Nanoimprinted Materials for Nanoparticle Sensing and Removal
Abstract
:1. Introduction
2. NP-Imprinted Hollow Capsules
3. NP-Imprinted Polymers (NPIPs)
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Project on Emerging Nanotechnology. Available online: https://www.nanotechproject.tech/cpi (accessed on 26 December 2024).
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef]
- Shan, X.; Gong, X.; Li, J.; Wen, J.; Li, Y.; Zhang, Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048. [Google Scholar] [CrossRef] [PubMed]
- Barhoum, A.; García-Betancourt, M.L.; Jeevanandam, J.; Hussien, E.A.; Mekkawy, A.A.; Mostafa, M.; Omran, M.M.; Abdalla, M.S.; Bechelany, M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef]
- Berges, M.; Lum, M.R. A Global perspective on safe nanotechnology. In Proceedings of the XVIII World Congress on Safety and Health at Work, Seoul, Republic of Korea, 30 June 2008; COEX Convention and Exhibition Center: Seoul, Republic of Korea, 2008. [Google Scholar]
- Badireddy, A.R.; Wiesner, M.R.; Liu, J. Detection, Characterization, and Abundance of Engineered Nanoparticles in Complex Waters by Hyperspectral Imagery with Enhanced Darkfield Microscopy. Environ. Sci. Technol. 2012, 46, 10081–10088. [Google Scholar] [CrossRef]
- Peters, R.J.B.; van Bemmel, G.; Milani, N.B.L.; den Hertog, G.C.T.; Undas, A.K.; van der Lee, M.; Bouwmeester, H. Detection of nanoparticles in Dutch surface waters. Sci. Total Environ. 2018, 621, 210–218. [Google Scholar] [CrossRef]
- Gondikas, A.; von der Kammer, F.; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environ. Sci. Nano 2018, 5, 313–326. [Google Scholar] [CrossRef]
- Proulx, K.; Wilkinson, K.J. Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ. Chem. 2014, 11, 392–401. [Google Scholar] [CrossRef]
- Hadioui, M.; Merdzan, V.; Wilkinson, K.J. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environ. Sci. Technol. 2015, 49, 6141–6148. [Google Scholar] [CrossRef]
- Bhomkar, P.; Goss, G.; Wishart, D.S. A simple and sensitive biosensor for rapid detection of nanoparticles in water. J. Nanopart. Res. 2014, 16, 2253. [Google Scholar] [CrossRef]
- Bura-Nakić, E.; Marguš, M.; Jurašin, D.; Milanović, I.; Ciglenečki-Jušić, I. Chronoamperometric study of elemental sulphur (S) nanoparticles (NPs) in NaCl water solution: New methodology for S NPs sizing and detection. Geochem. Trans. 2015, 16, 1. [Google Scholar] [CrossRef]
- Clemente, A.; Moreno, N.; Lobera, M.P.; Balas, F.; Santamaria, J. Fluorescently labelled SiO2 nanoparticles as tracers in natural waters: Dependence of detection limits on environmental conditions. Environ. Sci. Nano 2016, 3, 631–637. [Google Scholar] [CrossRef]
- Turley, R.S.; Bi, Y.; Flores, K.; Castillo, A.; Schacht, T.M.; Hernandez-Viezcas, J.A.; Westerhoff, P.; Gardea-Torresdey, J.L. Utilizing Fluorescent Probes for the Detection of TiO2 Nanoparticles of Known Characteristics and Their Photocatalytic Activity in Drinking Waters. ACS EST Water 2022, 2, 943–954. [Google Scholar] [CrossRef]
- Zhang, W.; Lai, E.P.C. Electrochemical detection of zinc oxide nanoparticles in water contamination analysis based on surface catalytic reactivity. J. Nanopart. Res. 2020, 22, 95. [Google Scholar] [CrossRef]
- Popowich, A.; Zhang, Q.; Chris Le, X. Removal of nanoparticles by coagulation. J. Environ. Sci. 2015, 38, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mubashar, M.; Zulekha, R.; Xu, C.; Zhang, X. Applications of coagulation-sedimentation and ultrafiltration for the removal of nanoparticles from water. Sep. Purif. Technol. 2025, 357, 129920. [Google Scholar] [CrossRef]
- Ahmed, T.; Bhatti, Z.A.; Maqbool, F.; Mahmood, Q.; Faridullah; Qayyum, A.; Mushtaq, N. A comparative study of synthetic and natural coagulants for silver nanoparticles removal from wastewater. Desalination Water Treat. 2016, 57, 18718–18723. [Google Scholar] [CrossRef]
- Pal, P.; Pandey, J.P.; Sen, G. Synthesis and study of hydrolyzed polyacrylamide grafted polyvinyl pyrrolidone (Hyd.PVP-g-PAM) as flocculant for removal of nanoparticles from aqueous system. Mater. Sci. Eng. B 2018, 236–237, 32–42. [Google Scholar] [CrossRef]
- Punzi, V.L.; Kungne, V.Z.; Skaf, D.W. Removal of titanium dioxide nanoparticles from wastewater using traditional chemical coagulants and chitosan. Environ. Prog. Sustain. Energy 2020, 39, e13414. [Google Scholar] [CrossRef]
- Piplai, T.; Kumar, A.; Alappat, B.J. Exploring the Feasibility of Adsorptive Removal of ZnO Nanoparticles from Wastewater. Water Environ. Res. 2018, 90, 409–423. [Google Scholar] [CrossRef]
- Dhandayuthapani, B.; Mallampati, R.; Sriramulu, D.; Dsouza, R.F.; Valiyaveettil, S. PVA/gluten hybrid nanofibers for removal of nanoparticles from water. ACS Sustain. Chem. Eng. 2014, 2, 1014–1021. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, B.; Yin, X.; Ma, H.; Hsiao, B.S. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep. Purif. Technol. 2020, 233, 115976. [Google Scholar] [CrossRef]
- Luo, M.; Razal, J.M.; Hegh, D.; Fang, J.; Wang, D.; Li, M. Superwettable membrane with hierarchical porosity for simultaneous separation of emulsions and removal of nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125798. [Google Scholar] [CrossRef]
- Thomas, R.T.; Del Río de Vicente, J.I.; Zhang, K.; Karzarjeddi, M.; Liimatainen, H.; Oksman, K. Size exclusion and affinity-based removal of nanoparticles with electrospun cellulose acetate membranes infused with functionalized cellulose nanocrystals. Mater. Des. 2022, 217, 110654. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.-J.; Sun, X.; Xu, L. Hierarchically Porous Melamine-Formaldehyde Resin Microspheres for the Removal of Nanoparticles and Simultaneously As the Nanoparticle Immobilized Carrier for Catalysis. ACS Sustain. Chem. Eng. 2019, 7, 867–876. [Google Scholar] [CrossRef]
- Wang, C.-S.; Otani, Y. Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review. Ind. Eng. Chem. Res. 2013, 52, 5–17. [Google Scholar] [CrossRef]
- Bürger, P.; Riebel, U. Feasibility of high-temperature electrostatic precipitation for the removal of nanoparticles: A case study on iron oxide separation at up to 800 °C. J. Electrost. 2022, 120, 103754. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, J.H.; Wang, X.Y.; Peng, H.L.; Xiong, H.; Chen, L.X. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens. Bioelectron. 2018, 112, 54–71. [Google Scholar] [CrossRef]
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Örmeci, B. Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: A review. Environ. Sci. Pollut. Res. 2012, 19, 3820–3830. [Google Scholar] [CrossRef]
- Huang, D.L.; Wang, R.Z.; Liu, Y.G.; Zeng, G.M.; Lai, C.; Xu, P.; Lu, B.A.; Xu, J.J.; Wang, C.; Huang, C. Application of molecularly imprinted polymers in wastewater treatment: A review. Environ. Sci. Pollut. Res. 2015, 22, 963–977. [Google Scholar] [CrossRef]
- Li, F.; Yue, S.; Zhao, Z.Y.; Liu, K.W.; Wang, P.F.; Zhan, S.H. Application of molecularly imprinted polymers in the water environmental field: A review on the detection and efficient removal of emerging contaminants. Mater. Today Sustain. 2024, 27, 100904. [Google Scholar] [CrossRef]
- Patra, S.; Shukla, S.K.; Sillanpää, M. Molecularly Imprinted Polymers: Path to Artificial Antibodies, 1st ed.; Springer Nature: Singapore, 2024. [Google Scholar] [CrossRef]
- Ye, L.; Mosbach, K. Molecular Imprinting: Synthetic Materials As Substitutes for Biological Antibodies and Receptors. Chem. Mater. 2008, 20, 859–868. [Google Scholar] [CrossRef]
- Mishra, A.; Mathur, A.; Dadial, A.S. An overview of MIPs as artificial antibodies: Fundamentals and various applications. In Molecularly Imprinted Polymers: Path to Artificial Antibodies; Patra, S., Shukla, S.K., Sillanpää, M., Eds.; Springer Nature: Singapore, 2024; pp. 1–28. [Google Scholar] [CrossRef]
- Peppas, A.N.; Kryscio, R.D. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012, 8, 461–473. [Google Scholar] [CrossRef]
- He, Y.; Lin, Z. Recent advances in protein-imprinted polymers: Synthesis, applications and challenges. J. Mater. Chem. B 2022, 10, 6571–6589. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Verma, D.; Dalal, N.; Kumar, A.; Solanki, P.R. Molecularly imprinted polymer-based nanodiagnostics for clinically pertinent bacteria and virus detection for future pandemics. Biosens. Bioelectron. X 2022, 12, 100257. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Z.; Zhou, H.S. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors 2020, 20, 996. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, N.; Schroers, J. Nanofabrication through molding. Prog. Mater. Sci. 2022, 125, 100891. [Google Scholar] [CrossRef]
- Nqoro, X.; Taziwa, R. Polymer-Based Functional Materials Loaded with Metal-Based Nanoparticles as Potential Scaffolds for the Management of Infected Wounds. Pharmaceutics 2024, 16, 155. [Google Scholar] [CrossRef]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, Y.G.; Vlahovic, B. A Review on Preparation and Applications of Silver-Containing Nanofibers. Nanoscale Res. Lett. 2016, 11, 80. [Google Scholar] [CrossRef]
- Divya, K.P.; Miroshnikov, M.; Dutta, D.; Vemula, P.K.; Ajayan, P.M.; John, G. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials. Acc. Chem. Res. 2016, 49, 1671–1680. [Google Scholar] [CrossRef]
- Borzenkov, M.; Chirico, G.; Pallavicini, P.; Sperandeo, P.; Polissi, A.; Dacarro, G.; Doveri, L.; Collini, M.; Sironi, L.; Bouzin, M.; et al. Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. Nanomaterials 2020, 10, 786. [Google Scholar] [CrossRef]
- Grisoli, P.; De Vita, L.; Milanese, C.; Taglietti, A.; Fernandez, Y.D.; Bouzin, M.; D’Alfonso, L.; Sironi, L.; Rossi, S.; Vigani, B.; et al. PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. Nanomaterials 2021, 11, 1387. [Google Scholar] [CrossRef]
- Zheng, G.C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Plasmonic metal-organic frameworks. StartMat 2021, 2, 446–465. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M.; Giersig, M.; Mulvaney, P. Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir 1996, 12, 4329–4335. [Google Scholar] [CrossRef]
- Caseri, W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol. Rapid Commun. 2000, 21, 705–722. [Google Scholar] [CrossRef]
- Prakash, S.; Chakrabarty, T.; Singh, A.K.; Shahin, V.K. Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 2013, 41, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.H. Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends Anal. Chem. 2020, 133, 116043. [Google Scholar] [CrossRef]
- Cennamo, N.; Donà, A.; Pallavicini, P.; D’Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291–298. [Google Scholar] [CrossRef]
- Caruso, F. Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chem. Eur. J. 2000, 6, 413–419. [Google Scholar] [CrossRef]
- Caruso, F.; Caruso, R.A.; Möhwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998, 282, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Donath, E.; Sukhorukov, G.B.; Caruso, F.; Davis, S.A.; Möhwald, H. Novel Hollow Polymer Shells by Colloid-Tem-plated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37, 2202–2205. [Google Scholar] [CrossRef]
- Sukhorukov, G.B.; Donath, E.; Davis, S.; Lichtenfeld, H.; Caruso, F.; Popov, V.I.; Möhwald, H. Stepwise Polyelectrolyte Assembly on Particle Surfaces: A Novel Approach to Colloid Design. Polym. Adv. Technol. 1998, 9, 759–767. [Google Scholar] [CrossRef]
- Katagiri, K.; Matsuda, A.; Caruso, F. Effect of UV-Irradiation on Polyelectrolyte Multilayered Films and Hollow Capsules Prepared by Layer-by-Layer Assembly. Macromolecules 2006, 39, 8067–8074. [Google Scholar] [CrossRef]
- Gittins, D.I.; Caruso, F. Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates. Adv. Mater. 2000, 12, 1947–1949. [Google Scholar] [CrossRef]
- Wu, M.; O’Neill, S.A.; Brousseau, L.C.; McConnell, S.P.; Shultz, D.A.; Linderman, R.J.; Feldheim, D.L. Synthesis of nanometer-sized hollow polymer capsules from alkanethiol-coated gold particles. Chem. Commun. 2000, 775–776. [Google Scholar] [CrossRef]
- Boyer, C.; Whittaker, M.R.; Nouvel, C.; Davis, T.P. Synthesis of Hollow Polymer Nanocapsules Exploiting GoldNanoparticles as Sacrificial Templates. Macromolecules 2010, 43, 1792–1799. [Google Scholar] [CrossRef]
- Sun, L.; Crooks, R.M.; Chechik, C. Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles. Chem. Commun. 2001, 359–360. [Google Scholar] [CrossRef]
- Biradar, S.C.; Shinde, D.B.; Pillai, V.K.; Kulkarni, M.G. Polydentate disulfides for enhanced stability of AuNPs and facile nanocavity formation. J. Mater. Chem. 2012, 22, 10000–10008. [Google Scholar] [CrossRef]
- Ju, Y.; Kim, C.-J.; Caruso, F. Functional Ligand-Enabled Particle Assembly for Bio-NanoInteractions. Acc. Chem. Res. 2023, 56, 1826–1837. [Google Scholar] [CrossRef]
- Koenig, S.; Chechik, V. Au nanoparticle-imprinted polymers. Chem. Commun. 2005, 4110–4112. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.A.; Jungmann, C.; Schranzhofer, L. Molecular Imprinting on the Nanoscale—Rapid Detection of Ag Nanoparticles by QCM sensors. Procedia Eng. 2014, 87, 236–239. [Google Scholar] [CrossRef]
- Kraus-Ophir, S.; Witt, J.; Wittstock, G.; Mandler, D. Nanoparticle-Imprinted Polymers for Size-Selective Recognition of Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 294–298. [Google Scholar] [CrossRef]
- Bruchiel-Spanier, N.; Mandler, D. Nanoparticle-Imprinted Polymers: Shell-Selective Recognition of Au Nanoparticles by Imprinting Using the Langmuir–Blodgett Method. ChemElectroChem 2015, 2, 795–802. [Google Scholar] [CrossRef]
- Witt, J.; Mandler, D.; Wittstock, G. Nanoparticle-Imprinted Matrices as Sensing Layers for Size-Selective Recognition of Silver Nanoparticles. ChemElectroChem 2016, 3, 2116–2124. [Google Scholar] [CrossRef]
- Hitrik, M.; Pisman, Y.; Wittstock, G.; Mandler, D. Speciation of nanoscale objects by nanoparticle imprinted matrices. Nanoscale 2016, 8, 13934–13943. [Google Scholar] [CrossRef]
- Bruchiel-Spanier, N.; Giordano, G.; Vakahi, A.; Guglielmi, M.; Mandler, D. Electrochemically Deposited Sol-Gel Based Nanoparticle-Imprinted Matrices for the Size-Selective Detection of Gold Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 5612–5619. [Google Scholar] [CrossRef]
- Bruchiel-Spanier, N.; Dery, L.; Tal, N.; Dery, S.; Gross, E.; Mandler, D. Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices. Nano Res. 2019, 12, 265–271. [Google Scholar] [CrossRef]
- Zelikovich, D.; Dery, S.; Bruchiel-Spanier, N.; Tal, N.; Savchenko, P.; Gross, E.; Mandler, D. Shell-Matrix Interaction in Nanoparticle-Imprinted Matrices: Implications for Selective Nanoparticle Detection and Separation. ACS Appl. Nano Mater. 2021, 4, 10819–10827. [Google Scholar] [CrossRef]
- Samuel, S.A.; Wittstock, G. Covalent Modification of Nanoparticle-Imprinted Matrices for Selective Nanoparticle Recognition. ChemElectroChem 2023, 10, e202300173. [Google Scholar] [CrossRef]
- Sagi-Cohen, H.; Savchenko, P.; Mandler, D. Selective detection of nanomaterials: Gold nanorod imprinted matrices. Sens. Actuators B Chem. 2024, 410, 135544. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Bourdillon, C.; Lakhdar Chaouche, S.; Coolen, L.; Maître, A.; Mangeney, C.; Schwob, C. Imprinted Photonic Hydrogels for the Size- and Shell-Selective Recognition of Nanoparticles. Angew. Chem. Int. Ed. 2017, 56, 9710–9714. [Google Scholar] [CrossRef] [PubMed]
- Tay, Y.Y.; Lin, X.H.; Li, S.F.Y. Nanogel for Selective Recognition of Nanoparticles in Water Samples. Chemosensors 2023, 11, 72. [Google Scholar] [CrossRef]
- Dery, L.; Sava, B.; Mandler, D. Electrochemical Detection of Silica Nanoparticles by Nanoparticle Imprinted Matrices. ChemElectroChem 2023, 10, e202300039. [Google Scholar] [CrossRef]
- Dery, L.; Shauloff, N.; Turkulets, Y.; Shalish, I.; Jelinek, R.; Mandler, D. Size-Selective Detection of Nanoparticles in Solution and Air by Imprinting. ACS Sens. 2022, 7, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Gam-Derrouich, S.; Bourdillon, C.; Daney De Marcillac, W.; Coolen, L.; Maître, A.; Mangeney, C.; Schwob, C. Quantum dot-imprinted polymers with size and shell-selective recognition properties. Chem. Commun. 2015, 51, 14933–14936. [Google Scholar] [CrossRef]
- Hong, P.N.; Benalloul, P.; Coolen, L.; Maitre, A.; Schwob, C. A sputtered-silica defect layer between two artificial silica opals: An efficient way to engineer well-ordered sandwich structures. J. Mater. Chem. C 2013, 1, 5381–5386. [Google Scholar] [CrossRef]
- Katz, A.; Davis, M. Molecular imprinting of bulk, microporous silica. Nature 2000, 403, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.D.; Katz, A. Thermolytic Synthesis of Imprinted Amines in Bulk Silica. Chem. Mater. 2003, 15, 2757–2763. [Google Scholar] [CrossRef]
- Bass, J.D.; Anderson, S.L.; Katz, A. The Effect of Outer-Sphere Acidity on ChemicalReactivity in a Synthetic Heterogeneous Base Catalyst. Angew. Chem. Int. Ed. 2003, 42, 5219–5222. [Google Scholar] [CrossRef] [PubMed]
- Poovarodom, S.; Bass, J.D.; Hwang, S.J.; Katz, A. Investigation of the Core-Shell Interface in Gold@Silica Nanoparticles: A Silica Imprinting Approach. Langmuir 2005, 21, 12348–12356. [Google Scholar] [CrossRef]
- Pallavicini, P.; Preti, L.; Protopapa, M.L.; Carbone, D.; Capodieci, L.; Diaz Fernandez, Y.A.; Milanese, C.; Taglietti, A.; Doveri, L. Nanoparticle-Imprinted Silica Gel for the Size-Selective Capture of Silver Ultrafine Nanoparticles from Water. Molecules 2023, 28, 4026. [Google Scholar] [CrossRef] [PubMed]
- Bright, R.M.; Musick, M.D.; Natan, M.J. Preparation and Characterization of Ag Colloid Monolayers. Langmuir 1998, 14, 5695–5701. [Google Scholar] [CrossRef]
- Pallavicini, P.; Taglietti, A.; Dacarro, G.; Diaz-Fernandez, Y.A.; Galli, M.; Grisoli, P.; Patrini, M.; Santucci De Magistris, G.; Zanoni, R. Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity. J. Colloid Interfaces Sci. 2010, 350, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, P.; Dacarro, G.; Taglietti, A. Self-Assembled monolayers of silver nanoparticles: From intrinsic to switchable inorganic antibacterial surfaces. Eur. J. Inorg. Chem. 2018, 2018, 4846–4855. [Google Scholar] [CrossRef]
- Pallavicini, P.; Bassi, B.; Chirico, G.; Collini, M.; Dacarro, G.; Fratini, E.; Grisoli, P.; Patrini, M.; Sironi, L.; Taglietti, A.; et al. Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release. Sci. Rep. 2017, 7, 5259. [Google Scholar] [CrossRef]
- Pallavicini, P.; Preti, L.; De Vita, L.; Dacarro, G.; Diaz Fernandez, Y.A.; Merli, D.; Rossi, S.; Taglietti, A.; Vigani, B. Fast dissolution of silver nanoparticles at physiological pH. J. Colloid Interface Sci. 2020, 563, 177–188. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Tsai, H.-J.; Sheng, Y.-J.; Tsao, H.K. Shape Recognition of Nanoparticle-Imprinting Materials Enhanced by Depletants. J. Phys. Chem. C 2016, 120, 19871–19877. [Google Scholar] [CrossRef]
- Zelikovich, D.; Dery, L.; Sagi-Cohen, H.; Mandler, D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem. Sci. 2023, 14, 9630–9650. [Google Scholar] [CrossRef]
Sensed NPs Material and Dimensions a | Sensing Technique b | NPIP Material c | Selectivity d | Detection Range d | Ref. |
---|---|---|---|---|---|
AgNPs 60 nm | QCM | PU, PS, and PVA | n.d. | 68–270 ppm | [67] |
40 nm | LSV and ITO electrode | PPh | dimensions | n.d. | [70] |
10 nm | LSV and ITO electrode | PEI and OA | dimensions | n.d. | [71] |
AuNPs 15 nm, 33 nm | LSV and ITO electrode | PANI | dimensions | n.d. | [68] |
2 nm | LSV and ITO electrode | CA | coating | n.d. | [69] |
10 nm, 40 nm | LSV and ITO electrode | PEI, OA | dimensions and coating | n.d. | [71] |
8 nm | LSV and ITO electrode | silica gel | dimensions | n.d. | [72] |
8.5 nm | LSV and ITO electrode | polymerized p-ADA salts | n.d. | n.d. | [73] |
15 nm | LSV and ITO electrode | polymerized CBD | coating | n.d. | [74] |
55 nm | LSV and glassy carbon electrode | polymerized plumbagin | dimensions and coating | n.d. | [75] |
47 × 12 nm, 34 × 13 nm rods | LSV and ITO electrode | polymerized CBD or ADB | dimensions and charge | n.d. | [76] |
QDs CdTeSe/ZnS 18 × 7 nm rods | reflectance | PMAA | dimensions, shape, and coating | 0.025–25 ppb | [77] |
CdSSe/ZnS 5–10 nm | QCM | PMAA/ EGDMA | dimensions and coating | 25–2000 ppb | [78] |
SiO2NPs 30 nm | SWV and Au electrode | PPh | n.d. | n.d. | [79] |
100 nm | capacitance and Au IDE | SiO2 | dimensions | n.d. | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doveri, L.; Mahmood, A.; Pallavicini, P. Nanoimprinted Materials for Nanoparticle Sensing and Removal. Nanomaterials 2025, 15, 243. https://doi.org/10.3390/nano15030243
Doveri L, Mahmood A, Pallavicini P. Nanoimprinted Materials for Nanoparticle Sensing and Removal. Nanomaterials. 2025; 15(3):243. https://doi.org/10.3390/nano15030243
Chicago/Turabian StyleDoveri, Lavinia, Azhar Mahmood, and Piersandro Pallavicini. 2025. "Nanoimprinted Materials for Nanoparticle Sensing and Removal" Nanomaterials 15, no. 3: 243. https://doi.org/10.3390/nano15030243
APA StyleDoveri, L., Mahmood, A., & Pallavicini, P. (2025). Nanoimprinted Materials for Nanoparticle Sensing and Removal. Nanomaterials, 15(3), 243. https://doi.org/10.3390/nano15030243