Oxygen Ion Concentration Distribution Effect on Bipolar Switching Properties of Neodymium Oxide Film’s Resistance and Random Access Memory Devices
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
.ROW | Structure | Ea (Activation Energy) | Compliance Current | REF |
---|---|---|---|---|
1 | Pt/Zn:SiO2/TiN | 153.3 meV | 10 μA | [30] |
2 | Pt/Zn:SiO2/TiN | 68.3 meV | 100 μA | [30] |
3 | Pt/Sn:SiO2/TiN | 122 meV | 10 μA | [31] |
4 | Pt/Sn:SiO2/TiN | 58.8 meV | 100 μA | [31] |
5 | Al/BST/ITO | 138 meV | 5 mA | [19] |
6 | Al/BST/ITO | 117 meV | 10 mA | [19] |
7 | Al/ITOX:SiO2/TiN | 121 meV | 10 mA | [28] |
8 | ITO/Nd2O3/ITO | 128 meV | 1 mA | This work |
9 | ITO/Nd2O3/ITO | 94 meV | 10 mA | This work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Dai, T.J.; Liu, K.; Chang, K.C.; Zhang, R.; Lin, X.; Liu, H.J.; Lai, Y.C.; Kuo, T.P. Achieving Complementary Resistive Switching and Multi-Bit Storage Goals by Modulating the Dual-Ion Reaction through Supercritical Fluid-Assisted Ammonization. Nanoscale 2021, 13, 14035–14040. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, K.C.; Lin, X.; Lai, Y.-C.; Zhang, R.; Kuo, T.P. Variable-Temperature Activation Energy Extraction to Clarify the Physical and Chemical Mechanisms of the Resistive Switching Process. Nanoscale 2020, 12, 15721–15724. [Google Scholar] [CrossRef]
- Li, L.; Chang, K.C.; Ye, C.; Lin, X.; Zhang, R.; Xu, Z.; Xiong, W.; Zhou, Y.; Kuo, T.P. An Indirect Way to Achieve Comprehensive Performance Improvement of Resistive Memory: When Hafnium Meets ITO in Electrode. Nanoscale 2020, 12, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Dai, T.; Li, L.; Lin, X.; Zhang, S.; Lai, Y.C.; Liu, H.J.; Syu, Y.E. Unveiling the Influence of Surrounding Materials and Realization of Multi-Level Storage in Resistive Switching Memory. Nanoscale 2020, 12, 22070–22074. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Zhang, R.; Chang, T.C.; Tsai, T.M.; Chu, T.J.; Chen, H.L.; Shih, C.C.; Pan, C.H.; Su, Y.T.; Wu, P.J.; et al. High Performance, Excellent Reliability Multifunctional Graphene Oxide Doped Memristor Achieved by Self-Protective Compliance Current Structure. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 33–34. [Google Scholar]
- Ye, C.; Xu, Z.; Chang, K.C.; Li, L.; Lin, X.; Zhang, R.; Zhou, Y.; Xiong, W.; Kuo, T.P. Hafnium Nanocrystals Observed in a HfTiO Compound Films Bring about Excellent Performance of Flexible Selectors in Memory Integration. Nanoscale 2019, 11, 20792–20796. [Google Scholar] [CrossRef]
- Lanza, M.; Waser, R.; Ielmini, D.; Yang, J.J.; Goux, L.; Suñe, J.; Kenyon, A.J.; Mehonic, A.; Spiga, S.; Rana, V.; et al. Standards for the Characterization of Endurance in Resistive Switching Devices. ACS Nano 2021, 15, 17214–17231. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory Devices and Applications for In-Memory Computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Funck, C.; Menzel, S. Comprehensive Model of Electron Conduction in Oxide-Based Memristive Devices. ACS Appl. Electron. Mater. 2021, 3, 3674–3692. [Google Scholar]
- Dalgaty, T.; Castellani, N.; Turck, C.; Harabi, K.E.; Querlioz, D.; Vianello, E. In Situ Learning Using Intrinsic Memristor Variability via Markov Chain Monte Carlo Sampling. Nat. Electron. 2021, 4, 151–161. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H.S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.; Larcher, L.; Villena, M.; Yang, J.; Goux, L. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1800143. [Google Scholar] [CrossRef]
- Chen, K.H.; Cheng, C.M.; Wang, N.F.; Hung, H.W.; Li, C.Y.; Wu, S. First Order Rate Law Analysis for Reset State in Vanadium Oxide Films Resistive Random Access Memory Devices. Nanomaterials 2023, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.M.; Chang, K.C.; Chang, T.C.; Zhang, R.; Wang, T.; Pan, C.H.; Chen, K.H.; Chen, H.M.; Chen, M.C.; Tseng, Y.T.; et al. Resistive Switching Mechanism of Oxygen-Rich Indium Tin Oxide Resistance Random Access Memory. IEEE Electron. Device Lett. 2016, 37, 408–411. [Google Scholar] [CrossRef]
- Zhang, R.; Young, T.F.; Chen, M.C.; Chen, H.L.; Liang, S.P.; Syu, Y.E.; Sze, S.M.; Chang, K.C.; Chang, T.C.; Tsai, T.M.; et al. Characterization of Oxygen Accumulation in Indium-Tin-Oxide for Resistance Random Access Memory. IEEE Electron. Device Lett. 2014, 35, 630–632. [Google Scholar] [CrossRef]
- Elangovan, M.; Sharma, K.; Sachdeva, A.; Darabi, A. One-Sided Schmitt-Trigger-Based Low Power Read Decoupled 11T CNTFET SRAM with Improved Stability. Circuits, Syst. Signal Process. 2024, 44, 1045–1074. [Google Scholar] [CrossRef]
- Oliveira, G.F.; Olgun, A.; Yağlıkçı, A.G.; Bostancı, F.N.; Gómez-Luna, J.; Ghose, S. MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction Multiple-Data Computing. In Proceedings of the 2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Edinburgh, UK, 2–6 March 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Yang, C.; Zou, S.; Chen, X.; Gao, J.; Liu, W.; Yang, M.; Xu, J.; Kang, J.; Bu, W.; Zheng, K.; et al. The fabrication of spin transfer torque-based magnetoresistive random access memory cell with ultra-low switching power. Jpn. J. Appl. Phys. 2024, 63, 05SP10. [Google Scholar] [CrossRef]
- Rong, N.; Liu, X.; Zhang, J.; Xu, P.; Zhang, B.; Song, W.; Song, S.; Song, Z.; Wu, L. High performance antimony-rich RexSb3Te for phase-change random access memory applications. J. Non Cryst. Solids 2024, 635, 122987. [Google Scholar] [CrossRef]
- Chen, K.-H.; Cheng, C.-M.; Kao, M.-C.; Kao, Y.-H.; Lin, S.-F. Study of the Characteristics of Ba0.6Sr0.4Ti1-xMnxO3-Films Resistance Random Access Memory Devices. Micromachines 2024, 15, 1143. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Li, Z.; Tao, Y.; Wang, Z.; Lin, Y.; Xu, H.; Liu, Y. A Self-powered Multimodal Sen-memory System. IEEE Electron. Device Lett. 2024, 45, 1189–1192. [Google Scholar] [CrossRef]
- Huh, W.; Lee, D.; Lee, C. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Zhao, X.; Xie, D.; Wang, Z.; Xu, H.; Liu, Y. Light-controlled stateful reconfigurable logic in a carbon dot-based optoelectronic memristor. Appl. Phys. Lett. 2024, 124, 073507. [Google Scholar] [CrossRef]
- Chen, K.-H.; Kao, M.-C.; Huang, S.-J.; Li, J.-Z. Bipolar Switching Properties of Neodymium Oxide RRAM Devices Using by a Low Temperature Improvement Method. Materials 2017, 10, 1415. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, A.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Kubra, K.T.; Sharif, R.; Patil, B.; Javaid, A.; Shahzadi, S.; Salman, A.; Siddique, S.; Ali, G. Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. J. Alloys Compd. 2020, 815, 30. [Google Scholar] [CrossRef]
- Syu, Y.E.; Chang, T.C. Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX /TiN Structure. Elect. Dev. Lett. 2011, 32, 545. [Google Scholar] [CrossRef]
- Chen, K.-H.; Cheng, C.-M.; Chen, M.-L.; Pan, Y.-Y. Bipolar Switching Properties of the Transparent Indium Tin Oxide Thin Film Resistance Random Access Memories. Nanomaterials 2023, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Cheng, C.-M.; Wang, N.-F.; Kao, M.-C. Activation Energy and Bipolar Switching Properties for the Co-Sputtering of ITOX:SiO2 Thin Films on Resistive Random Access Memory Devices. Nanomaterials 2023, 13, 2179. [Google Scholar] [CrossRef]
- Chen, K.-H.; Tsai, T.-M.; Cheng, C.-M.; Huang, S.-J.; Chang, K.-C.; Liang, S.-P.; Young, T.-F. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments. Materials 2018, 11, 43. [Google Scholar] [CrossRef]
- Chen, K.-H.; Zhang, R.; Chang, T.-C.; Tsai, T.-M.; Chang, K.-C.; Lou, J.C.; Young, T.-F.; Chen, J.-H.; Shih, C.-C.; Tung, C.-W.; et al. Hopping conduction distance dependent activation energy characteristics of Zn:SiO2 resistance random access memory devices. Appl. Phys. Lett. 2013, 102, 133503. [Google Scholar] [CrossRef]
- Chen, K.-H.; Chang, K.-C.; Chang, T.-C.; Tsai, T.-M.; Liao, K.-H.; Syu, Y.-E.; Simon; Sze, M. Effect of different constant compliance current for hopping conduction distance properties of the Sn:SiOx thin film RRAM devices. Appl. Phys. A 2016, 122, 228. [Google Scholar] [CrossRef]
.ROW | Structure | Ser/Reset Voltage | Memory Windows | Compliance Current | REF |
---|---|---|---|---|---|
1 | Al/Nd2O3/ITO | −1 V/1 V | 103 | 10 mA | This work |
2 | TiN/Nd2O3/ITO | −0.5 V/0.5 V | 102 | 10 mA | This work |
3 | ITO/Nd2O3/ITO (300 nm) | −0.2 V/0.5 V | 102 | 10 mA | This work |
4 | Al/Nd2O3/ITO | −0.5 V/0.5 V | 102 | 1 mA | This work |
5 | TiN/Nd2O3/ITO | −0.2 V/0.2 V | 102 | 1 mA | This work |
6 | ITO/Nd2O3/ITO | −0.1 V/0.3 V | 101 | 1 mA | This work |
7 | Pt/Zn:SiO2/TiN | −0.5 V/0.3 V | 102 | 10 mA | [30] |
8 | Pt/Sn:SiO2/TiN | −0.3 V/0.2 V | 101 | 10 mA | [31] |
9 | Al/BST/ITO | −1 V/0.5 V | 102 | 10 mA | [19] |
10 | Al/ITOX:SiO2/TiN | −0.5 V/0.5 V | 102 | 10 mA | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-H.; Kao, M.-C.; Chen, H.-C.; Wang, Y.-C. Oxygen Ion Concentration Distribution Effect on Bipolar Switching Properties of Neodymium Oxide Film’s Resistance and Random Access Memory Devices. Nanomaterials 2025, 15, 448. https://doi.org/10.3390/nano15060448
Chen K-H, Kao M-C, Chen H-C, Wang Y-C. Oxygen Ion Concentration Distribution Effect on Bipolar Switching Properties of Neodymium Oxide Film’s Resistance and Random Access Memory Devices. Nanomaterials. 2025; 15(6):448. https://doi.org/10.3390/nano15060448
Chicago/Turabian StyleChen, Kai-Huang, Ming-Cheng Kao, Hsin-Chin Chen, and Yao-Chin Wang. 2025. "Oxygen Ion Concentration Distribution Effect on Bipolar Switching Properties of Neodymium Oxide Film’s Resistance and Random Access Memory Devices" Nanomaterials 15, no. 6: 448. https://doi.org/10.3390/nano15060448
APA StyleChen, K.-H., Kao, M.-C., Chen, H.-C., & Wang, Y.-C. (2025). Oxygen Ion Concentration Distribution Effect on Bipolar Switching Properties of Neodymium Oxide Film’s Resistance and Random Access Memory Devices. Nanomaterials, 15(6), 448. https://doi.org/10.3390/nano15060448