The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CMP Conditions
2.3. Characterization
3. Results
3.1. The Dependency of the Polyimide Film Polishing Rate on the Fe(NO3)3 Concentration of the CMP Slurry
3.2. The Properties of the Slurry in Polyimide Film CMP (i.e., the Zeta Potential of the Polished Surface of the Polyimide Film and the Slurry Adsorption Degree) and Mechanically Dominant Polishing Depending on the Fe(NO3)3 Concentration
3.3. The Surface Deformation of the Polyimide Film Depending on the Fe(NO3)3 Concentration of the CMP Slurry
3.4. The Deformation Mechanism of the Surface of the Polyimide Film During CMP and the Polishing Rate Enhancement via the Effect of Fe(No3)3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoneda, S.; Adachi, K.; Kobayashi, K.; Matsukawa, D.; Sasaki, M.; Itabashi, T.; Shirasaka, T.; Shibata, T. A Novel Photosensitive Polyimide Adhesive Material for Hybrid Bonding Processing. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Virtual Event, 1 June–4 July 2021; pp. 680–686. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, T.; You, J.; Kim, K.; Moon, B.M.; Sohn, K.; Jung, S.-O. An Energy-Efficient Design of TSV I/O for HBM with a Data Rate up to 10 Gb/s. IEEE J. Solid-State Circuits 2023, 58, 1–11. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, S.H.; Suk, K.L.; Jang, J.G.; Jeon, G.J.; Choi, J.I.; Yun, H.J.; Hong, J.; Choi, J.Y.; Lee, W.J.; et al. Novel 2.5D RDL Interposer Packaging: A Key Enabler for the New Era of Heterogenous Chip Integration. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Virtual Event, 1 June–4 July 2021; pp. 321–326. [Google Scholar] [CrossRef]
- Yu, C.H.; Yen, L.J.; Hsieh, C.Y.; Hsieh, J.S.; Chang, V.C.Y.; Hsieh, C.H.; Liu, C.S.; Wang, C.T.; Yee, K.; Yu, D.C.H. High Performance, High Density RDL for Advanced Packaging. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 28 May–1 June 2018; pp. 587–593. [Google Scholar] [CrossRef]
- Son, K.; Kim, G.; Park, Y.B.; Ryu, H.K. Effect of Dielectric Process on the Interfacial Adhesion of RDL for FOWLP. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 348–353. [Google Scholar] [CrossRef]
- You, S.H.; Jeon, S.; Oh, D.; Kim, K.; Kim, J.; Cha, S.Y.; Kim, G. Advanced Fan-Out Package SI/PI/Thermal Performance Analysis of Novel RDL Packages. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, US, 29 May–1 June 2018; pp. 1295–1301. [Google Scholar] [CrossRef]
- Kim, H.-G.; An, Y.-M.; Moon, D.-K.; Park, J.-G. Effect of Chemicals and Slurry Particles on Chemical Mechanical Polishing of Polyimide. Jpn. J. Appl. Phys. 2000, 39, 1085–1090. [Google Scholar] [CrossRef]
- Jeong, G.-P.; Park, J.-S.; Lee, S.-J.; Kim, P.-S.; Han, M.-H.; Hong, S.-W.; Kim, E.-S.; Park, J.-H.; Choo, B.-K.; Kang, S.-B.; et al. Polymer link breakage of polyimide-film-surface using hydrolysis reaction accelerator for enhancing chemical–mechanical-planarization polishing-rate. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Y.; Lai, X.; Lv, X.; Li, J.; Qiu, S.; Zhang, G.; Sun, R. A comprehensive study on the effect of molecular chain flexibility on the low-temperature curing ability of polyimides. J. Mater. Chem. C 2023, 12, 177–186. [Google Scholar] [CrossRef]
- Sang, H.; Zhou, J.; Hu, F.; Geng, K.; Feng, S.; Wang, H.; Zhuang, Y. Highly Selective Soluble Polyimides Simultaneously Containing Benzimidazole and Hydroxyl Groups for Membrane-Based Gas Separation. Macromolecules 2024, 57, 5929–5940. [Google Scholar] [CrossRef]
- Lin, Y.H.; Yew, M.C.; Chen, S.M.; Liu, M.S.; Kavle, P.; Lai, T.M.; Yu, C.T.; Hsu, F.C.; Chen, C.S.; Fang, T.J.; et al. Multilayer RDL Interposer for Heterogeneous Device and Module Integration. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 931–936. [Google Scholar] [CrossRef]
- Lia, J.; Tsai, F.L.; Li, J.; Pan, G.; Chan, M.H.; Zheng, L.; Chen, S.; Kao, N.; Lai, D.; Wan, K.; et al. Large Size Multilayered Fan-Out RDL Packaging for Heterogeneous Integration. In Proceedings of the 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC), Singapore, 7–9 December 2021; pp. 239–243. [Google Scholar] [CrossRef]
- Rao, V.S.; Chong, C.T.; Ho, D.; Zhi, D.M.; Choong, C.S.; Ps, S.L.; Ismael, D.; Liang, Y.Y. Development of High Density Fan Out Wafer Level Package (HD FOWLP) with Multi-Layer Fine Pitch RDL for Mobile Applications. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1522–1529. [Google Scholar] [CrossRef]
- Capurso, M.; Gette, R.; Radivoy, G.; Dorn, V. The SN2 Reaction: A Theoretical-Computational Analysis of a Simple and Very Interesting Mechanism. Proceedings 2019, 41, 81. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, J.; Tan, S.M.; Tan, D.; Lee, R.; Tan, C.H. An Enantioconvergent Halogenophilic Nucleophilic Substitution Reaction. Science 2019, 363, 400–404. [Google Scholar] [CrossRef]
- Hagan, D.; Schmidberger, J.W. Enzymes that catalyse SN2 reaction mechanisms. Nat. Prod. Rep. 2010, 27, 900–918. [Google Scholar] [CrossRef] [PubMed]
- Hennig, C.; Schmatz, S. Mechanisms of SN2 reactions: Insights from a nearside/farside analysis. Phys. Chem. Chem. Phys. 2015, 17, 26670–26676. [Google Scholar] [CrossRef]
- Hamlin, T.A.; Swart, M.; Bickelhaupt, F.M. Nucleophilic Substitution (SN2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. ChemPhysChem 2018, 19, 1315–1330. [Google Scholar] [CrossRef]
- Jain, I.H.; Zazzeron, L.; Gvozdenovic-Jeremic, J.; Guarani, V.; Collins, S.R.; Di Paulo, A.; Murphy, M.P.; Kampf, G.; Kocher, T.; Broaddus, C.C.; et al. Hypoxia as a Therapy for Mitochondrial Disease. Science 2016, 352, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Vermeeren, P.; De Jong, L.; Bickelhaupt, F.M.; Hamlin, T.A. SN2 versus SN2′ Competition. J. Org. Chem. 2022, 87, 8892–8901. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes. ACS Central Sci. 2017, 3, 692–700. [Google Scholar] [CrossRef]
- Bahrami, F.; Zhao, Y. Rational Design and Synthesis of an Artificial Enzyme for SN2 Reactions through Micellar Imprinting. Org. Lett. 2023, 26, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Samunual, P.; Bergbreiter, D.E. SN2 Reactions in Hydrocarbon Solvents Using Ammonium-Terminated Polyisobutylene Oligomers as Phase-Solubilizing Agents and Catalysts. J. Org. Chem. 2018, 83, 11101–11107. [Google Scholar] [CrossRef]
- Tamai, K.; Morinaga, H.; Doi, T.K.; Kurokawa, S.; Ohnishi, O. Analysis of Chemical and Mechanical Factors in CMP Processes for Improving Material Removal Rate. J. Electrochem. Soc. 2011, 158, H333–H337. [Google Scholar] [CrossRef]
- Chen, S.-W.; Kung, T.-M.; Liu, C.-P.; Chang, S.-C.; Cheng, Y.-L.; Wang, Y.-L. Effect of Electric Potential and Mechanical Force on Copper Electro-Chemical Mechanical Planarization. Jpn. J. Appl. Phys. 2012, 51, 036504. [Google Scholar] [CrossRef]
- Choi, S.-H.; Yim, J.; Lim, J.; Kim, S.; Jeong, Y.; Bae, K.; Seo, J.; Lee, K. Tailored electrostatic attraction force between anionic polymer and Si3N4 film in consecutive gate poly open CMP. Mater. Sci. Semicond. Process. 2024, 184, 108761. [Google Scholar] [CrossRef]
- Busnaina, A.; Lin, H.; Moumen, N.; Feng, J.-W.; Taylor, J. Particle adhesion and removal mechanisms in post-CMP cleaning processes. IEEE Trans. Semicond. Manuf. 2002, 15, 374–382. [Google Scholar] [CrossRef]
- Basim, G.; Vakarelski, I.U.; Moudgil, B.M. Role of interaction forces in controlling the stability and polishing performance of CMP slurries. J. Colloid Interface Sci. 2003, 263, 506–515. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Han, M.-H.; Lee, S.-J.; Kim, E.-S.; Lee, K.; Lee, G.-S.; Bae, J.-Y.; Han, M.-H.; Lee, S.-J.; Kim, E.-S.; et al. Citation: Silicon Wafer CMP Slurry Using a Hydrolysis Reaction Accelerator with an Amine Functional Group Remarkably Enhances Polishing Rate. Nanomaterials 2022, 12, 3893. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Han, M.-H.; Shim, T.-H.; Park, J.-G. Chemical mechanical planarization mechanism of epitaxially grown Ge-film for sequential integrating 3D-structured transistor cells. J. Korean Phys. Soc. 2022, 81, 1262–1268. [Google Scholar] [CrossRef]
- Yun, S.-S.; Son, Y.-H.; Jeong, G.-P.; Lee, J.-H.; Jeong, J.-H.; Bae, J.-Y.; Kim, S.-I.; Park, J.-H.; Park, J.-G. Dishing-free chemical mechanical planarization for copper films. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126143. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, J.C.; Kim, S.I.; Lee, S.J.; Bae, J.Y.; Park, J.H.; Park, J.G. Surface Transformation of Spin-on-Carbon Film via Forming Carbon Iron Complex for Remarkably Enhanced Polishing Rate. Nanomaterials 2022, 12, 969. [Google Scholar] [CrossRef]
- Davydov, V.; Rakhmanina, A.; Kireev, I.; Alieva, I.; Zhironkina, O.; Strelkova, O.; Dianova, V.; Samani, T.D.; Mireles, K.; Hocine Yahia, L.; et al. Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells. J. Mater. Chem. B 2014, 2, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Feng, J.; Liu, W.; Yin, L.; Chen, W.; Shi, C.; Song, J. Fe3C Decorated Folic Acid-Derived Graphene-Like Carbon as a Polysulfide Catalyst for High-Performance Lithium-Sulfur Battery. Batteries 2023, 9, 296. [Google Scholar] [CrossRef]
- Roy, A.; Mukhopadhyay, A.K.; Das, S.C.; Bhattacharjee, G.; Majumdar, A.; Hippler, R. Surface Stoichiometry and Optical Properties of Cux-TiyCz Thin Films Deposited by Magnetron Sputtering. Coatings 2019, 9, 551. [Google Scholar] [CrossRef]
- Díez, N.; Śliwak, A.; Gryglewicz, S.; Grzyb, B.; Gryglewicz, G. Enhanced Reduction of Graphene Oxide by High-Pressure Hydrothermal Treatment. RSC Adv. 2015, 5, 81831–81837. [Google Scholar] [CrossRef]
- Lara, G.G.; Andrade, G.F.; Cipreste, M.F.; da Silva, W.M.; Gastelois, P.L.; Gomes, D.A.; de Miranda, M.C.; Macedo, W.A.d.A.; Neves, M.J.; de Sousa, E.M.B. Protection of normal cells from irradiation bystander effects by silica-flufenamic acid nanoparticles. J. Mater. Sci. Mater. Med. 2018, 29, 1–14. [Google Scholar] [CrossRef]
- Ravi, S.; Zhang, S.; Lee, Y.-R.; Kang, K.-K.; Kim, J.-M.; Ahn, J.-W.; Ahn, W.-S. EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J. Ind. Eng. Chem. 2018, 67, 210–218. [Google Scholar] [CrossRef]
- Lee, H.; Lee, W.-J.; Park, Y.-K.; Ki, S.J.; Kim, B.-J.; Jung, S.-C. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications. Nanomaterials 2018, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xiao, D.; Ma, J.; Chen, C.; Li, K.; Ma, J.; Liao, Y.; Zheng, L.; Zuo, X. The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe-N coordination for the oxygen reduction reaction. RSC Adv. 2018, 8, 24509–24516. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.-H.; Koh, H.-S.; Heo, I.-H.; Kim, M.-H.; Kim, P.-S.; Jeon, M.-U.; Kim, M.-J.; Jin, W.-H.; Cho, K.-C.; Park, J.; et al. The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate. Nanomaterials 2025, 15, 425. https://doi.org/10.3390/nano15060425
Han M-H, Koh H-S, Heo I-H, Kim M-H, Kim P-S, Jeon M-U, Kim M-J, Jin W-H, Cho K-C, Park J, et al. The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate. Nanomaterials. 2025; 15(6):425. https://doi.org/10.3390/nano15060425
Chicago/Turabian StyleHan, Man-Hyup, Hyun-Sung Koh, Il-Haeng Heo, Myung-Hoe Kim, Pil-Su Kim, Min-Uk Jeon, Min-Ji Kim, Woo-Hyun Jin, Kyoo-Chul Cho, Jinsub Park, and et al. 2025. "The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate" Nanomaterials 15, no. 6: 425. https://doi.org/10.3390/nano15060425
APA StyleHan, M.-H., Koh, H.-S., Heo, I.-H., Kim, M.-H., Kim, P.-S., Jeon, M.-U., Kim, M.-J., Jin, W.-H., Cho, K.-C., Park, J., & Park, J.-G. (2025). The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate. Nanomaterials, 15(6), 425. https://doi.org/10.3390/nano15060425