Two-Dimensional Nanostructured Ti3C2Tx MXene for Ceramic Materials: Preparation and Applications
Abstract
:1. Introduction
2. Etching Methods for Ti3C2Tx MXene
2.1. Acid Etching
2.2. Acid–Salt Composite Etching
2.3. Alkaline Etching
2.4. Molten Salt Etching
2.5. Other Etching Methods
3. Delamination
4. Applications of Ti3C2Tx MXene in Ceramics
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Tamersit, K.; Kouzou, A.; Rodriguez, J.; Abdelrahem, M. New label-free DNA nanosensor based on top-gated metal-ferroelectric-metal graphene nanoribbon on insulator field-effect transistor: A quantum simulation study. Nanomaterials 2024, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.; Mohamed, A.; Abdelgawad, A.M.; Eid, K.; Abdullah, A.M.; Elzatahry, A. The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: Deep insights into the supercapacitor. Nanomaterials 2020, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, J.; Liu, J.; Wang, R.; Wang, T.; Zhen, Y.; Xu, J.; Zhao, L. First principles study of the structure–performance relation of pristine Wn+1Cn and oxygen-functionalized Wn+1CnO2 MXenes as cathode catalysts for Li-O2 batteries. Nanomaterials 2024, 14, 666. [Google Scholar] [CrossRef]
- Yan, S.; Wang, L.; Li, H.; Hou, S.; Gao, Y.; Li, Z.; Zhou, A.; Yu, Y.; Liu, X. Mechanical, thermal, andtribological properties of polyphenylene sulfide enhanced with surface-modified Ti3C2Tx MXene. Tribol. Int. 2025, 204, 110428. [Google Scholar] [CrossRef]
- Peng, Q.; Rehman, J.; Eid, K.; Alofi, A.S.; Laref, A.; Albaqami, M.D.; Alotabi, R.G.; Shibl, M.F. Vanadium carbide (V4C3) MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 2022, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Dong, Y.; Li, H.; Meng, H.; Liu, J.; Cao, Q.; Pan, C. Research progress and challenges of carbon/MXene composites for supercapacitors. Batteries 2024, 10, 395. [Google Scholar] [CrossRef]
- Sun, M.; Ye, W.; Zhang, J.; Zheng, K. Structure, properties, and peparation of MXene and the application of its composites in supercapacitors. Inorganics 2024, 12, 112. [Google Scholar] [CrossRef]
- Zheng, S.; Li, C.; Wang, C.; Ma, D.; Wang, B. The combined effects of an external field and novel functional groups on the structural and electronic properties of TMDs/Ti3C2 heterostructures: A first-principles study. Nanomaterials 2023, 13, 1218. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xu, J.; Li, Q.; Zhang, W.; Lu, C.; Song, X.; Liu, L.; Chen, Y. Sensitivity-enhanced, room-temperature detection of NH3 with alkalized Ti3C2Tx MXene. Nanomaterials 2024, 14, 680. [Google Scholar] [CrossRef]
- Wozniak, J.; Petrus, M.; Cygan, T.; Lachowski, A.; Adamczyk-Cie’slak, B.; Moszczy’nska, D.; Jastrzebska, A.; Wojciechowski, T.; Ziemkowska, W.; Olszyna, A. Influence of MXene (Ti3C2) phase addition on the microstructure and mechanical properties of silicon nitride ceramics. Materials 2020, 13, 5221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Chen, J.J.; Wei, G.Z.; Li, H.; Wang, G.B.; Li, T.J.; Wang, J.; Jiang, Y.H.; Bao, L.; Zhang, Y.X. Construction of monolayer Ti3C2Tx MXene on nickel foam under high electrostatic fields for high-performance supercapacitors. Nanomaterials 2024, 14, 887. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.Z.; Hoover, M.; Ward, P.; Lau, K.C. First-principles study of MXene properties with varying hydrofluoric acid concentration. iScience 2024, 27, 108784. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Ishak, N.A.I.M.; Tan, K.H.; Zaed, M.A.; Saidur, R.; Pandey, A.K. Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion. Flatchem 2024, 47, 100703. [Google Scholar] [CrossRef]
- Cui, J.; Wu, J.; Mi, L.; Feng, L.; Yang, Y.; Yu, Y. Effects of the etching process on infrared emissivity properties of Ti3C2Tx MXene: Implications for infrared stealth. ACS Appl. Nano Mater. 2023, 6, 18354–18363. [Google Scholar] [CrossRef]
- Tsyganov, A.; Shindrov, A.; Vikulova, M.; Zheleznov, D.; Gorohovsky, A.; Gorshkov, N. Effect of LiCl electrolyte concentration on energy storage of supercapacitor with multilayered Ti3C2Tx MXene electrodes synthesized by hydrothermal etching. Processes 2023, 11, 2528. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, Q.; Yang, J. Effect of alkaline environment on Ti3C2Tx-MXene etching. Proc. SPIE 2021, 12030, 47–52. [Google Scholar]
- Yan, S.S.; Li, L.; Zhang, H.; Fu, Q.B.; Ge, X.B. Flexible sandwich-shaped cellulose nanocrystals/silver nanowires/MXene films exhibit efficient electromagnetic-shielding interference performance. Nanomaterials 2024, 14, 647. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, S.; Guan, L.; Wu, H. Highly sensitive photothermal fiber sensor based on MXene device and vernier effect. Nanomaterials 2022, 12, 766. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Wu, T.; Song, H.; Tang, C. Dual-mode flexible sensor based on PVDF/MXene nanosheet/reduced graphene oxide composites for electronic skin. Nanomaterials 2023, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Alhamada, T.F.; Azmah Hanim, M.A.; Jung, D.W.; Saidur, R.; Nuraini, A.; Wan Hsasan, W.Z. MXene based nanocomposites for recent solar energy technologies. Nanomaterials 2022, 12, 3666. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Y.; Liu, W.; Wu, L.; Wang, Z.; Xiao, D.; Meng, D.; Jiang, X.; Liu, J.; Zeng, Z.; et al. Transparent electromagnetic interference shielding materials using MXene. Carbon Energy 2024, 6, e593. [Google Scholar] [CrossRef]
- Wan, Z.; Zuo, P.; Chen, Z.; Yang, J.; Ren, M.; Tian, Z.; Li, G.; Hu, R.; Teng, F.; Fan, H. Gallium hydroxide coated Ti3C2Tx MXene for high-performance asymmetric supercapacitor. J. Energy Storage 2025, 105, 114686. [Google Scholar] [CrossRef]
- Dai, H.; Long, Z.; Li, Z.; Yan, Z.; Wang, Q.; Wang, K.; Wei, Q.; Qiao, H. Metal-organic frameworks-derived CoFe2O4/Ti3C2Tx MXene/carbon nanofibers for high-rate lithium-ion batteries. J. Alloys Compd. 2024, 1007, 176489. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Wang, L.F.; Yu, H.; Dong, X.; Yang, Y. Flexible room temperature gas sensor based on α-Fe2O3/Ti3C2Tx MXene composites for ppb-level H2S detection. Sens. Actuators B Chem. 2024, 421, 136543. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, K.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogots, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Cagnetta, G.; Huang, H.; Yu, G.; Yuan, J. Synthesis and regeneration of a MXene-based pollutant adsorbent by mechanochemical methods. Molecules 2019, 24, 2478. [Google Scholar] [CrossRef]
- Nam, M.S.; Kim, J.Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Pd-functionalized Ti3C2Tx MXenes for realization of flexible, selective, self-heated H2 sensing. Sens. Actuators B Chem. 2024, 404, 135189. [Google Scholar] [CrossRef]
- Noor, Q.; Zahra, S.A.; Serna, M.I.; Abuoudah, C.K.; Iqbal, M.Z.; Akinwande, D.; Rizwan, S. Silicon carbide-assisted co-existence of magnetic phases in well-optimized Ti3SiC2-etched MXene. Ceram. Int. 2020, 46, 27419–27425. [Google Scholar] [CrossRef]
- Kiran, N.U.; Choudhary, B.; Trivedi, R.; Chakraborty, B.; Chatterjee, S.; Besra, L. Electric-field assisted ultrafast synthesis of Ti3SiC2 MAX phase. J. Am. Ceram. Soc. 2022, 105, 7053–7063. [Google Scholar] [CrossRef]
- Scheibe, B.; Kupka, V.; Peplinska, B.; Jarek, M.; Krzysztof, T. The influence of oxygen concentration during MAX Phases (Ti3AlC2) preparation on the α-Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx). Materials 2019, 12, 353. [Google Scholar] [CrossRef]
- Wang, X.; Fan, X.; Li, M.; Zhu, W.; Xue, J.; Ye, F.; Cheng, L. Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceram. Int. 2021, 47, 13628–13634. [Google Scholar] [CrossRef]
- Ahmadian1, Z.; Azad, M.J.; Mohammadi, S.; Mortazavi, Y.; Khodadadi, A.A. The effect of ball-milling parameters on the structures of Ti3AlC2 MAX phase and resultant Ti3C2Tx MXene. J. Ultrafine Grained Nanostruct. Mater. 2022, 55, 112–121. [Google Scholar] [CrossRef]
- Benchakara, M.; Loupiasa, L.; Garneroa, C.; Bilykb, T.; Moraisa, C.; Canaffa, C.; Guignarda, N.; Morisseta, S.; Pazniakb, H.; Hurandb, S.; et al. One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Appl. Surf. Sci. 2020, 530, 147209. [Google Scholar] [CrossRef]
- Tran, N.M.; Ta, Q.T.H.; Sreedhar, A.; Noh, J.S. Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Appl. Surf. Sci. 2021, 537, 148006. [Google Scholar] [CrossRef]
- Sumbe, P.R.; Chhote, U.; Sanyal, C.; Chakraborty, B.; Sayeed, A.; More, M.A. Synthesis, physico-chemical characterization, DFT simulation, and field electron behaviour of 2D layered Ti3C2Tx MXene nanosheets. Nano Express 2024, 5, 035005. [Google Scholar] [CrossRef]
- Scheibe, B.; Tadyszak, K.; Jarek, M.; Michalak, N.; Kempiński, M.; Lewandowski, M.; Peplińska, B.; Chybczyńska, K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl. Surf. Sci. 2019, 479, 216–224. [Google Scholar] [CrossRef]
- Zeng, F.; Qiu, H.; Feng, X.; Guo, X.; Zhu, K.; Yao, Q.; Tang, J. Density functional theory studies of Ti3C2Tx MXene nanosheets decorated with Au for sensing SF6/N2 nitrogen-containing decomposition gases. Nanotechnology 2024, 35, 035504. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, D.; Liao, Y.; Wang, G.; Shi, X.; Zhang, H.; Xiang, Q. Synthesis and photocatalytic H2-production activity of plasma-treated Ti3C2Tx MXene modified graphitic carbon nitride. J. Am. Ceram. Soc. 2020, 103, 849–858. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, A.; Wang, C.; Liu, F.; He, J.; Li, S.; Wang, J.; You, R.; Yan, X.; Sun, P.; et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS. Sens. 2019, 4, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Ghidiu, M.; Halim, J.; Koat, S.; Bish, D.; Gogotsi, Y.; Barsoum, M.W. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 2016, 28, 3507–3514. [Google Scholar] [CrossRef]
- Sharma, G.; Naguib, M.; Feng, D.; Gogotsi, Y.; Navrotsky, A. Calorimetric determination of thermodynamic stability of MAX and MXene phases. J. Phys. Chem. C 2016, 120, 28131–28137. [Google Scholar] [CrossRef]
- Kumar, S.; Kang, D.; Hong, H.; Rehman, M.A.; Lee, Y.J.; Lee, N.; Seo, Y.H. Effect of Ti3C2Tx MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Adv. 2020, 10, 41837–41845. [Google Scholar] [CrossRef] [PubMed]
- Cockreham, C.B.; Zhang, X.H.; Li, H.Q.; Hammond-Pereira, E.; Sun, J.; Saunders, S.R.; Wang, Y.; Xu, H.W.; Wu, D. Inhibition of AlF3·3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment. ACS Appl. Energy Mater. 2019, 2, 8145–8152. [Google Scholar] [CrossRef]
- Khan, Q.; Ku, T. Yielding evaluation of cement-treated soft clay under isotropic and anisotropic stress states using continuous Gmax measurements. Acta Geotech. 2024, 19, 4255–4276. [Google Scholar] [CrossRef]
- Yao, Y.; Han, Y.T.; Wang, Z.F.; Li, Z.H.; Zhu, Z.G. Controlled etching of MXene for highly selective triethylamine detection at room temperature. Sens. Actuators B Chem. 2024, 402, 135078. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Liu, Y.; Hu, W. Effect of HF etching on titanium carbide (Ti3C2Tx) microstructure and its capacitive properties. Chem. Eng. J. 2023, 452, 139512. [Google Scholar] [CrossRef]
- Huang, J.H.R.; Kashale, A.A.; Tseng, S.W.; Lee, J.C.; Chen, I.W.P. Novel synthesis of B-doped Ti3C2Tx thin sheets via BF3 Lewis acid etching: Structural insights and supercapacitor applications. J. Power Sources 2024, 615, 235044. [Google Scholar] [CrossRef]
- Jee, Y.C.; Yun, J.S.; Im, S.H.; Kim, W.S. Environment-friendly synthesis of Ti3C2Tx MXene by etching and galvanic reactions for Al removal of Ti3AlC2 MAX. Chem. Eng. J. 2024, 495, 153354. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.F.J.; Pinilla, S.; McEyoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, Q.; Fernandez, O.; Huang, G.; Huang, J.; Peng, Q. Heterogeneous Ti3SiC2@C-containing Na2Ti7O15 architecture for high-performance sodium storage at elevated temperatures. ACS Nano 2017, 11, 12219–12229. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Agnese, Y.D.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; Gao, B.; Kong, L.B.; Chen, Z.; Que, W.X. Green synthesis of fluorine-free MXene via hydrothermal process: A sustainable approach for proton supercapacitor electrodes. Electrochim. Acta 2024, 475, 143651. [Google Scholar] [CrossRef]
- Colkesen, P.; Fitriani, P.; Yoon, D.H. Synthesis of titanium carbide MXene nanosheets by ecofriendly technique for strontium ion adsorption. Phys. Status Solidi A 2024, 221, 2300564. [Google Scholar] [CrossRef]
- Li, Y.B.; Shao, H.; Lin, Z.F.; Lu, J.; Liu, L.Y.; Duployer, B.; Persson, P.O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.G.; Liu, Y.; Yang, W.Q. Ultrafast synthesis of MXenes in minutes via low-temperature molten salt etching. Adv. Mater. 2024, 36, 2410736. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, P.; Liu, Z.; Park, S.; Lohe, M.R.; Wu, Y.; Nia, A.S.; Yang, S.; Feng, X. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 2021, 60, 8689–8693. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wei, Y.; Wang, Y.; Chen, H.; Caro, J.; Wang, H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 2017, 56, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Lee, S.; Kim, H.; Ko, Y.K.; Kim, S.J.; Koo, C.M. Fast and high-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength. Small 2022, 18, 2203767. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, A.; Lu, H.D.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 4, eaat0491. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.B.; Chang, K.K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. An element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Abou-EI-Sherbimi, K.S.; Morsi, R.M.M.; Elzahany, E.A.M.; Nour, M.A.; Drweesh, E.A. Spectral and conductivity measurements insights on loading mechanisms of DMSO/water-kaolin complexes. Spectrochim. Acta A 2025, 324, 124990. [Google Scholar] [CrossRef] [PubMed]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M.W. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020, 6, 616–630. [Google Scholar] [CrossRef]
- Ghazoyan, H.H.; Grigoryan, Z.L.; Markarian, S.A.; Chaban, V.V. Dimethyl sulfoxide heavily extends homogeneous regions of the Propionitrile/DMSO/Water mixtures. J. Mol. Liq. 2023, 380, 121734. [Google Scholar] [CrossRef]
- Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W.J.; Ramakrishnan, S.; Vaia, R.A. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 2021, 15, 2771–2777. [Google Scholar] [CrossRef]
- Wang, F.; Bian, Z.; Zhang, W.; Zheng, L.; Zhang, Y.; Wang, H. Fluorine-free MXene activate peroxymonosulfate to remove tetracyclic antibiotics. Sep. Purif. Technol. 2023, 314, 123549. [Google Scholar] [CrossRef]
- Chen, I.W.P.; Kashale, A.A.; Pan, Y.H. Hydrofluoric acid-free synthesis of Ti3C2Tx MXene nanostructures for energy applications. ACS Appl. Nano Mater. 2023, 6, 1985–1995. [Google Scholar] [CrossRef]
- Xia, Q.; Shinde, N.; Zhang, T.; Yun, J.; Zhou, A.; Mane, R.; Mathur, S.; Kim, K. Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors. Dalton Trans. 2018, 47, 8676. [Google Scholar] [CrossRef]
- Rajavel, K.; Zhu, P.; Sun, R.; Wong, C. Electromagnetic interference shielding properties of 2D MXene (Ti3C2Tx) by metal nanoparticles loading. In Proceedings of the 20th International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020. [Google Scholar] [CrossRef]
- Maru, D.; Psni, J.; Borkar, H.; Palaparthy, V. Soil moisture sensing properties of the Ti3C2Tx Mxene-based soil moisture sensor on vadose zone soils. ACS Appl. Electron. Mater. 2024, 6, 330–339. [Google Scholar] [CrossRef]
- Azadvari, R.; Mohammadi, S.; Habibi, A.; Ahmadi, S.; Sanaee, Z. Effect of ultra-sonication, vacuum drying, and carbon coating on the super-capacitive behavior of Ti3C2Tx MXene. J. Phys. D Appl. Phys. 2024, 57, 045501. [Google Scholar] [CrossRef]
- Loupias, L.; Morais, C.; Morisset, S.; Canaff, C.; Li, Z.; Brette, F.; Chartier, P.; Guignard, N.; Mazier, L.; Mauchamp, V.; et al. Guideline for synthesis and surface chemistry characterization of 2D Mo/Ti solid solutions based MXene. Application to hydrogen evolution reaction in alkaline media. Flstchem 2024, 43, 100596. [Google Scholar] [CrossRef]
- Nam, M.; Kim, J.; Mirzaei, A.; Kim, H.; Kim, S. Au- and Pt-decorated Ti3C2Tx MXenes for preparing self-heated and flexible NH3 gas sensors. Sens. Actuators B Chem. 2024, 403, 135112. [Google Scholar] [CrossRef]
- Rasool, F.; Pirzada, B.M.; Talib, S.H.; Alkhidir, T.; Anjum, D.H.; Mohamed, S.; Qurashi, A. In situ growth of interfacially nanoengineered 2D-2D WS2/Ti3C2Tx MXene for the enhanced performance of hydrogen evolution reactions. ACS Appl. Mater. Interfaces 2024, 16, 14229–14242. [Google Scholar] [CrossRef] [PubMed]
- Jonguk, Y.; Lee, J.H.; Lim, T.; Seo, H.S.; Seo, K.; Jeong, S.M.; Ju, S. Wearable temperature sensor with moisture resistance based on MXene-embedded fiber. Aip. Adv. 2024, 14, 015147. [Google Scholar] [CrossRef]
- AL-Zoubi, O.H.; Eti, M.; Rodriguze-Benites, C.; Alhardrawi, M.; Kunamneni, R.; Fouly, A.; Awwad, A.M.; Kumar, A.; Kareem, A.H. Fabrication of innovative ZnCo2O4/Ti3C2Tx MXene nanocomposite counter electrode to replace Pt in dye-sensitized solar cells and improve solar cell performance. Mater. Sci. Semicond. Process. 2024, 181, 108663. [Google Scholar] [CrossRef]
- Sarkar, P.; Chatterjee, K.; Pal, P.; Das, K. Exploring the molarity of lithium fluoride in minimally intensive layer delamination (MILD) method for efficient room temperature synthesis of high quality Ti3C2Tx free-standing film. Mater. Sci. Semicond. Process. 2025, 185, 108881. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Diao, W.; Tao, F.; Wu, X.; Zhang, X.; Zhang, J. Uniform Zn2+ Flux Distribution Achieved by an artificial three-dimensional framework: The enhanced ion-transfer kinetics for long-life and dendrite-free Zn anodes. ACS Appl. Mater. Interfaces 2022, 14, 23558–23569. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Wang, L.; Liu, X.; Du, X.; Zhang, G.; Chang, Y.; Xia, Q.; Hu, Q.; Zhou, A. 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chem. Eng. J. 2023, 451, 138686. [Google Scholar] [CrossRef]
- Cai, M.; Yan, H.; Li, Y.; Li, W.; Fan, X.; Zhu, M. Elucidating the electrochemical mechanism for enhanced corrosion of Ti3C2Tx-coated mild steel. Surf. Topogr-Metrol. 2021, 9, 035033. [Google Scholar] [CrossRef]
- Sergiienko, S.A.; Lapes, D.V.; Constantinescu, G.; Ferro, M.C.; Shchaerban, N.D.; Tursunov, O.; Shkepu, V.; Pazniak, H.; Tabachkova, N.Y.; Castellon, E.R.; et al. MXene-containing composite electrodes for hydrogen evolution: Material design aspects and approaches for electrode fabrication. Int. J. Hydrogen Energy 2021, 46, 11636–11651. [Google Scholar] [CrossRef]
- Wang, L.; Tan, Y.; Yu, Z.; Tian, H.; Lai, Y.; He, Y.; Xiang, H.; Wang, J.; Zhao, W.; Zhang, L. Three-dimensional polyaniline architecture enabled by hydroxyl-terminated Ti3C2Tx MXene for high-performance supercapacitor electrodes. Mater. Chem. Front. 2021, 5, 7883. [Google Scholar] [CrossRef]
- Ashok, A.; Saseendran, S.B.; Asha, A.S. Synthesis of Ti3C2Tx MXene from the Ti3AlC2 MAX phase with enhanced optical and morphological properties by using ammonia solution with the in-situ HF forming method. Phys. Scr. 2022, 97, 025807. [Google Scholar] [CrossRef]
- Li, X.S.; Ma, X.F.; Zhang, H.K.; Xue, N.; Yao, Q.; He, T.; Qu, Y.; Zhang, J.; Tao, X. Ambient-stable MXene with superior performance suitable for widespread applications. Chem. Eng. J. 2023, 455, 140635. [Google Scholar] [CrossRef]
- Tan, J.Y.; Fan, B.M.; Zhang, P.; Wei, Y.; Soomro, R.A.; Zhao, X.Q.; Kumar, J.; Qiao, N.; Xu, B. Ultralong stability of Ti3C2Tx-MXene dispersion through synergistic regulation of storage environment and defect capping with Tris-HCl buffering. Small Methods 2024, 8, e2301689. [Google Scholar] [CrossRef] [PubMed]
- Shekhirev, M.; Busa, J.; Shuck, C.E.; Torres, A.; Bagheri, S.; Sinitskii, A.; Gogotsi, Y. Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 2022, 16, 13695–13703. [Google Scholar] [CrossRef]
- Inman, A.; Šedajová, V.; Matthews, K.; Gravlinv, J.; Busa, J.; Shuck, C.E.; VahidMohammadi, A.; Bakandritsos, A.; Shekhirev, M.; Otyepka, M.; et al. Shear delamination of multilayer MXenes. J. Mater. Res. 2022, 37, 4006–4016. [Google Scholar] [CrossRef]
- Inman, A.; Shevchuk, K.; Anayee, M.; Hammill, W.; Lee, J.; Saraf, M.; Shuck, C.E.; Armstrong, C.M.; He, Y.; Jin, T.; et al. High-yield and high-throughput delamination of multilayer MXene via high-pressure homogenization. Chem. Eng. J. 2023, 475, 146089. [Google Scholar] [CrossRef]
- Ungureanu, A.; Francini, A.; Neri, P.; Girimonte, A.; Giovanardi, R.; Ferrari, A.M.; Rosa, R. Systematic life cycle environmental impact comparison of alternative synthetic strategies for Ti3C2Tx MXene. ACS Sustain. Chem. Eng. 2024, 12, 5893–5906. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Han, M.K.; Maleski, K.; Hantanasirisakul, K.; Kim, S.J.; Choi, J.; Reil, W.E.B.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376. [Google Scholar] [CrossRef]
- Mathis, T.S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A.C.; Hantanasirisakul, K.; Shuck, C.E.; Stach, E.A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241. [Google Scholar] [CrossRef]
- Jolly, S.; Paranthaman, M.P.; Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater Today Adv. 2021, 10, 100139. [Google Scholar] [CrossRef]
- El Ghazaly, A.; Ahmed, H.; Rezk, A.R.; Halim, J.; Persson, P.O.Å.; Yeo, L.Y.; Rosen, J. Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene. ACS Nano 2021, 15, 4287–4293. [Google Scholar] [CrossRef] [PubMed]
- Firouzjaei, M.D.; Nemani, S.K.; Sadrzadeh, M.; Wujcik, E.K.; Elliott, M.; Anasori, B. Life-cycle assessment of Ti3C2Tx MXene synthesis. Adv. Mater. 2023, 35, 2300422. [Google Scholar] [CrossRef] [PubMed]
- Edosa, O.O.; Tekweme, F.K.; Olubambi, P.A.; Gupta, K. Microstructural analysis, compressive strength, and wear properties of spark-plasma-sintered Al-Mg-PPA composites. Quantum Beam Sci. 2024, 8, 32. [Google Scholar] [CrossRef]
- Metel, A.; Sotova, C.; Fyodorov, S.; Zhylinski, V.; Chayeuski, V.; Milovich, F.; Seleznev, A.; Bublikov, Y.; Makarevich, K.; Vereschaka, A. Improving the wear and corrosion resistance of titanium alloy parts via the deposition of DLC coatings. C-J. Carbon. Res. 2024, 10, 106. [Google Scholar] [CrossRef]
- Walun, G.; Choudhari, A.; Digole, S.; Bearden, A.; Kolt, O.; Bari, P.; Borkar, T. Microstructure, mechanical, and tribological behaviour of spark plasma sintered TiN, TiC, TiCN, TaN, and NbN ceramic coatings on titanium substrate. Metals 2024, 14, 1437. [Google Scholar] [CrossRef]
- Almansoori, A.; Balázsi, K.; Balázsi, C. Advances, challenges, and applications of graphene and carbon nanotube-reinforced engineering ceramics. Nanomaterials 2024, 14, 1881. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zou, Y.; Xu, F.; Xiang, C.; Sun, L. In situ growth of nickel-cobalt metal organic frameworks guided by a nickel-molybdenum layered double hydroxide with two-dimensional nanosheets forming flower-like struc-tures for high-performance supercapacitors. Nanomaterials 2023, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthi, M.A.; Hussain, M. Effect of fabrication method on the thermo mechanical and electrical properties of graphene doped pvdf nanocomposites. Nanomaterials 2022, 12, 2315. [Google Scholar] [CrossRef]
- Fei, M.; Lin, R.; Lu, Y.; Zhang, X.; Bian, R.; Cheng, J.; Luo, P.; Xu, C.; Cai, D. MXene-reinforced alumina ceramic composites. Ceram. Int. 2017, 43, 17206–17210. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 2015, 191, 33–40. [Google Scholar] [CrossRef]
- Petrus, M.; Woźniak, J.; Cygan, T.; Lachowski, A.; Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; Chlubny, L.; Jastrzębska, A.; Adamczyk-Cieślak, B.; et al. Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering. Arch. Civ. Mech. Eng. 2021, 21, 87. [Google Scholar] [CrossRef]
- Petrus, M.; Woźniak, J.; Cygan, T.; Lachowski, A.; Moszczyńska, D.; Adamczyk-Cieślak, B.; Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkow-ska, W.; Jastrzębska, A.; et al. Influence of Ti3C2Tx MXene and surface-modified Ti3C2Tx MXene addition on microstructure and mechanical properties of silicon carbide compo-sites sintered via spark plasma sintering method. Materials 2021, 14, 3558. [Google Scholar] [CrossRef]
- Petrus, M.; Wozniak, J.; Kostecki, M.; Cygan, T.; Jastrzebska, A.; Rozmyslowska-Wojciechowska, A.; Adamczyk-Cieslak, B.; Moszczynska, D.; Sienkiewicz, M.; Marek, P.; et al. Modelling and characterisation of residual stress of SiC-Ti3C2Tx MXene compo-sites sintered via spark plasma sintering method. Materials 2022, 15, 1175. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, Y.; Xu, W.; Huang, D.; Wang, Z.; Hong, M. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 2016, 42, 8419–8424. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.X.; Yao, Z.J.; Yao, W.L.; Zhou, Y.; Shi, J.T.; Ruan, L.F.; Chen, Z.H.; Shen, S.H.; Yang, Y.F. Novel anatase-rutile TiO2 dual-phase coupling with NiS2 nanoparticles wrapped in carbon nanotubes for enhanced lithium ion storage. J. Alloy. Compd. 2024, 1003, 175740. [Google Scholar] [CrossRef]
- Eklund, P.; Rosen, J.; Persson, P.O.Å. Layered ternary Mn+1AXnphases and their 2D derivative MXene: An overview from a thin-film perspective. J. Phys. D Appl. Phys. 2017, 50, 113001. [Google Scholar] [CrossRef]
- Guo, J.; Legum, B.; Anasori, B.; Wang, K.; Lelyukh, P.; Gogotsi, Y.; Randall, C.A. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv. Mater. 2018, 30, 1801846. [Google Scholar] [CrossRef] [PubMed]
- Wozniaka, J.; Petrusa, M.; Cygana, T.; Jastrzębska, A.; Wojciechowskib, T.; Ziemkowskab, W.; Olszynaa, A. Silicon carbide matrix composites reinforced with two-dimensional titanium carbide—Manufacturing and properties. Ceram. Int. 2019, 45, 6624–6631. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Petrus, M.; Lachowski, A.; Pawlak, W.; Adamczyk-Cieslak, B.; Jastrzebska, A.; Rozmyslowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; et al. Microstructure and mechanical properties of alumina composites with addition of structurally modified 2D Ti3C2 (MXene) phase. Materials 2021, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chen, F.; Chen, J.; Liang, J.; Kong, J. MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance. J. Am. Ceram. Soc. 2021, 104, 1772–1784. [Google Scholar] [CrossRef]
- Lyu, S.; Zhao, T.; Wang, Y.J.; Han, H.; Li, T.; Zhang, C.T.; Li, D.D.; Wang, J.K.; Huang, J.T.; Yu, P.; et al. Ti3C2Tx-coated diatom frustules-derived porous SiO2 composites with high EMI shielding and mechanical properties. Ceram. Int. 2022, 48, 22845–22853. [Google Scholar] [CrossRef]
- Liang, B.; Liao, X.; Geng, B.; Zhu, Q.; Ming, Y.; Li, J.; Liu, K.; Jia, D.; Yang, Z.; Zhou, Y. A pinning effect for the enhanced oxidation resistance at 1600 °C of silicoboron carbonitride ceramics with the addition of MXene. Corros. Sci. 2022, 196, 110041. [Google Scholar] [CrossRef]
- Du, Y.C.; Zhang, X.M.; Wei, L.Q.; Yu, B.; Wang, Y.H.; Wang, Y.L.; Ye, S.F. Electrodeposition of a Ni-P composite coating reinforced with Ti3C2Tx@TiO2/MoS2 particles. Mater. Chem. Phys. 2020, 241, 122448. [Google Scholar] [CrossRef]
- Guan, H.; Lv, F.; Li, D.; Wang, Y.; Lu, X.; Bian, D. Anti-corrosion property of multilayer Ti3C2Tx reinforced chemically bonded silicate ceramic coatings in salt, alkaline and acid environments. Ceram. Int. 2023, 49, 38961–38972. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Wang, C.; Zhu, K.; Pan, J. Effects of Ti3C2Tx MXene on structure, morphology, fluorescence and temperature sensitive properties of Eu3+ doped 8YSZ powder. J. Lumin. 2023, 258, 119815. [Google Scholar] [CrossRef]
Etching Methods | Etchant | Etching Environment | Ref. | Advantages | Disadvantages |
---|---|---|---|---|---|
Acid etching | 50% HF | Room temperature, 24 h | [72] | ①Simple process, easy to operate; ②Effectively removes Al or Si layers from MAX phase, resulting in high-purity Ti3C2Tx MXene. | ①HF solution is highly corrosive, posing safety risks; ②Waste liquid treatment is challenging, with significant environmental impact; ③Surface rich in fluorine functional groups, which may reduce chemical activity or lead to instability in performance. |
49% HF | 50 °C, 36 h | [73] | |||
48% HF | Room temperature, 24 h | [74] | |||
40% HF | 40 °C, 30 h | [75] | |||
50% HF | 25 °C, 24 h | [76] | |||
40% HF | 25 °C, 24 h | [77] | |||
Acid–salt composite etching | 50 mL 6 M HCl + NH4F | 50 °C, 24 h | [78] | ①HF is generated in situ, reducing the safety and environmental risks of directly using HF; ②Reduces the content of fluorine functional groups, enhancing chemical stability and electrochemical performance; ③The introduction of salt improves etching efficiency and uniformity of the product quality. | ①Still an acidic system, environmental impact is not fully eliminated; ②High process complexity, requiring precise control of the acid and salt ratio and reaction conditions. |
4 g LiF + 50 mL 9 M HCl | Room temperature, 200 rpm, 72 h | [79] | |||
12 M LiF + 9 M HCl | Room temperature, 24 h | [80] | |||
6.0/7.5/9.0/12.0 M LiF + 9.0 M HCl | Room temperature, 300 rpm, 24 h | [81] | |||
2 g LiF + 40 mL HCl (9.0 mol·L−1) | 35 °C, 30 h | [82] | |||
2 g NaF + 40 mL HCl (12 M) | 60 °C, 48 h | [83] | |||
0.8 g LiF + 10 mL 9 M HCl | Room temperature, 48 h | [84] | |||
Alkaline etching | 30 mL 10 M NaOH | Room temperature, 1–5 day | [85] | ①Generates fluorine-free terminated MXene, improving hydrophilicity and environmental friendliness; ②High etching efficiency, short reaction time. | ①Requires high-concentration alkaline solution, high temperature, and long reaction times, leading to high energy consumption and increased safety risks; ②May generate alkaline waste liquid, requiring proper disposal to prevent environmental pollution |
50 mL 30%NaOH | 100 °C, 24 h | [86] | |||
50 mL 7 mol/LKOH | 180 °C, Hydrothermal treatment, 24 h | [55] | |||
50 mL 22.5/25/30/35/40 M NaOH | 280 °C, 15 h | [54] | |||
Molten salt etching | NH4HF2 molten salt | 130 °C, 5 min | [57] | ①Avoids the use of strong acids or bases, offering better chemical safety and environmental friendliness; ②Suitable for large-scale green production. | ①Requires high-temperature operation, leading to higher energy consumption. |
Other etching methods | NH4HF2 (6 g), CH3SO3H (6 mL) and NH4PF6 (6 g) dissolved in anhydrous DMSO (34 mL) | 100 °C, 4 h | [61] | / | / |
40mL TMAOH solution | 40 °C, Oil bath, 1 week | [70] | |||
400 mg TFSI + 50 mL Acetic acid solution | 150 W, Ultrasonic homogenizer stirring, 2 h | [71] |
Impact Category | Unit | Path A [25,94] | Path B [95] | Path C [96] | Path D [97] | Path E [98] | Path F [99] | Path G [100] |
---|---|---|---|---|---|---|---|---|
Global warming | kg CO2 eq | 1.44 × 1000 | 4.91 × 1000 | 7.08 × 1000 | 8.42 × 1000 | 7.54 × 1000 | 1.58 × 1001 | 1.40 × 1001 |
Stratospheric ozone depletion | kg CFC11 eq | 5.05 × 10−07 | 1.61 × 10−06 | 2.57 × 10−06 | 3.00 × 10−06 | 2.82 × 10−06 | 5.44 × 10−06 | 5.33 × 10−06 |
Ionizing radiation | kBq Co-60 eq | 2.27 × 10−01 | 7.52 × 10−01 | 1.50 × 1000 | 1.77 × 1000 | 1.82 × 1000 | 1.96 × 1000 | 3.27 × 1000 |
Ozone formation, human health | kg NOx eq | 2.11 × 10−03 | 7.95 × 10−03 | 9.98 × 10−03 | 1.24 × 10−02 | 9.72 × 10−03 | 2.28 × 10−02 | 1.94 × 10−02 |
Fine particulate matter formation | kg PM2.5 eq | 2.88 × 10−03 | 1.04 × 10−02 | 1.63 × 10−02 | 1.96 × 10−02 | 1.76 × 10−02 | 2.79 × 10−02 | 3.30 × 10−02 |
Ozone formation, terrestrial ecosystems | kg NOx eq | 2.16 × 10−03 | 8.13 × 10−03 | 1.02 × 10−02 | 1.26 × 10−02 | 9.94 × 10−03 | 2.32 × 10−02 | 2.00 × 10−02 |
Terrestrial acidification | kg SO2 eq | 3.99 × 10−03 | 1.57 × 10−02 | 2.04 × 10−02 | 2.48 × 10−02 | 1.99 × 10−02 | 4.18 × 10−02 | 3.80 × 10−02 |
Freshwater eutrophication | kg P eq | 8.01 × 10−04 | 2.83 × 10−03 | 4.65 × 10−03 | 5.53 × 10−03 | 5.21 × 10−03 | 8.24 × 10−03 | 9.75 × 10−03 |
Marine eutrophication | kg N eq | 6.09 × 10−05 | 2.49 × 10−04 | 3.41 × 10−04 | 4.07 × 10−04 | 4.25 × 10−04 | 9.86 × 10−04 | 7.59 × 10−04 |
Terrestrial ecotoxicity | kg 1,4-DCB | 4.05 × 1000 | 1.72 × 1001 | 2.76 × 1001 | 2.54 × 1001 | 1.86 × 1001 | 4.29 × 1001 | 4.38 × 1001 |
Freshwater ecotoxicity | kg 1,4-DCB | 1.05 × 10−01 | 3.50 × 10−01 | 5.75 × 10−01 | 6.39 × 10−01 | 5.50 × 10−01 | 1.24 × 1000 | 1.05 × 1000 |
Marine ecotoxicity | kg 1,4-DCB | 1.34 × 10−01 | 4.51 × 10−01 | 7.35 × 10−01 | 8.16 × 10−01 | 6.99 × 10−01 | 1.59 × 1000 | 1.34 × 1000 |
Human carcinogenic toxicity | kg 1,4-DCB | 1.61 × 10−01 | 7.90 × 10−01 | 8.17 × 10−01 | 1.09 × 1000 | 7.09 × 10−01 | 1.73 × 1000 | 1.51 × 1000 |
Human noncarcinogenic toxicity | kg 1,4-DCB | 1.50 × 1000 | 5.46 × 1000 | 8.71 × 1000 | 9.69 × 1000 | 8.31 × 1000 | 1.75 × 1001 | 1.65 × 1001 |
Land use | M2a crop eq | 2.88 × 10−02 | 9.82 × 10−02 | 1.56 × 10−01 | 1.84 × 10−01 | 1.71 × 10−01 | 2.80 × 10−01 | 3.28 × 10−01 |
Mineral resource scarcity | kg Cu eq | 8.39 × 10−03 | 3.40 × 10−02 | 3.49 × 10−02 | 4.16 × 10−02 | 3.09 × 10−02 | 1.23 × 10−01 | 5.89 × 10−02 |
Fossil resource scarcity | kg oil eq | 3.42 × 10−01 | 1.17 × 1000 | 1.77 × 1000 | 2.15 × 1000 | 1.92 × 1000 | 3.08 × 1000 | 3.61 × 1000 |
Water consumption | m3 | 1.23 × 10−02 | 3.62 × 10−02 | 5.10 × 10−02 | 5.93 × 10−02 | 4.95 × 10−02 | 1.34 × 10−01 | 2.53 × 10−01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.-T.; Xing, H.-W.; Cheng, X.-W.; Zhang, Z.-H.; Wang, Q.; Zhou, J.-Z.; He, Y.-Y.; Li, W.-J. Two-Dimensional Nanostructured Ti3C2Tx MXene for Ceramic Materials: Preparation and Applications. Nanomaterials 2025, 15, 204. https://doi.org/10.3390/nano15030204
Jia X-T, Xing H-W, Cheng X-W, Zhang Z-H, Wang Q, Zhou J-Z, He Y-Y, Li W-J. Two-Dimensional Nanostructured Ti3C2Tx MXene for Ceramic Materials: Preparation and Applications. Nanomaterials. 2025; 15(3):204. https://doi.org/10.3390/nano15030204
Chicago/Turabian StyleJia, Xiao-Tong, Hong-Wei Xing, Xing-Wang Cheng, Zhao-Hui Zhang, Qiang Wang, Jin-Zhao Zhou, Yang-Yu He, and Wen-Jun Li. 2025. "Two-Dimensional Nanostructured Ti3C2Tx MXene for Ceramic Materials: Preparation and Applications" Nanomaterials 15, no. 3: 204. https://doi.org/10.3390/nano15030204
APA StyleJia, X.-T., Xing, H.-W., Cheng, X.-W., Zhang, Z.-H., Wang, Q., Zhou, J.-Z., He, Y.-Y., & Li, W.-J. (2025). Two-Dimensional Nanostructured Ti3C2Tx MXene for Ceramic Materials: Preparation and Applications. Nanomaterials, 15(3), 204. https://doi.org/10.3390/nano15030204