Surface Polyphenol Coordination Drives Efficient Foliar Deposition of Pesticide Nanocarriers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adhesive and Photostable Nanocapsules
2.3. Morphological and Structural Characterizations of the Nanocapsules
2.4. Performance Evaluation of the Nanocapsules
2.4.1. In Vitro Release
2.4.2. Retention Test on Live Foliage
2.4.3. Stability Test
2.5. Bioassays
3. Results and Discussion
3.1. Characterization of Abam@PLA-TA Nanocapsules
3.2. Sustained Release Behavior of Abam@PLA-TA Nanocapsules
3.3. Stability of Abam@PLA-TA Nanocapsules
3.4. Foliar Affinity of Abam@PLA-TA Nanocapsules
3.5. Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massinon, M.; Cock, N.; Forster, W.A.; Nairn, J.J.; McCue, S.W.; Zebkiewicz, J.A.; Lebeau, F. Spray droplet impaction outcomes for different plant species and spray formulation. Crop Prot. 2017, 99, 65–75. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Aytac, Z.; Zuverza-Mena, N.; Zhao, Z.; Hu, X.; Ng, K.W.; White, J.C.; Demokritou, P. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core-shell nanostructures. ACS Nano 2022, 16, 6034–6048. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, H.X.; Wang, Y.; Sun, C.J.; Cui, B.; Zeng, Z.H. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Guzman, L.M.; Elle, E.; Morandin, L.A.; Cobb, N.S.; Chesshire, P.R.; McCabe, L.M.; Hughes, A.; Orr, M.; M’Gonigle, L.K. Impact of pesticide use on wild bee distributions across the United States. Nat. Sustain. 2024, 7, 1324–1334. [Google Scholar] [CrossRef]
- Skovgaard, M.; Encinas, S.R.; Jensen, O.C.; Andersen, J.H.; Condarco, G.; Jors, E. Pesticide residues in commercial lettuce, onion and potato samples from Bolivia-a threat to public health? Environ. Health Insights 2017, 11, 1178630217704194. [Google Scholar] [CrossRef]
- Dosemeci, M.; Alavanja, M.C.R.; Rowland, A.S.; Mage, D.; Zahm, S.H.; Rothman, N.; Lubin, J.H.; Hoppin, J.A.; Sandler, D.P.; Blair, A. A quantitative approach for estimating exposure to pesticides in the agricultural health study. Ann. Occup. Hyg. 2002, 46, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Dowling, K.C.; Seiber, J.N. Importance of respiratory exposure to pesticides among agricultural populations. Int. J. Toxicol. 2002, 21, 371–381. [Google Scholar] [CrossRef]
- He, X.K. Improving severe draggling actuality of plant protection machinery and its application techniques. Chin. Soc. Agric. Eng. 2004, 20, 7–12. [Google Scholar]
- Bianchi, G.; Lupotto, E.; Russo, S. Composition of epicuticular wax of rice, oryza sativa. Cell. Mol. Life Sci. 1979, 35, 1417–1540. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 67–677. [Google Scholar] [CrossRef]
- Burton, Z.; Bhushan, B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 2006, 106, 709–719. [Google Scholar] [CrossRef]
- Richard, D.; Clanet, C.; Quere, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, J.; Zhang, P.; Shi, G.; Li, Y.; Zhao, J.; Liu, Z.; Yang, J.; Du, F.; Fan, R. Wetting and adhesion behavior on apple tree leaf surface by adding different surfactants. Colloids Surf. B Biointerfaces 2020, 187, 110602. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Ning, L.; Ma, N.; Xu, P.; Hong, M.; Wang, F.; You, C. Development of lignin-coated natural polysaccharide-based nanopesticides for both high foliar adhesion and rapid release of pesticide molecules against bacteriostasis. Environ. Sci. Nano 2023, 10, 3197–3207. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Li, H.; Bai, Z.; Ma, C.; Bai, H.; Luo, D.; Li, Z.; Bai, L. Design of highly leaf-adhesive and anti-UV herbicide nanoformulation for enhanced herbicidal activity. J. Adv. Res. 2025, 76, 109–118. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Gao, D.; Cao, W.; Zou, X.; Xu, S.; Xiong, R.; Huang, C.; Ma, W. Bioinspired design and functionalization of pesticide nanocarriers: From synthesis strategies to foliar-targeted delivery mechanisms. J. Agric. Food Chem. 2025, 73, 25733–25755. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.X.; Liang, W.L.; Li, Z.S.; Cheng, J.L.; Du, Y.J.; Zhao, J.H. High foliar affinity cellulose for the preparation of efficient and safe fipronil formulation. J. Hazard. Mater. 2020, 384, 121408. [Google Scholar] [CrossRef]
- Tong, Y.J.; Shao, L.H.; Li, X.L.; Lu, J.Q.; Sun, H.L.; Xiang, S.; Zhang, Z.H.; Wu, Y.; Wu, X.M. Adhesive and Stimulus-Responsive Polydopamine-Coated Graphene Oxide System for Pesticide-Loss Control. J. Agric. Food Chem. 2018, 11, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; An, C.C.; Jiang, J.J.; Huang, B.N.; Li, N.J.; Sun, C.J.; Wang, C.; Zhan, S.S.; Li, X.Y.; Gao, F.; et al. Temperature-Dependent Nanogel for Pesticide Smart Delivery with Improved Foliar Dispersion and Bioactivity for Efficient Control of Multiple Pests. ACS Nano 2022, 12, 20622–20632. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.P.; Chen, H.Y.; Zhu, S.Q.; Zhao, S.J.; Huang, S.Q.; Cheng, D.M.; Xu, H.H.; Zhang, Z.X. Pectin-Coated Iron-Based Metal-Organic Framework Nanoparticles for Enhanced Foliar Adhesion and Targeted Delivery of Fungicides. ACS Nano 2024, 8, 6533–6549. [Google Scholar] [CrossRef]
- Arunachalam, A.; Perraki, M.; Knegt, B.; Macel, M.; Voigt, D.; Kamperman, M. Turning over a new leaf: Innovative pest control from a materials science perspective. Chem. Soc. Rev. 2025, 54, 6525–6552. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Hegde, V.; Kim, C.S.; Kurkuri, M.; Lee, K.-H. Engineered hybrid carriers with dual stimuli-responsiveness for targeted and sustained prochloraz delivery against gray mold. Appl. Mater. Today 2025, 47, 102912. [Google Scholar] [CrossRef]
- Hao, C.L.; Liu, Y.H.; Chen, X.M.; Li, J.; Zhang, M.; Zhao, Y.H.; Wang, Z.K. Bioinspired interfacial materials with enhanced drop mobility: From fundamentals to multifunctional applications. Small 2016, 14, 1825–1839. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Willis, J.; Martinis, D.; Hansen, B.; Laursen, H.; Sintes, J.R.; Kearns, P.; Gonzalez, M. Science policy considerations for responsible nanotechnology decisions. Nat. Nanotechnol. 2011, 6, 73–77. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 5849, 426–430. [Google Scholar] [CrossRef]
- Anderson, T.; Israelachvili, J. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Biophys. J. 2010, 3, 594. [Google Scholar] [CrossRef]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Shen, H.; Duan, C.T.; Guo, J.; Zhao, N.; Xu, J. Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. J. Mater. Chem. A 2015, 3, 16663–16669. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, P.F.; Yang, H.C.; Wan, L.S.; Xu, Z.K. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Appl. Surf. Sci. 2016, 360, 291–297. [Google Scholar] [CrossRef]
- Lim, M.Y.; Choi, Y.S.; Kim, J.; Kim, K.; Shin, H.; Kim, J.J.; Shin, D.M.; Lee, J.C. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J. Membr. Sci. 2017, 521, 1–9. [Google Scholar] [CrossRef]
- Zhang, S.H.; Jiang, Z.Y.; Wang, X.L.; Yang, C.; Shi, J.F. Facile method to prepare nanocapsules inspired by polyphenol chemistry for efficient enzyme immobilization. Appl. Mater. Interfaces 2015, 7, 19570–19578. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kozlovskaya, V.; Goins, A.; Gomez, J.; Saeed, M.; Kharlampieva, E. Biocompatible shaped particles from dried multilayer polymer capsules. Biomacromolecules 2013, 14, 3830–3841. [Google Scholar] [CrossRef] [PubMed]
- Payra, D.; Naito, M.; Fujii, Y.; Nagao, Y. Hydrophobized plant polyphenols: Self-assembly and promising antibacterial, adhesive, and anticorrosion coatings. Chem. Commun. 2016, 52, 312–315. [Google Scholar] [CrossRef]
- Rivero, S.; Garcia, M.A.; Pinotti, A. Heat treatment to modify the structural and physical properties of chitosan-based films. J. Agric. Food Chem. 2012, 60, 492–499. [Google Scholar] [CrossRef]
- Tong, S.S.; Zhao, S.J.; Zhou, W.H.; Li, R.G.; Jia, Q. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchim. Acta 2011, 174, 257–264. [Google Scholar] [CrossRef]
- Li, W.G.; Gong, X.J.; Li, X.; Zhang, D.Y.; Gong, H.N. Removal of Cr (VI) from low-temperature micro-polluted surface water by tannic acid immobilized powdered activated carbon. Bioresour. Technol. 2012, 113, 106–113. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.B.; Xu, X.B.; Luo, B.C.; Luo, J.S.; Wu, W.D.; Yi, Y.G.; Tang, Y.J. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surf. A 2011, 392, 131–136. [Google Scholar] [CrossRef]
- Huang, S.Y.; Li, X.; Jiao, Y.Q.; Shi, J.F. Fabrication of a superhydrophobic, fire-resistant, and mechanical robust sponge upon polyphenol chemistry for efficiently absorbing oils/organic solvents. Ind. Eng. Chem. Res. 2015, 54, 1842–1848. [Google Scholar] [CrossRef]
- Kozlovskaya, V.; Kharlampieva, E.; Drachuk, I.; Cheng, D.; Tsukruk, V.V. Responsive nanocapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter 2010, 15, 3596–3608. [Google Scholar] [CrossRef]
- Mahata, D.; Mandal, S.M.; Basak, A.; Nando, G.B. Self-assembled capsules of poly-N-glycidyl histidine ether–tannic acid for inhibition of biofilm formation in urinary catheters. RSC Adv. 2015, 5, 69215–69219. [Google Scholar] [CrossRef]
- Khokhar, S.; Apenten, R.K.O. Iron binding characteristics of phenolic compounds: Some tentative structure–activity relations. Food Chem. 2003, 81, 133–140. [Google Scholar] [CrossRef]
- Moran, J.F.; Klucas, R.V.; Grayer, R.J.; Abian, J.; Becana, M. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radic. Biol. Med. 1997, 22, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Takashi, M.; Kavon, R.Z.; Naoki, K.; Gary, W.A.; Haruyasu, Y.; Nobuto, K.; Yuko, H.S.; Jun, T.; Terrence, T. Tannic Acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates alzheimer-like pathology in transgenic mice. J. Biol. Chem. 2012, 287, 6912–6927. [Google Scholar]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Yang, L.W.; Han, L.L.; Ren, J.; Wei, H.L.; Jia, L.Y. Coating process and stability of metal-polyphenol film. Colloids Surf. A 2015, 484, 197–205. [Google Scholar] [CrossRef]
- Riyajan, S.A.; Sakdapipanich, J.T. Encapsulated neem extract containing azadiractin-a within hydrolyzed poly(vinyl acetate) for controlling its release and photodegradation stability. Chem. Eng. J. 2009, 152, 591–597. [Google Scholar] [CrossRef]
- Perez, M.F.; Cespedes, F.F.; Fernandez, I.D.; Pena, F.V.; Sanchez, M.V. Lignin and lignosulfonate-based formulations to protect pyrethrins against photodegradation and volatilization. Ind. Eng. Chem. Res. 2014, 53, 13557–13564. [Google Scholar] [CrossRef]
- Leitis, E.; Crosby, D.G. Photodecomposition of triflualin. J. Agric. Food Chem. 1974, 22, 842–848. [Google Scholar] [CrossRef]
- Memarizadeh, N.; Ghadamyari, M.; Adeli, M.; Talebi, K. Linear-dendritic copolymers/indoxacarb supramolecular systems: Biodegradable and efficient nano-pesticides. Environ. Sci. Process. Impacts 2014, 16, 2380–2389. [Google Scholar] [CrossRef]
- Jia, X.; Sheng, W.; Li, W.; Tong, Y.; Liu, Z.; Zhou, F. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl. Mater. Interfaces 2014, 6, 19552–19558. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, H.; Choi, J.; Kim, D.; Hong, D.; Park, J.H.; Yang, S.H.; Choi, I.S. Chemical sporulation and germination: Cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-Fe (III) complex. Nanoscale 2015, 45, 18918–18922. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.L.; Yao, J.W.; Liang, J.; Zeng, Z.H.; Cui, B.; Zhao, X.; Sun, C.J.; Wang, Y.; Liu, G.Q.; Cui, H.X. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 2017, 7, 11271–11280. [Google Scholar] [CrossRef]
- Yu, M.L.; Sun, C.J.; Xue, Y.M.; Liu, C.; Qiu, D.W.; Cui, B.; Zhang, Y.; Cui, H.X.; Zeng, Z.H. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention. RSC Adv. 2019, 9, 27096–27104. [Google Scholar] [CrossRef]
- Du, Y.; Qiu, W.Z.; Wu, Z.L.; Ren, P.F.; Zhang, Q.; Xu, Z.K. Water-triggered self-healing coatings of hydrogen-bonded complexes for high binding affinity and antioxidative property. Adv. Mater. Interfaces 2016, 3, 1600167. [Google Scholar] [CrossRef]
- Kim, K.; Shin, M.; Koh, M.Y.; Ryu, J.H.; Lee, M.S.; Hong, S.; Lee, H. TAPE: A medicl adhesive inspired by a ubiquitous compound in plants. Adv. Funct. Mater. 2015, 25, 2402–2410. [Google Scholar] [CrossRef]
- Guo, J.L.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J.J.; Yan, Y.; Peter, K.; Elverfeldt, D.; Hagemeyer, C.E.; et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Commun. 2013, 53, 5546–5551. [Google Scholar] [CrossRef]














| Content of TA (%) | Size (nm) | PDI | Drug Loading Rate (%) | Entrapment Efficiency (%) | |
|---|---|---|---|---|---|
| Abam@PLA | - | 451.8 ± 2.6 | 0.20 ± 0.03 | 46.5 ± 3.4 | 93.0 ± 0.1 |
| Abam@PLA-TA | 5.0 | 572.0 ± 4.4 | 0.30 ± 0.07 | 45.3 ± 3.0 | 90.6 ± 0.1 |
| Samples | N | Concentration (mg/L) | LC50 (95% CIs) (ppm) | Fit of Probit Line | |||
|---|---|---|---|---|---|---|---|
| Slope ± SE | x2 | df | p | ||||
| Abam@PLA | 600 | 1.5625–100 | 33.60 (26.78–44.01) | 1.74 ± 0.23 | 7.20 | 3 | 0.07 |
| Abam@PLA-TA | 600 | 3.1250–200 | 22.50 (18.99–26.54) | 1.74 ± 0.12 | 10.42 | 5 | 0.06 |
| EC | 600 | 3.1250–200 | 9.77 (5.03–14.76) | 1.81 ± 0.15 | 22.84 | 5 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Cui, B.; Cao, L.; Huang, Q.; Yao, J.; Zeng, Z. Surface Polyphenol Coordination Drives Efficient Foliar Deposition of Pesticide Nanocarriers. Nanomaterials 2025, 15, 1775. https://doi.org/10.3390/nano15231775
Yu M, Cui B, Cao L, Huang Q, Yao J, Zeng Z. Surface Polyphenol Coordination Drives Efficient Foliar Deposition of Pesticide Nanocarriers. Nanomaterials. 2025; 15(23):1775. https://doi.org/10.3390/nano15231775
Chicago/Turabian StyleYu, Manli, Bo Cui, Lidong Cao, Qiliang Huang, Junwei Yao, and Zhanghua Zeng. 2025. "Surface Polyphenol Coordination Drives Efficient Foliar Deposition of Pesticide Nanocarriers" Nanomaterials 15, no. 23: 1775. https://doi.org/10.3390/nano15231775
APA StyleYu, M., Cui, B., Cao, L., Huang, Q., Yao, J., & Zeng, Z. (2025). Surface Polyphenol Coordination Drives Efficient Foliar Deposition of Pesticide Nanocarriers. Nanomaterials, 15(23), 1775. https://doi.org/10.3390/nano15231775

