 10−12A/μm | [63] |
InSe/BP | <0.25 | 104 | 1 × 10−6 A | 1.64 × 10−10 A | [60] |
MoS2 | 2.26 | 106 | 3.9 × 10−6 A | 1.9 × 10−12 A | [64] |
WSe2 | 3.09 | >105 | 1 × 10−6 A/µm | / | [56] |
4. Application of Avalanche Multiplication
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.Y.; Li, N.; Zhang, T.; Dong, D.M.; Yang, Y.T.; Wang, Y.H.; Dong, Z.A.; Shen, J.Y.; Zhou, T.H.; Liang, Y.L.; et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 2023, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Izhnin, I.I.; Lozovoy, K.A.; Kokhanenko, A.P.; Khomyakova, K.I.; Douhan, R.M.H.; Dirko, V.V.; Voitsekhovskii, A.V.; Fitsych, O.I.; Akimenko, N.Y. Single-photon avalanche diode detectors based on group IV materials. Appl. Nanosci. 2022, 12, 253–263. [Google Scholar] [CrossRef]
- Bartolo-Perez, C.; Chandiparsi, S.; Mayet, A.S.; Cansizoglu, H.; Gao, Y.; Qarony, W.; AhAmed, A.; Wang, S.Y.; Cherry, S.R.; Islam, M.S.; et al. Avalanche photodetectors with photon trapping structures for biomedical imaging applications. Opt. Express 2021, 29, 19024–19033. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu S12023 Series. Available online: https://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/apd/si-apd/S12023-02.html (accessed on 10 October 2024).
- Ushio PDGAJ Series. Available online: https://www.ushio.com/product/pd-ld-germanium-avalanche-photodiode/ (accessed on 4 June 2020).
- Hamamatsu G8931 Series. Available online: https://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/apd/ingaas-apd/G8931-04.html (accessed on 10 July 2024).
- Shi, Z.W.; Ke, S.Y.; Meng, W.H.; Wang, Z.R.; Guo, M.H.; Jiang, X.L.; Liu, K.; Lin, Z.W.; Chen, X.P. Double modulation of the electric field in InGaAs/Si APD by groove rings for the achievement of THz gain-bandwidth product. Phys. Scr. 2024, 99, 115501. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Ge, H.C.; Guo, H.J.; Chen, L.; Lin, C.; Chen, B.L. Gain and Excess Noise in HgCdTe e-Avalanche Photodiodes at Various Temperatures and Wavelengths. IEEE Trans. Electron Devices 2023, 70, 2384–2388. [Google Scholar] [CrossRef]
- Yan, S.L.; Huang, J.; Zhang, Y.; Ma, W. Mid wavelength type II InAs/GaSb superlattice avalanche photodiode with AlAsSb multiplication layer. IEEE Electron Device Lett. 2021, 42, 1634–1637. [Google Scholar] [CrossRef]
- Gatt, P.; Johnson, S.; Nichols, T. Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics. Appl. Opt. 2009, 48, 3261–3276. [Google Scholar] [CrossRef]
- Albota, M.A.; Heinrichs, R.M.; Kocher, D.G.; Fouche, D.G.; Player, B.E.; O’Brien, M.E.; Aull, B.F.; Zayhowski, J.J.; Mooney, J.; Willard, B.C.; et al. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl. Opt. 2002, 41, 7671–7678. [Google Scholar] [CrossRef]
- Kardynal, B.E.; Yuan, Z.L.; Shields, A.J. An avalanche-photodiode-based photon-number-resolving detector. Nat. Photonics 2008, 2, 425–428. [Google Scholar] [CrossRef]
- Kang, Y.M.; Liu, H.D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.H.; Chen, H.W.; et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photonics 2009, 3, 59–63. [Google Scholar] [CrossRef]
- Kim, S.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Jin, T.; Chang, S.; Watanabe, K.; Taniguchi, T.; Cho, S. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 2020, 15, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Y.; Cui, A.L.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.P.; Zhang, Z.H.; Wu, P.S.; et al. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. Adv. Mater. 2022, 34, 2107772. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Shi, L.; Pasanen, H.; Vivo, P.; Maity, P.; Hatamvand, M.; Zhan, Y.Q. There is plenty of room at the top: Generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light-Sci. Appl. 2021, 10, 174. [Google Scholar] [CrossRef]
- Li, M.J.; Fu, J.H.; Xu, Q.; Sum, T.C. Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells. Adv. Mater. 2019, 31, e1802486. [Google Scholar] [CrossRef]
- Weng, Q.C.; Komiyama, S.; Yang, L.; An, Z.H.; Chen, P.P.; Biehs, S.A.; Kajihara, Y.; Lu, W. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 2018, 360, 775–778. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.Y.; Zhou, Z.Y.; Zhou, Z.F.; Li, C.; Shu, L.; Shen, L.F.; Li, D.P.; Dong, R.T.; Yip, S.P.; Ho, J. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018, 11, 3371–3384. [Google Scholar] [CrossRef]
- Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H.C.; Liu, J.K.; Li, Q.; Wu, Y.; et al. Light-Driven WSe2-ZnO Junction Field-Effect Transistors for High-Performance Photodetection. Adv. Sci. 2020, 7, 1901637. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X.F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef]
- Meng, L.Y.; Zhang, J.M.; Yuan, X.X.; Yang, M.L.; Wang, B.; Wang, L.M.; Zhang, N.N.; Liu, M.L.; Zhu, Z.M.; Hu, H.Y. Gate Voltage Dependence Ultrahigh Sensitivity WS2 Avalanche Field-Effect Transistor. IEEE Trans. Electron Devices 2022, 69, 3225–3229. [Google Scholar] [CrossRef]
- Meng, L.Y.; Zhang, N.N.; Yang, M.L.; Yuan, X.X.; Liu, M.L.; Hu, H.Y.; Wang, L.M. Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction. Nano Res. 2023, 16, 3422–3428. [Google Scholar] [CrossRef]
- Kang, T.; Choi, H.; Li, J.S.; Kang, C.; Hwang, E.; Lee, S. Anisotropy of impact ionization in WSe2 field effect transistors. Nano Converg. 2023, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.C.; Hu, W.D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China-Phys. Mech. Astron. 2015, 58, 027001. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Xia, F.N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Hu, W.D.; Chen, X.S.; Ye, Z.H.; Lu, W. A hybrid surface passivation on HgCdTe long wave infrared detector with insitu CdTe deposition and high-density Hydrogen plasma modification. Appl. Phys. Lett. 2011, 99, 091101. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, H.; Wang, P.; Zhou, X.H.; Liu, C.S.; Zhang, Q.H.; Wang, F.; Huang, M.L.; Chen, S.Y.; Wu, P.S.; et al. Controllable Doping in 2D Layered Materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
- Tong, L.; Peng, Z.R.; Lin, R.F.; Li, Z.; Wang, Y.L.; Huang, X.Y.; Xue, K.H.; Xu, H.Y.; Liu, F.; Xia, H.; et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358. [Google Scholar] [CrossRef]
- Miao, J.S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888. [Google Scholar] [CrossRef]
- Hu, W.D.; Ye, Z.H.; Liao, L.; Chen, H.L.; Chen, L.; Ding, R.J.; He, L.; Chen, X.S.; Lu, W. 128 x 128 longwavelength/mid-wavelength two-color HgCdle inirared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 2014, 39, 5184–5187. [Google Scholar]
- Wu, P.S.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C.X.; et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. Infomat 2022, 4, e12275. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Nozik, A.J. Utilizing hot electrons. Nat. Energy 2018, 3, 170–171. [Google Scholar] [CrossRef]
- Paul, S.; Karak, S.; Mathew, A.; Ram, A.; Saha, S. Electron-phonon and phonon-phonon anharmonic interactions in 2H-MoX2 (X = S, Te): A comprehensive resonant Raman study. Phys. Rev. B 2021, 104, 075418. [Google Scholar] [CrossRef]
- Kim, J.H.; Bergren, M.R.; Park, J.C.; Adhikari, S.; Lorke, M.; Frauenheim, T.; Choe, D.H.; Kim, B.; Choi, H.; Gregorkiewicz, T.; et al. Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nat. Commun. 2019, 10, 5488. [Google Scholar] [CrossRef]
- Paul, K.K.; Kim, J.H.; Lee, Y.H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192. [Google Scholar] [CrossRef]
- Shao, Z.G.; Chen, D.J.; Liu, Y.L.; Lu, H.; Zhang, R.; Zheng, Y.D.; Li, L.; Dong, K.X. Significant Performance Improvement in AlGaN Solar-Blind Avalanche Photodiodes by Exploiting the Built-In Polarization Electric Field. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3803306. [Google Scholar] [CrossRef]
- Xie, R.Z.; Li, Q.; Wang, P.; Chen, X.S.; Lu, W.; Guo, H.J.; Chen, L.; Hu, W.D. Spatial description theory of narrow-band single-carrier avalanche photodetectors. Opt. Express 2021, 29, 16432–16446. [Google Scholar] [CrossRef]
- Liu, S.N.; Han, Q.; Luo, W.J.; Lei, W.; Zhao, J.; Wang, J.; Jiang, Y.D.; Raschke, M.B. Recent progress of innovative infrared avalanche photodetectors. Infrared Phys. Technol. 2024, 137, 105114. [Google Scholar] [CrossRef]
- Zhao, Y.L. Impact Ionization in Absorption, Grading, Charge, and Multiplication Layers of InP/InGaAs SAGCM APDs with a Thick Charge Layer. IEEE Trans. Electron Devices 2013, 60, 3493–3499. [Google Scholar] [CrossRef]
- Gabor, N.M.; Zhong, Z.H.; Bosnick, K.; Park, J.; McEuen, P.L. Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes. Science 2009, 325, 1367–1371. [Google Scholar] [CrossRef]
- Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y.J.; Lombardo, A.; Milana, S.; Nair, R.R.; Novoselov, K.S.; Ferrari, A.C.; Cerullo, G.; et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987. [Google Scholar] [CrossRef]
- Barati, F.; Grossnickle, M.; Su, S.S.; Lake, R.K.; Aji, V.; Gabor, N.M. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotechnol. 2017, 12, 1134–1139. [Google Scholar] [CrossRef]
- Beard, M.C.; Knutsen, K.P.; Yu, P.R.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.H.; Wang, X.M.; Liu, S.J.; Chen, H.J.; Deng, S.Z. A Complete Two-Dimensional Avalanche Photodiode Based on MoTe2-WS2-MoTe2 Heterojunctions with Ultralow Dark Current. Front. Mater. 2021, 8, 736180. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jeon, J.; Park, J.H.; Jeong, M.S.; Lee, B.H.; Hwang, E.; Lee, S. Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano 2019, 13, 8804–8810. [Google Scholar] [CrossRef]
- Lei, S.D.; Wen, F.F.; Ge, L.H.; Najmaei, S.; George, A.; Gong, Y.J.; Gao, W.L.; Jin, Z.H.; Li, B.; Lou, J.; et al. An Atomically Layered InSe Avalanche Photodetector. Nano Lett. 2015, 15, 3048–3055. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Yu, F.L.; Chen, X.S.; Lu, W.; Li, G.H. Achieving a Noise Limit with a Few-layer WSe2 Avalanche Photodetector at Room Temperature. Nano Lett. 2024, 24, 13255–13262. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.Y.; Jeon, J.; Park, J.H.; Lee, B.H.; Hwang, E.; Lee, S. Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector. Small 2019, 15, 1805352. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Cheng, B.; Lim, J.; Gao, A.Y.; Lyu, L.Y.; Cao, T.J.; Wang, S.; Li, Z.A.; Wu, Q.Y.; Ang, L.K.; et al. Approaching the Intrinsic Threshold Breakdown Voltage and Ultrahigh Gain in a Graphite/InSe Schottky Photodetector. Adv. Mater. 2022, 34, e2206196. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Xia, H.; Liu, Y.Q.; Chen, Y.; Xie, R.Z.; Wang, Z.; Wang, P.; Miao, J.S.; Wang, F.; Li, T.X.; et al. Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 2024, 15, 3639. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W.R.; Wang, H.L.; Bai, Y.Z.; Zhang, T.; Zhang, K.; Duan, S.K.; Yu, Y.Y.; Zhao, T.E.; Xie, R.Z.; et al. Room-Temperature WSe2 Impact Ionization Field-Effect Transistor Based on a Stepwise Homojunction. Small 2025, 2412466. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Wang, Y.D.; Luo, M.L.; Lu, K.Z.; Kim, Y.; Joo, H.J.; Yi, Y.; Wang, C.W.; Wang, Q.J.; Chae, S.H.; et al. Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Lett. 2022, 22, 9516–9522. [Google Scholar] [CrossRef]
- Wu, G.J.; Wang, X.D.; Chen, Y.; Wu, S.Q.; Wu, B.M.; Jiang, Y.Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X.R.; et al. MoTe2 p-n Homojunctions Defined by Ferroelectric Polarization. Adv. Mater. 2020, 32, 1907937. [Google Scholar] [CrossRef]
- Wei, X.; Yan, F.G.; Lv, Q.S.; Zhu, W.K.; Hu, C.; Patanè, A.; Wang, K.Y. Enhanced Photoresponse in MoTe2 Photodetectors with Asymmetric Graphene Contacts. Adv. Opt. Mater. 2019, 7, 1900190. [Google Scholar] [CrossRef]
- Gao, A.Y.; Lai, J.W.; Wang, Y.J.; Zhu, Z.; Zeng, J.W.; Yu, G.L.; Wang, N.Z.; Chen, W.C.; Cao, T.J.; Hu, W.D.; et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, X.Z.; Duan, X.P.; Yu, Z.M.; Niu, W.C.; Zhang, M.L.; Liu, C.; Li, G.L.; Liu, Y.; Liu, X.Q.; et al. Ultra-Steep-Slope High-Gain MoS2 Transistors with Atomic Threshold-Switching Gate. Adv. Sci. 2022, 9, 2104439. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.H.; Kim, G.S.; Jeon, H.; Kim, T.; Yu, H.Y. Steep-Slope Gate-Connected Atomic Threshold Switching Field-Effect Transistor with MoS2 Channel and Its Application to Infrared Detectable Phototransistors. Adv. Sci. 2021, 8, 2100208. [Google Scholar] [CrossRef]
- Hua, Q.L.; Gao, G.Y.; Jiang, C.S.; Yu, J.R.; Sun, J.L.; Zhang, T.P.; Gao, B.; Cheng, W.J.; Liang, R.R.; Qian, H.; et al. Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat. Commun. 2020, 11, 6207. [Google Scholar] [CrossRef]
- Wang, X.F.; Tian, H.; Liu, Y.M.; Shen, S.H.; Yan, Z.Y.; Deng, N.Q.; Yang, Y.; Ren, T.L. Two-Mode MoS2 Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio. ACS Nano 2019, 13, 2205–2212. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Song, W.J.; Wang, P.Q.; Gambin, V.; Huang, Y.; Duan, X.F. Ultra-Steep Slope Impact Ionization Transistors Based on Graphene/InAs Heterostructures. Small Struct. 2021, 2, 2000039. [Google Scholar] [CrossRef]
- Gao, A.Y.; Zhang, Z.Y.; Li, L.F.; Zheng, B.J.; Wang, C.Y.; Wang, Y.J.; Cao, T.J.; Wang, Y.; Liang, S.J.; Miao, F.; et al. Robust Impact-Ionization Field-Effect Transistor Based on Nanoscale Vertical Graphene/Black Phosphorus/Indium Selenide Heterostructures. ACS Nano 2020, 14, 434–441. [Google Scholar] [CrossRef]
- Choi, H.; Li, J.; Kang, T.; Kang, C.; Son, H.; Jeon, J.; Hwang, E.; Lee, S. A steep switching WSe2 impact ionization field-effect transistor. Nat. Commun. 2022, 13, 6076. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, P.; Wang, P.; Rogalski, A.; Gu, Y.; Jiang, R.; Wang, F.; Hu, W. Infrared avalanche photodiodes from bulk to 2D materials. Light-Sci. Appl. 2023, 12, 2095–5545. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Mu, J.F. High-speed Si-Ge avalanche photodiodes. PhotoniX 2022, 3, 8. [Google Scholar] [CrossRef]
- Liu, J.X.; Peng, Z.H.; Tan, C.; Yang, L.; Xu, R.D.; Wang, Z.G. Emerging single-photon detection technique for high-performance photodetector. Front. Phys. 2024, 19, 62502. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Douhan, R.M.H.; Dirko, V.V.; Deeb, H.; Khomyakova, K.I.; Kukenov, O.I.; Sokolov, A.S.; Akimenko, N.Y.; Kokhanenko, A.P. Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging. Nanomaterials 2023, 13, 3078. [Google Scholar] [CrossRef]
- Abbasi, R.; Hu, X.Y.; Zhang, A.; Dummer, I.; Wachsmann-Hogiu, S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering 2024, 11, 912. [Google Scholar] [CrossRef]
- Yuan, B.W.; Chen, Z.B.; Chen, Y.X.; Tang, C.J.; Chen, W.A.; Cheng, Z.G.; Zhao, C.S.; Hou, Z.Z.; Zhang, Q.; Gan, W.Z.; et al. High drain field impact ionization transistors as ideal switches. Nat. Commun. 2024, 15, 9038. [Google Scholar] [CrossRef]
- Choi, H.; Baek, S.; Jung, H.; Kang, T.; Lee, S.; Jeon, J.; Jang, B.C.; Lee, S. Spiking Neural Network Integrated with Impact Ionization Field-Effect Transistor Neuron and a Ferroelectric Field-Effect Transistor Synapse. Adv. Mater. 2024, 2406970. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, S.S.; Wang, W.H.; Zhang, J.L.; Sun, Y.M.; Deng, Q.R.; Zheng, T.; Lu, J.T.; Gao, W.; Yang, M.M.; et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 2024, 15, 6261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Kang, M.; Fang, Y.; Martyniuk, P.; Wang, H. Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials 2025, 15, 636. https://doi.org/10.3390/nano15090636
Zhou Z, Kang M, Fang Y, Martyniuk P, Wang H. Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials. 2025; 15(9):636. https://doi.org/10.3390/nano15090636
Chicago/Turabian StyleZhou, Zhangxinyu, Mengyang Kang, Yueyue Fang, Piotr Martyniuk, and Hailu Wang. 2025. "Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications" Nanomaterials 15, no. 9: 636. https://doi.org/10.3390/nano15090636
APA StyleZhou, Z., Kang, M., Fang, Y., Martyniuk, P., & Wang, H. (2025). Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials, 15(9), 636. https://doi.org/10.3390/nano15090636