Inverse Design of Multi-Port Power Splitter with Arbitrary Ratio Based on Shape Optimization
Abstract
:1. Introduction
2. Design and Simulations
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shacham, A.; Bergman, K.; Carloni, L.P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 2008, 57, 1246–1260. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Su, Z.; Hosseini, E.S.; Cole, D.B.; Watts, M.R. Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 264–278. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Alam, A.S.; Lauermann, M.; Kuzmin, A.; Kutuvantavida, Y.; Nandam, S.H.; Hahn, L.; Elder, D.L.; Dalton, L.R.; et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 2021, 8, 511–519. [Google Scholar] [CrossRef]
- Ghosh, S.; Rahman, B. Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution. Sens. Actuators B Chem. 2019, 279, 490–502. [Google Scholar] [CrossRef]
- Zhao, S.; Han, S.; Zhu, M.; Chen, J.; Shi, Y. Ultra-broadband dual-polarization and arbitrary ratio power splitters based on Bezier curve optimized multimode interference. Opt. Lett. 2023, 48, 1331–1334. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, Z.; Qiu, J.; Zhang, X.; Wu, J. On-chip OSNR monitoring system based on power-balanced Mach-Zehnder interferometers. Opt. Laser Technol. 2021, 141, 107157. [Google Scholar] [CrossRef]
- Tian, Y.; Kang, Z.; He, J.; Zheng, Z.; Qiu, J.; Wu, J.; Zhang, X. Cascaded all-optical quantization employing step-size MMI and shape-optimized power splitter. Opt. Laser Technol. 2023, 158, 108820. [Google Scholar] [CrossRef]
- Franz, Y.; Guasoni, M. Compact 1 × N power splitters with arbitrary power ratio for integrated multimode photonics. J. Opt. 2021, 23, 095802. [Google Scholar] [CrossRef]
- Wang, L.L.; An, J.M.; Zhang, J.S.; Wu, Y.D.; Li, J.G.; Yin, X.J.; Wang, H.J.; Wang, Y.; Zhong, F.; Zha, Q.; et al. Design and fabrication of a low-loss and asymmetric 1 × 5 arbitrary optical power splitter. Appl. Opt. 2016, 55, 8601–8605. [Google Scholar] [CrossRef]
- Zhang, M.; Malureanu, R.; Krüger, A.C.; Kristensen, M. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides. Opt. Express 2010, 18, 14944–14949. [Google Scholar] [CrossRef]
- Shang, K.; Pathak, S.; Liu, G.; Feng, S.; Li, S.; Lai, W.; Yoo, S. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits. Opt. Express 2017, 25, 10474–10483. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Guan, H.; Han, W.; Li, Z. Ultra-compact low-loss 1 × 4 optical power splitter with splitting ratio of 1:2:4:8 based on two-stage cascaded MMI couplers. Opt. Lett. 2019, 44, 5622–5625. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Dang, Z.; Chen, T.; Ding, Z.; Zhang, Z. 3-Port beam splitter of arbitrary power ratio enabled by deep learning on a multimode waveguide. Opt. Laser Technol. 2024, 169, 109950. [Google Scholar] [CrossRef]
- Liao, J.; Tian, Y.; Yangd, Z.; Xu, H.; Dai, T.; Zhang, X.; Kang, Z. Broadband and Compact Silicon Multimode Waveguide Bends Based on Hybrid Shape Optimization. J. Light. Technol. 2024, 42, 4882–4891. [Google Scholar] [CrossRef]
- Xu, K.; Liu, L.; Wen, X.; Sun, W.; Zhang, N.; Yi, N.; Sun, S.; Xiao, S.; Song, Q. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 2017, 42, 855–858. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhang, K.; Yang, J. Inverse-designed arbitrary-input and ultra-compact 1 × N power splitters based on high symmetric structure. Sci. Rep. 2020, 10, 11757. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhang, K.; Yang, J. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun. 2020, 462, 125329. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, H.; Xie, T.; Yang, J.; Zhang, Z. Ultra-compact power splitters with low loss in arbitrary direction based on inverse design method. Photonics 2021, 8, 516. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, J.; Zhang, J.; Pu, X.; Zhang, Z.; Yu, Y.; Yang, J. Non-volatile programmable ultra-small photonic arbitrary power splitters. Nanomaterials 2022, 12, 669. [Google Scholar] [CrossRef]
- Shi, P.; Ke, H.; Li, P.; Ma, F.; Shi, W. 1 × 5 broadband photonic crystal power splitter designed by the Powell algorithm. Appl. Opt. 2023, 62, 1303–1312. [Google Scholar] [CrossRef]
- Lebbe, N.; Glière, A.; Hassan, K.; Dapogny, C.; Oudet, E. Shape optimization for the design of passive mid-infrared photonic components. Opt. Quantum Electron. 2019, 51, 1–14. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Yoon, J.; Yoon, H.; Park, H.H.; Kurt, H. Experimental demonstration of inverse-designed silicon integrated photonic power splitters. Nanophotonics 2022, 11, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Piggott, A.Y.; Ma, E.Y.; Su, L.; Ahn, G.H.; Sapra, N.V.; Vercruysse, D.; Netherton, A.M.; Khope, A.S.; Bowers, J.E.; Vuckovic, J. Inverse-designed photonics for semiconductor foundries. ACS Photonics 2020, 7, 569–575. [Google Scholar] [CrossRef]
- Lalau-Keraly, C.M.; Bhargava, S.; Miller, O.D.; Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 2013, 21, 21693–21701. [Google Scholar] [CrossRef]
- Miller, O.D. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design; University of California: Berkeley, CA, USA, 2012. [Google Scholar]
Method | Ports | Footprint (µm2) | MFS (nm) | SRs | EL (dB) | Bandwidth (nm) | ||
---|---|---|---|---|---|---|---|---|
Sim. | Exp. | Sim. | Exp. | |||||
DBS [15] | 1 × 3 | 3.6 × 3.6 | 120 | 1:2:1 | <1 | <1 | 30 | 30 |
DBS [16] | 1 × 3 | 4 × 4 | 70 | 1:1:1 | <1.9 | - | 100 | - |
SO [23] | 1 × 3 | 3.8 × 2.5 | 100 | 1:1:1 | <0.4 | <0.4 | 150 | 150 |
DBS [18] | 1 × 3 | 2.4 × 2.4 | 90 | 1:1:1 | <0.63 | - | 30 | - |
SO [22] | 1 × 4 | 6 × 7.2 | 150 | 1:1:1:1 | - | <1.08 | - | 15 |
PA [20] | 1 × 5 | 41.5 × 41.5 | 40 | 1:1:1:1:1 | <0.21 | - | 40 | - |
2:3:1:3:2 | <0.23 | - | 40 | - | ||||
1:2:1:4:1 | <0.18 | - | 40 | - | ||||
This Work | 1×3 | 2.7×6 | 180 | 1:2:1 | <0.2 | <0.7 | 100 | 65 |
1:2:4 | <0.47 | <1.3 | 100 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Kang, Z.; Xu, H.; Zhong, G.; Zhang, R.; Fu, C.; Tian, Y. Inverse Design of Multi-Port Power Splitter with Arbitrary Ratio Based on Shape Optimization. Nanomaterials 2025, 15, 393. https://doi.org/10.3390/nano15050393
Liu Y, Kang Z, Xu H, Zhong G, Zhang R, Fu C, Tian Y. Inverse Design of Multi-Port Power Splitter with Arbitrary Ratio Based on Shape Optimization. Nanomaterials. 2025; 15(5):393. https://doi.org/10.3390/nano15050393
Chicago/Turabian StyleLiu, Yang, Zhe Kang, Haoda Xu, Guangbiao Zhong, Ruitao Zhang, Chaoying Fu, and Ye Tian. 2025. "Inverse Design of Multi-Port Power Splitter with Arbitrary Ratio Based on Shape Optimization" Nanomaterials 15, no. 5: 393. https://doi.org/10.3390/nano15050393
APA StyleLiu, Y., Kang, Z., Xu, H., Zhong, G., Zhang, R., Fu, C., & Tian, Y. (2025). Inverse Design of Multi-Port Power Splitter with Arbitrary Ratio Based on Shape Optimization. Nanomaterials, 15(5), 393. https://doi.org/10.3390/nano15050393