A Dual-Functional Bi3TiNbO9/Bi2MoO6 Heterojunction for Simultaneous Environmental Remediation and CO2 Photoreduction
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of Photocatalysts
2.2. Characterization
2.3. Photocatalytic Activity Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.M.; Guan, X.J.; Shen, S.H. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ. Chem. Lett. 2022, 20, 3505–3523. [Google Scholar] [CrossRef]
- Nie, C.L.; Wang, X.H.; Lu, P.; Zhu, Y.K.; Li, X.; Tang, H. Advancements in S-scheme heterojunction materials for photocatalytic environmental remediation. J. Mater. Sci. Technol. 2024, 169, 182–198. [Google Scholar] [CrossRef]
- Hailili, R.; Wang, Z.Q.; Xu, M.Y.; Wang, Y.H.; Gong, X.Q.; Xu, T.; Wang, C.Y. Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for visible light photodegradation of antibiotics. J. Mater. Chem. A 2017, 5, 21275–21290. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, H.; Sun, F.; Hao, Z.; Yue, B.; Wang, X.; Ma, Q.; Yu, W.; Dong, Y.; Dong, X. Exploring the formation of S-scheme heterojunctions in CuFe2O4/Bi2MoO6 porous cubes for photocatalytic removal of tetracycline. J. Environ. Chem. Eng. 2024, 12, 114255. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhu, C.Z.; Zuo, G.C.; Guo, Y.; Xiao, W.; Dai, Y.X.; Kong, J.J.; Xu, X.M.; Zhou, Y.X.; Xie, A.M.; et al. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl. Catal. B 2020, 278, 119298. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, L.Q.; Wang, L.; Shi, X.; Wang, P.Q.; Bai, W.; Wong, P.K. g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B 2016, 194, 98–104. [Google Scholar] [CrossRef]
- Wu, X.F.; Kang, N.X.; Li, X.F.; Xu, Z.H.; Carabineiro, S.A.C.; Lv, K.L. 2D/2D layered BiOIO3/g-C3N4 S-scheme heterojunction for photocatalytic NO oxidation. J. Mater. Sci. Technol. 2024, 196, 40–49. [Google Scholar] [CrossRef]
- Misra, C.; Ruehl, C.; Collins, J.; Chernich, D.; Herner, J. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC, respectively. Environ. Sci. Technol. 2017, 51, 6981–6989. [Google Scholar] [CrossRef]
- Kim, C.H.; Qi, G.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 2010, 327, 1624–1627. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Zhang, Y.; Wang, C.; Shen, L. Polar materials for photocatalytic applications: A critical review. Interdiscip. Mater. 2024, 3, 530–564. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Hu, J.; Long, X.; Zou, J.; Yu, J.G.; Jiao, F.P. A critical review on black phosphorus-based photocatalytic CO2 reduction application. Small 2021, 17, 2102155. [Google Scholar] [CrossRef]
- Lu, Y.F.; Chen, M.J.; Jiang, L.; Cao, J.J.; Li, H.W.; Lee, S.C.; Huang, Y. Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: A review. Environ. Chem. Lett. 2022, 20, 3905–3925. [Google Scholar] [CrossRef]
- Hailili, R.; Ji, H.W.; Wang, K.W.; Dong, X.A.; Chen, C.C.; Sheng, H.; Bahnemann, D.W.; Zhao, J.C. ZnO with controllable oxygen vacancies for photocatalytic nitrogen oxide removal. ACS Catal. 2022, 12, 10004–10017. [Google Scholar] [CrossRef]
- Panthi, G.; Park, M. Approaches for enhancing the photocatalytic activities of barium titanate: A review. J. Energy Chem. 2022, 73, 160–188. [Google Scholar] [CrossRef]
- Wang, M.Y.; Yu, H.; Yu, K. Advances in bismuth-based non-centrosymmetric materials as polarization-enhanced photocatalysts for environmental remediation and energy conversion. Chem. Eng. J. 2023, 470, 144100. [Google Scholar] [CrossRef]
- Tian, N.; Hu, C.; Wang, J.J.; Zhang, Y.H.; Ma, T.Y.; Huang, H.W. Layered bismuth-based photocatalysts. Coord. Chem. Rev. 2022, 463, 214515. [Google Scholar] [CrossRef]
- Teng, Y.; Ning, L.L.; Tan, C.W.; Zhao, J.; Xiong, Y.W.; Zou, H.L.; Ye, Z.M.; Zhang, X.M.; Kuang, D.B.; Li, Y.J. Bi3TiNbO9/Bi2S3 heterojunction for efficient photosynthesis of H2O2 in pure water. Adv. Funct. Mater. 2025, 35, 2414892. [Google Scholar] [CrossRef]
- Jiang, L.; Ni, S.; Liu, G.; Xu, X.X. Photocatalytic hydrogen production over Aurivillius compound Bi3TiNbO9 and its modifications by Cr/Nb co-doping. App. Catal. B Environ. 2017, 217, 342–352. [Google Scholar] [CrossRef]
- Huang, J.; Kang, Y.Y.; Liu, J.N.; Yao, T.T.; Qiu, J.H.; Du, P.P.; Huang, B.H.; Hu, W.J.; Liang, Y.; Xie, T.F.; et al. Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting. Nat. Commun. 2023, 14, 7948. [Google Scholar] [CrossRef]
- Teng, Y.; Zhao, J.; Ye, Z.M.; Tan, C.W.; Ning, L.L.; Zhou, Y.Y.; Wu, Z.L.; Kuang, D.B.; Li, Y.J. Covalent organic framework encapsulating layered oxide perovskite for efficient photosynthesis of H2O2. Adv. Energy Mater. 2025, 15, 2404029. [Google Scholar] [CrossRef]
- Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy 2019, 61, 54–59. [Google Scholar] [CrossRef]
- Zhao, D.W.; Xuan, Y.M.; Zhang, K.; Liu, X.L. Highly selective production of ethanol over hierarchical Bi@Bi2MoO6 composite via bicarbonate-assisted photocatalytic CO2 reduction. ChemSusChem 2021, 14, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Ng, Y.H.; Wen, X.M.; Chung, H.Y.; Wong, R.J.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644. [Google Scholar] [CrossRef]
- Li, N.B.; Yang, P.X.; Xiao, Y.Y.; Liu, J.Y.; Zhao, R. Photoelectrocatalytic ammonia synthesis through a Bi2MoO6@CuO/CF composite photocatalyst. J. Alloys Compd. 2024, 1006, 176343. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, C.C.; Liu, Y.P.; Cai, M.J.; Wang, Y.N.; Zhang, H.Q.; Guo, Y.; Zhao, W.; Wang, Z.H.; Chen, X.B. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 429, 132519. [Google Scholar] [CrossRef]
- Li, N.; Gao, H.; Wang, X.; Zhao, S.J.; Lv, D.; Yang, G.Q.; Gao, X.Y.; Fan, H.K.; Gao, Y.Q.; Ge, L. Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance. Chin. J. Catal. 2020, 41, 426–434. [Google Scholar] [CrossRef]
- Ma, D.; Wu, J.; Gao, M.C.; Xin, Y.J.; Chai, C. Enhanced debromination and degradation of 2,4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem. Eng. J. 2017, 316, 461–470. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, Q.L.; Miao, Y.; Chen, X.Q.; Zhang, X.Y.; Shi, J.R.; Liu, F.; Wang, X.Q.; Li, Z.H.; Yang, Y.X.; et al. A 0D-2D heterojunction bismuth molybdate-anchored multifunctional hydrogel for highly efficient eradication of drug-resistant bacteria. ACS Nano 2023, 17, 15568–15589. [Google Scholar] [CrossRef]
- Liu, X.T.; Gu, S.N.; Zhao, Y.J.; Zhou, G.W.; Li, W.J. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 2020, 56, 45–68. [Google Scholar] [CrossRef]
- Guo, H.T.; Jiang, J.H.; Liang, J.M.; Wen, C.Y.; Xi, X.G.; Dong, P.Y. Achieving remarkable charge transfer through the depolarization field in the 2D/2D S-scheme heterojunction consisted of C3N5 nanosheets and layered ferroelectric Bi3TiNbO9 for photocatalytic hydrogen production. Chem. Eng. J. 2025, 504, 158649. [Google Scholar] [CrossRef]
- Hailili, R.; Wang, C.Y.; Lichtfouse, E. Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity. Appl. Catal. B 2018, 232, 531–543. [Google Scholar] [CrossRef]
- Hailili, R.; Gan, Y.M. Tailoring multiscale interfaces in heterojunction photocatalysis for NOx removal. ACS Appl. Mater. Interfaces 2025, 17, 39809–39844. [Google Scholar] [CrossRef]
- Ma, D.C.; Pan, S.; Tan, M.J.; He, G.W.; Zhao, J.Z. Different shape-controlled synthesis and catalytic property studies on bismuth nanomaterials. Mater. Chem. Phys. 2023, 310, 128454. [Google Scholar] [CrossRef]
- Cui, Y.F.; Guo, P.; Dang, P.P.; Sun, H.H.; Jing, P.P.; Tao, X.M. Improved photodegradation efficiency in Fe3+-doped Bi3TiNbO9 nanosheets through oxygen vacancies introduction and ferroelectric polarization enhancement simultaneously. Appl. Surf. Sci. 2022, 575, 151749. [Google Scholar] [CrossRef]
- Huang, J.; Kang, Y.Y.; Liu, J.A.; Chen, R.T.; Xie, T.F.; Liu, Z.R.; Xu, X.X.; Tian, H.; Yin, L.C.; Fan, F.T.; et al. Selective exposure of robust perovskite layer of Aurivillius-type compounds for stable photocatalytic overall water splitting. Adv. Sci. 2023, 10, 2302206. [Google Scholar] [CrossRef]
- Zhang, L.W.; Xu, T.G.; Zhao, X.; Zhu, Y.F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B 2010, 98, 138–146. [Google Scholar] [CrossRef]
- Das, R.; Das, K.; Ray, B.; Vinod, C.P.; Peter, S.C. Green transformation of CO2 to ethanol using water and sunlight by the combined effect of naturally abundant red phosphorus and Bi2MoO6. Energy Environ. Sci. 2022, 15, 1967–1976. [Google Scholar] [CrossRef]
- Cui, Y.F.; Yuan, P.P.; Wang, F.H.; Liu, W.; Wang, Z.; Tao, X.M.; Briscoe, J.; Pu, Y.P. Construction and mechanistic insights of 2D/2D Z-scheme Bi3TiNbO9/BiOBr heterojunction for enhanced photocatalytic organic pollutant removal. J. Alloys Compd. 2024, 980, 173671. [Google Scholar] [CrossRef]
- Hailili, R.; Lu, X.; Chen, Y.C. Defect engineering and size-tunable Bi0 decoration in Bi0/OVs-BiOCl: A dual strategy for enhanced visible-light photocatalysis. J. Environ. Chem. Eng. 2025, 13, 117579. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Alsunbuli, M.M.; Hamood, S.A.; hamzah Najm, H.; Taher, A.G. Design and construction of a robust ternary Bi5O7I/Cd0.5Zn0.5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: Environmental factors and degradation intermediates. Environ. Res. 2023, 234, 116554. [Google Scholar] [CrossRef]
- Luo, J.; Ning, X.M.; Zhan, L.; Zhou, X.S. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Shao, L.H.; Li, S.J.; Yang, W.W.; Yang, Z.F.; Xia, X.N.; Liu, Y.T. Crystallinity-dependent photodegradation of metallic Bi in situ grown on perovskite Bi3TiNbO9 nanosheets toward antibiotic. Chemosphere 2021, 285, 131554. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Fu, M.; Kang, H.; Lu, P.; Bai, J.; Yang, Y.; Gao, S. A BiOIO3/BiOBr n-n heterojunction was constructed to enhance the photocatalytic degradation of TC. Opt. Mater. 2023, 138, 113690. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, P.; Duan, F.; Sheng, J.; Lu, S.; Zhu, H.; Du, M.; Chen, M. Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. J. Alloys Compd. 2020, 834, 155158. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Song, J.; Lu, X.; Tian, Z.; Liu, Y.; Zhang, J. Construction of hierarchical FeIn2S4/BiOBr S-scheme heterojunction with enhanced visible-light photocatalytic performance for antibiotics degradation. Adv. Powder Technol. 2022, 33, 103859. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, C.; Zhong, J.; Huang, S.; Li, M.; Zhang, S.; Yang, H.; Ma, L. In-situ preparation of S-scheme BiOI/BiVO4 heterojunctions with enhanced photocatalytic performance. Solid State Sci. 2022, 129, 106908. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, X.; Chen, X.; Jiang, C.; Cai, L.; Guo, T. Ag2S/TiO2 Z-scheme heterojunction under magnetic field: Enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 2025, 1010, 177752. [Google Scholar] [CrossRef]
- Yan, Q.; Guo, Z.; Wang, P.; Cheng, Y.; Wu, C.; Zuo, H. Facile construction of 0D/2D In2O3/Bi2WO6 Z-scheme heterojunction with enhanced photocatalytic activity for antibiotics removal. J. Alloys Compd. 2023, 937, 168362. [Google Scholar] [CrossRef]
- Cheng, C.; Shi, Q.; Zhu, W.; Zhang, Y.; Su, W.; Lu, Z.; Yan, J.; Chen, K.; Wang, Q.; Li, J. Microwave-assisted synthesis of MoS2/BiVO4 heterojunction for photocatalytic degradation of tetracycline hydrochloride. Nanomaterials 2023, 13, 1522. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, K.; Fan, L.; Jiang, Y.; Yue, Y.; Jia, H. B-Doped g-C3N4/Black TiO2 Z-Scheme nanocomposites for enhanced visible-light-driven photocatalytic performance. Nanomaterials 2023, 13, 518. [Google Scholar] [CrossRef]
- Yu, H.J.; Chen, F.; Li, X.W.; Huang, H.W.; Zhang, Q.Y.; Su, S.Q.; Wang, K.Y.; Mao, E.Y.; Mei, B.; Mul, G.; et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Hailili, R.; Xin, Y.; Zhou, Y.T.; Huang, Y.; Pang, X.Z.; Zhang, K.; Robertson, P.K.J.; Bahnemann, D.W.; Wang, C.Y. Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: Co-effect of plasmonic Bi and oxygen vacancies. App. Catal. B Environ. 2022, 319, 121888. [Google Scholar] [CrossRef]












| Sample | a | b | c |
|---|---|---|---|
| BTNO | 5.41628 Å | 5.42794 Å | 25.16998 Å |
| BMO | 5.44178 Å | 5.43465Å | 16.51194 Å |
| BTNO/BMO | 5.40203 Å | 5.43261 Å | 25.28395 Å |
| Photocatalyst | Light Source | Catalyst Dosage | Pollutants (Concentration) | Degradation (%) | Ref. |
|---|---|---|---|---|---|
| BiOIO3/BiOBr | 12 W LED lamp | 80 mg | TC (20 mg/L) | 74.91% in 80 min | [43] |
| CuFe2O4/Bi2MoO6 | 300 W Xe lamp | 30 mg | TC (50 mg/L) | 94.02% in 30 min | [4] |
| Bi2S3/BiFeO3 | 300 W Xe lamp, λ > 420 nm | 20 mg | TC (20 mg/L) | 74.00% in 120 min | [44] |
| FeIn2S4/BiOBr | 500 W Xe lamp, λ > 400 nm | 30 mg | CIP (5 mg/L) | 94.10% in 120 min | [45] |
| TC (15 mg/L) | 89.20% in 100 min | ||||
| BiOI/BiVO4 | 500 W Xe lamp, λ > 420 nm | 50 mg | RhB (10 mg/L) | ~100.00% in 4 h | [46] |
| TC (20 mg/L) | ~65.00% in 20 min | ||||
| Ag2S/TiO2 | 100 W Xe lamp | 200 mg | TC (10 mg/L) | 72.3% in 80 min | [47] |
| In2O3/Bi2WO6 | 300 W Xe lamp, λ > 400 nm | 20 mg | TC (20 mg/L) | 86.00% in 70 min | [48] |
| MoS2/BiVO4 | 300 W Xe lamp, λ > 420 nm | 50 mg | TC (5 mg/L) | 93.70% in 90 min | [49] |
| g-C3N4/TiO2 | Xe arc lamp, λ > 420 nm | 20 mg | TC (10 mg/L) | 65.00% in 30 min | [50] |
| Bi3TiNbO9/Bi2MoO6 | 300 W Xe lamp, λ > 420 nm | 10 mg | TC (10 mg/L) | 65.10% in 120 min | This work |
| 20 mg | TC (10−5 mol/L) | 90.20% in 120 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hailili, R.; Gan, Y. A Dual-Functional Bi3TiNbO9/Bi2MoO6 Heterojunction for Simultaneous Environmental Remediation and CO2 Photoreduction. Nanomaterials 2025, 15, 1903. https://doi.org/10.3390/nano15241903
Hailili R, Gan Y. A Dual-Functional Bi3TiNbO9/Bi2MoO6 Heterojunction for Simultaneous Environmental Remediation and CO2 Photoreduction. Nanomaterials. 2025; 15(24):1903. https://doi.org/10.3390/nano15241903
Chicago/Turabian StyleHailili, Reshalaiti, and Yiming Gan. 2025. "A Dual-Functional Bi3TiNbO9/Bi2MoO6 Heterojunction for Simultaneous Environmental Remediation and CO2 Photoreduction" Nanomaterials 15, no. 24: 1903. https://doi.org/10.3390/nano15241903
APA StyleHailili, R., & Gan, Y. (2025). A Dual-Functional Bi3TiNbO9/Bi2MoO6 Heterojunction for Simultaneous Environmental Remediation and CO2 Photoreduction. Nanomaterials, 15(24), 1903. https://doi.org/10.3390/nano15241903

