Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. One-by-One Rib Knit Fabric Fabrication
2.2. One-by-One Rib Knit Fabric Relaxation Treatments
2.3. One-by-One Rib Knit Fabric Property Analysis Methodology
2.3.1. Physical Properties of Knitted Fabrics
2.3.2. Wearing Properties of Knitted Fabrics
3. Results and Discussion
3.1. Comparative Analysis of One-by-One Rib Knit Physical Properties
3.2. Comparative Analysis of One-by-One Rib Knit Wearing Properties
3.2.1. Usability and Esthetic Properties of Knitted Fabrics
3.2.2. Wearing Comfort Properties of Knitted Fabrics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RiS | Ring-spun yarn |
RoS | Open-end rotor-spun yarn |
AiS | Air-jet-spun yarn |
Md | Modal fibers |
Mmd | Modal microfibers |
RiS-Md yarn | Modal ring-spun yarn |
RiS-Mdm yarn | Modal-micro ring-spun yarn |
RoS-Md yarn | Modal open-end rotor-spun yarn |
RoS-Mdm yarn | Modal-micro open-end rotor-spun yarn |
AiS-Md yarn | Modal air-jet-spun yarn |
AiS-Mdm yarn | Modal-micro air-jet-spun yarn |
RiS-Md | Modal ring-spun knitted fabric |
RiS-Mdm | Modal-micro ring-spun knitted fabric |
RoS-Md | Modal open-end rotor-spun knitted fabric |
RoS-Mdm | Modal-micro open-end rotor-spun knitted fabric |
AiS-Md | Modal air-jet-spun knitted fabric |
AiS-Mdm | Modal-micro air-jet-spun knitted fabric |
D | Dry relaxed knitted fabric |
W | Wet relaxed knitted fabric |
References
- Mukhopadhyay, S.; Ramakrishnan, G. Microfibres. Text. Prog. 2008, 40, 1–86. [Google Scholar] [CrossRef]
- Gun, A.D. Dimensional, physical and thermal comfort properties of plain knitted fabrics made from modal viscose yarns having microfibers and conventional fibers. Fiber. Polym. 2011, 12, 258–267. [Google Scholar] [CrossRef]
- Gun, A.D. Dimensional, physical and thermal properties of plain knitted fabrics made from 50/50 blend of modal viscose fiber in microfiber form with cotton fiber. Fiber. Polym. 2011, 12, 1083–1090. [Google Scholar] [CrossRef]
- Tomljenović, A.; Živičnjak, J.; Skenderi, Z. Wearing Quality of Ribbed Knits Made from Viscose and Lyocell Fibers for Underwear. Fibers 2024, 12, 83. [Google Scholar] [CrossRef]
- Albrecht, W.; Wulfhorst, B.; Külter, H. Fiber tables according to P.-A. Koch. Regenerated cellulose fibers. Chem. Fibers Int. 1991, 40, 26–44. [Google Scholar]
- Ciechanska, D.; Wesolowska, E.; Wawro, D. An introduction to cellulosic fibres. In Handbook of Textile Fibre Structure, 1st ed.; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing Limited: Sawston, UK, 2009; Volume 66, pp. 3–61. [Google Scholar]
- Statista. Distribution of Textile Fibers Production Worldwide in 2023, by Type (2023). Available online: https://www.statista.com/statistics/1250812/global-fiber-production-share-type/ (accessed on 4 February 2025).
- Textile Exchange. Preferred Fiber & Materials Market Report 2022. Available online: https://textileexchange.org/knowledge-center/reports/materials-market-report-2022/ (accessed on 4 February 2025).
- Textile Exchange. Materials Market Report 2024. Available online: https://textileexchange.org/knowledge-center/reports/materials-market-report-2024/ (accessed on 3 April 2025).
- Badr, A.A. Performance of Knitted Fabrics Finished with Different Silicone Softeners. J. Eng. Fiber. Fabr. 2018, 13, 47–58. [Google Scholar] [CrossRef]
- Sarioğlu, E.; Çelik, N. Investigation on Regenerated Cellulosic Knitted Fabric Performance by Using Silicone Softeners with Different Particle Sizes. Fibres Text. East. Eur. 2015, 23, 71–77. [Google Scholar] [CrossRef]
- Badr, A.; Hassanin, A.; Moursey, M. Influence of Tencel/cotton blends on knitted fabric performance. Alex. Eng. J. 2016, 55, 2439–2447. [Google Scholar] [CrossRef]
- Erdumlu, N.; Ozipek, B.; Oztuna, A.S.; Cetinkaya, S. Investigation of Vortex Spun Yarn Properties in Comparison with Conventional Ring and Open-end Rotor Spun Yarns. Text. Res. J. 2009, 79, 585–595. [Google Scholar] [CrossRef]
- Rameshkumar, C.; Anandkumar, P.; Senthilnathan, P.; Jeevitha, R.; Anbumani, N. Comparitive Studies on Ring Rotor and Vortex Yarn Knitted Fabrics. Autex Res. J. 2008, 8, 100–105. [Google Scholar]
- Iqbal, S.; Eldeeb, M.; Ahmad, Z.; Mazari, A. Comparative Study on Viscose Yarn and Knitted Fabric Made From Open End and Rieter Airjet Spinning System. Tekst. Ve Konfeksiyon 2017, 27, 234–240. [Google Scholar]
- Skenderi, Z.; Kopitar, D.; Ercegović Ražić, S.; Iveković, G. Study on physical-mechanical parameters of ring-, rotor- and air-jet- spun modal and micro modal yarns. Tekstilec 2019, 62, 42–53. [Google Scholar] [CrossRef]
- Ajmeri, J.R.; Bhattacharya, S.S. Single jersey modal fabrics-better choice for sportswear applications. J. Textile Eng. Fashion Technol. 2017, 2, 530–536. [Google Scholar] [CrossRef]
- Gnanapriya, K.; Moses, J.J. A Study on Modal Fabric Treated with Formic Acid. Tekst. Konfeksiyon. 2017, 27, 153–162. [Google Scholar]
- Bhattacharya, S.S.; Ajmeri, J.R. Investigation of Air Permeability of Cotton & Modal Knitted Fabrics. Int. J. Eng. Res. Dev. 2013, 6, 2278–2800. [Google Scholar]
- Oner, E. Mechanical and Thermal Properties of Knitted Fabrics Produced from Various Fiber Types. Fibers Polym. 2019, 20, 2416–2425. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, X.; Zhang, W.; Liu, H. Heat and Moisture Comfort of Knitted Fabrics for Underwear. Adv. Mater. Res. 2011, 332–334, 890–893. [Google Scholar] [CrossRef]
- Ramakrishnan, G.; Dhurai, B.; Mukhopadhyay, S. An Investigation into the Properties of Knitted Fabrics made from Viscose Microfibers. J. Text. Appar. Technol. Manag. 2009, 6, 1–9. [Google Scholar]
- Çoruh, E. Effects of the Laundering Process on Dimensional and Physical Properties of Plain and Lacoste Fabrics Made from Modal/Combed Cotton Blended Yarns. Fibres Text. East. Eur. 2017, 25, 75–81. [Google Scholar] [CrossRef]
- Suganthi, S.; Pachiayappan, K.M.; Priyalatha, S.; Prakash, C. A Comparative Study on Moisture Management Properties of Natural and Manmade Cellulosic Fabrics Produced from Plain and Its Derivative Knitted Structures. J. Nat. Fibers. 2022, 20, 1–10. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Ajmeri, J.R. Air Permeability of Knitted fabrics made from Regenerated Cellulosic fibres. Int. J. Eng. Res. Dev. 2014, 10, 16–22. [Google Scholar]
- Kopitar, D.; Pavlović, Ž.; Skenderi, Z.; Vrljičak, Z. Comparison of Double Jersey Knitted Fabrics Made of Regenerated Cellulose Conventional and Unconventional Yarns. Tekstilec 2022, 65, 25–35. [Google Scholar] [CrossRef]
- Tian, H.; Jiang, Y.; Qi, Y.; Xiang, H.; Yan, J. Study of knitted fabrics with ultra-low modulus based on geometrical deformation mechanism. Text. Res. J. 2019, 89, 891–899. [Google Scholar] [CrossRef]
- Ortlek, H.G.; Onal, L. Comparative study on the characteristics of knitted fabrics made of vortex-spun viscose yarns. Fibers Polym. 2008, 9, 194–199. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, S.J. Mechanical Properties of Micro Modal Air Vortex Yarns and the Tactile Wear Comfort of Knitted Fabrics. Fibers Polym. 2018, 19, 211–218. [Google Scholar] [CrossRef]
- Tomljenović, A.; Živičnjak, J.; Mihaljević, I. Usage Durability and Comfort Properties of Socks Made from Differently Spun Modal and Micro Modal Yarns. Materials 2023, 16, 1684. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, J.; Anbumani, N. Dimensional properties of single jersey knitted fabrics made from new and regenerated cellulosic fibers. J. Text. Appar. Technol. Manag. 2012, 7, 1–10. [Google Scholar]
- EN ISO 8388:2003; Textiles—Knitted Fabrics—Types—Vocabulary. ISO: Geneva, Switzerland, 1998.
- EN ISO 139:2005/A1:2011; Textiles—Standard Atmospheres for Conditioning and Testing. ISO: Geneva, Switzerland, 2005.
- EN 12127:2003; Textiles—Fabrics—Determination of Mass per Unit Area Using Small Samples. ISO: Geneva, Switzerland, 2003.
- EN ISO 5084:2003; Textiles—Determination of Thickness of Textiles and Textile Products. ISO: Geneva, Switzerland, 2003.
- EN 14971:2008; Textiles—Knitted Fabrics—Determination of Number of Stitches per Unit Length and Unit Area. ISO: Geneva, Switzerland, 2008.
- Stanković, S.B.; Popović, D.; Poparić, G.B. Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polym. Test. 2008, 27, 41–48. [Google Scholar] [CrossRef]
- Kreze, T.; Malej, S. Structural characteristics of new and conventional regenerated cellulosic fibers. Text. Res. J. 2003, 73, 675–684. [Google Scholar] [CrossRef]
- EN ISO 13934-1:2013; Textiles—Tensile Properties of Fabrics—Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method. ISO: Geneva, Switzerland, 2013.
- EN ISO 6330:2012; Textiles—Domestic Washing and Drying Procedures for Textile Testing. ISO: Geneva, Switzerland, 2012.
- EN ISO 3759:2011; Textiles—Preparation, Marking and Measuring of Fabric Specimens and Garments in Tests for Determination of Dimensional Change. ISO: Geneva, Switzerland, 2011.
- EN ISO 5077:2008; Textiles—Determination of Dimensional Change in Washing and Drying. ISO: Geneva, Switzerland, 2008.
- EN ISO 12947-2:2016; Textiles—Determination of the Abrasion Resistance of Fabrics by the Martindale Method—Part 2: Determination of Specimen Breakdown. ISO: Geneva, Switzerland, 2016.
- EN ISO 12945-2:2020; Textiles—Determination of Fabric Propensity to Surface Pilling, Fuzzing or Matting—Part 2: Modified Martindale Method. ISO: Geneva, Switzerland, 2020.
- EN ISO 12945-4:2020; Textiles—Determination of Fabric Propensity to Surface Pilling, Fuzzing or Matting—Part 4: Assessment of Pilling, Fuzzing or Matting by Visual Analysis. ISO: Geneva, Switzerland, 2020.
- EN ISO 9237:1995; Textiles—Determination of the Permeability of Fabrics to Air. ISO: Geneva, Switzerland, 1995.
- ASTM D 2654-89a; Standard Test Methods for Moisture in Textiles. ASTM: West Conshohocken, PA, USA, 2021.
- Mikučionienė, D. The Dimensional Change of Used Pure and Compound Cotton Knitwear. Mater. Sci-Medzg. 2004, 10, 93–96. [Google Scholar]
- Anand, S.C.; Brown, K.S.M.; Higgins, L.G.; Holmes, D.A.; Hall, M.E.; Conrad, D. Effect of Laundering on the Dimensional Stability and Distortion of Knitted Fabrics. Autex Res. J. 2002, 2, 85–100. [Google Scholar] [CrossRef]
- Morton, W.E.; Hearle, J.W.S. Flex Fatigue and Other Forms of Failure. In Physical Properties of Textile Fibres, 3rd ed.; The Textile Institute: Manchester, UK, 1997; pp. 678–706. [Google Scholar]
- Özdil, N.; Özçelik Kayseri, G.; Süpüren Mengüç, G. Analysis of Abrasion Characteristic in Textiles. In Abrasion Resistance of Materials; Adamiak, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 119–146. [Google Scholar]
- Özdil, N.; Marmaralı, A.; Kretzschmar, S.D. Effect of yarn properties on thermal comfort of knitted fabrics. Int. J. Therm. Sci. 2007, 46, 1318–1322. [Google Scholar] [CrossRef]
Spun Yarn | Yarn Linear Density, tex | Yarn Twist, m−1 | Yarn Tenacity, cN/tex | Yarn Hairiness | Yarn Overall Unevenness, % |
---|---|---|---|---|---|
RiS-Md yarn | 20.1 ± 0.16 | 751 ± 12.00 | 23.81 ± 1.64 | 6.09 ± 0.17 | 10.21 ± 0.10 |
RiS-Mdm yarn | 20.1 ± 0.20 | 810 ± 14.60 | 24.09 ± 1.55 | 5.28 ± 0.21 | 9.67 ± 0.19 |
RoS-Md yarn | 20.2 ± 0.17 | * | 15.39 ± 1.43 | 4.34 ± 0.08 | 13.95 ± 0.12 |
RoS-Mdm yarn | 19.8 ± 0.17 | * | 15.86 ± 1.36 | 4.08 ± 0.07 | 12.69 ± 0.08 |
AiS-Md yarn | 20.1 ± 0.06 | ** | 20.77 ± 1.74 | 3.71 ± 0.17 | 12.33 ± 0.30 |
AiS-Mdm yarn | 20.1 ± 0.09 | ** | 20.55 ± 1.51 | 3.56 ± 0.24 | 12.12 ± 0.57 |
One-by-One Rib Knit Fabrics | Areal Weight, g m−2 | Thickness, mm | Number of Wales, cm−1 | Number of Courses, cm−1 | ||||
---|---|---|---|---|---|---|---|---|
D | W | D | W | D | W | D | W | |
RiS-Md | 162.5 ± 0.0 | 144.7 ± 0.0 | 0.84 ± 0.02 | 0.72 ± 0.01 | 20.0 ± 0.0 | 19.5 ± 0.5 | 12.0 ± 0.0 | 13.0 ± 0.0 |
RiS-Mdm | 166.2 ± 0.0 | 140.9 ± 0.0 | 0.83 ± 0.01 | 0.68 ± 0.01 | 20.5 ± 0.5 | 19.0 ± 0.0 | 13.0 ± 0.0 | 13.0 ± 0.0 |
RoS-Md | 143.8 ± 0.0 | 159.8 ± 0.0 | 0.79 ± 0.01 | 0.70 ± 0.01 | 18.5 ± 0.5 | 20.5 ± 0.5 | 13.0 ± 0.0 | 13.0 ± 0.0 |
RoS-Mdm | 136.3 ± 0.0 | 156.9 ± 0.0 | 0.77 ± 0.01 | 0.68 ± 0.01 | 18.0 ± 0.0 | 19.0 ± 0.0 | 13.0 ± 0.0 | 13.0 ± 0.0 |
AiS-Md | 150.3 ± 0.0 | 150.5 ± 0.0 | 0.85 ± 0.01 | 0.71 ± 0.01 | 19.0 ± 0.0 | 18.5 ± 0.5 | 12.5 ± 0.5 | 12.5 ± 0.5 |
AiS-Mdm | 155.6 ± 0.0 | 148.6 ± 0.0 | 0.85 ± 0.01 | 0.65 ± 0.01 | 20.0 ± 0.0 | 20.0 ± 0.0 | 13.0 ± 0.0 | 12.0 ± 0.0 |
One-by-One Rib Knit Fabrics | Breaking Strength, N | Elongation at Break, % | ||||||
---|---|---|---|---|---|---|---|---|
Wale Direction | Course Direction | Wale Direction | Course Direction | |||||
D | W | D | W | D | W | D | W | |
RiS-Md | 313.7 ± 38.5 | 209.7 ± 23.5 | 93.6 ± 3.8 | 84.6 ± 1.8 | 44.3 ± 2.8 | 40.8 ± 1.2 | 150.0 ± 4.2 | 119.6 ± 1.8 |
RiS-Mdm | 357.4 ± 28.3 | 220.3 ± 24.5 | 92.8 ± 3.2 | 83.3 ± 2.3 | 49.1 ± 3.4 | 36.2 ± 2.0 | 149.9 ± 6.5 | 109.4 ± 4.1 |
RoS-Md | 261.0 ± 9.6 | 222.7 ± 15.9 | 79.0 ± 1.5 | 65.0 ± 0.8 | 41.2 ± 1.0 | 40.8± 2.4 | 182.1 ± 7.6 | 135.4 ± 3.2 |
RoS-Mdm | 257.1 ± 14.5 | 228.9 ± 28.8 | 78.4 ± 1.8 | 66.5 ± 2.1 | 39.4 ± 2.0 | 43.7 ± 1.7 | 190.9 ± 3.7 | 139.3 ± 4.4 |
AiS-Md | 292.3 ± 17.5 | 214.7 ± 26.7 | 82.6 ± 2.3 | 62.1 ± 3.9 | 42.0 ± 1.3 | 40.4 ± 0.5 | 175.4 ± 1.7 | 124.0 ± 4.0 |
AiS-Mdm | 262.2 ± 23.7 | 208.8 ± 7.9 | 86.6 ± 2.0 | 59.4 ± 6.0 | 44.7 ± 1.7 | 40.1 ± 2.1 | 164.2 ± 4.3 | 120.9 ± 5.9 |
One-by-One Rib Knit Fabrics | Stitch Count, cm−2 | Total Porosity, % | Voluminosity, g cm−3 | |||
---|---|---|---|---|---|---|
D | W | D | W | D | W | |
RiS-Md | 240.0 | 253.5 | 87.260 | 86.698 | 0.193 | 0.201 |
RiS-Mdm | 266.5 | 247.0 | 86.791 | 86.302 | 0.200 | 0.207 |
RoS-Md | 240.5 | 266.5 | 87.960 | 84.902 | 0.182 | 0.229 |
RoS-Mdm | 234.0 | 247.0 | 88.336 | 84.525 | 0.177 | 0.234 |
AiS-Md | 237.5 | 231.3 | 88.343 | 86.045 | 0.177 | 0.211 |
AiS-Mdm | 260.0 | 240.0 | 87.881 | 84.625 | 0.184 | 0.233 |
One-by-One Rib Knit Fabrics | Dry Relaxed | Wet Processed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Pilling Rubs | ||||||||||||
125 | 500 | 1000 | 2000 | 5000 | 7000 | 125 | 500 | 1000 | 2000 | 5000 | 7000 | |
Pilling Ratings | ||||||||||||
RiS-Md | 4.0 | 3.5 | 3.0 | 3.0 | 2.0 | 2.0 | 4.0 | 3.0 | 2.5 | 2.5 | 2.0 | 1.5 |
RiS-Mdm | 4.5 | 3.5 | 3.0 | 3.0 | 2.5 | 1.5 | 4.5 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 |
RoS-Md | 4.0 | 4.0 | 3.5 | 3.5 | 3.5 | 3.0 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 2.0 |
RoS-Mdm | 4.5 | 4.0 | 4.0 | 4.0 | 3.0 | 2.5 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 |
AiS-Md | 5.0 | 4.5 | 3.5 | 3.5 | 3.0 | 3.0 | 4.5 | 4.5 | 3.5 | 3.0 | 3.0 | 2.5 |
AiS-Mdm | 4.5 | 4.5 | 4.5 | 4.0 | 3.5 | 3.5 | 4.5 | 4.0 | 4.0 | 3.5 | 3.0 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomljenović, A.; Živičnjak, J. Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers. Nanomaterials 2025, 15, 653. https://doi.org/10.3390/nano15090653
Tomljenović A, Živičnjak J. Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers. Nanomaterials. 2025; 15(9):653. https://doi.org/10.3390/nano15090653
Chicago/Turabian StyleTomljenović, Antoneta, and Juro Živičnjak. 2025. "Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers" Nanomaterials 15, no. 9: 653. https://doi.org/10.3390/nano15090653
APA StyleTomljenović, A., & Živičnjak, J. (2025). Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers. Nanomaterials, 15(9), 653. https://doi.org/10.3390/nano15090653