Applications of Nanomaterials in Biomedical Imaging and Cancer Therapy: 3rd Edition
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FONPs | Fluorescent Organic Nanoparticles |
| PDT | Photodynamic Therapy |
| ROS | Reactive Oxygen Species |
| AgNPs | Silver Nanoparticles |
| TNBC | Triple-Negative Breast Cancer |
| iRGD | Internalizing Arginine–Glycine–Aspartic Peptide |
| siRNA | Small Interfering RNA |
| RAFT | Reversible Addition–Fragmentation Chain Transfer |
| ZnO | Zinc Oxide |
| MRI | Magnetic Resonance Imaging |
| FLASH-RT | FLASH Radiotherapy |
| UHDR | Ultrahigh Dose Rate |
| Si-ODs | Silicon Quantum Dots |
References
- Siddique, S.; Chow, J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials 2020, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Chow, J.C.L. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 2022, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L. Special Issue: Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials 2022, 12, 726. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy II. Nanomaterials 2024, 14, 1627. [Google Scholar] [CrossRef] [PubMed]
- Chkair, R.; Couvez, J.; Brégier, F.; Diab-Assaf, M.; Sol, V.; Blanchard-Desce, M.; Liagre, B.; Chemin, G. Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer. Nanomaterials 2024, 14, 1557. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.M.; Mateo, B.; Patel, K.; Fahrenholtz, C.D.; Rohde, M.M.; Carpenter, R.; Singh, R.N. Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors. Nanomaterials 2024, 14, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Matsui, R.; Itagaki, N.; Takeuchi, Y.; Fukuda, H.; Tanaka, K.-I.; Hama, S. Development of Tumor Microenvironment-Responsive Nanoparticles with Enhanced Tissue Penetration. Nanomaterials 2025, 15, 1695. [Google Scholar] [CrossRef]
- Cakir, S.; Yildiz, U.; Yildirim, T.; Aydin, O. Chrysin-Loaded Micelles Regulate Cell Cycle and Induce Intrinsic and Extrinsic Apoptosis in Ovarian Cancer Cells. Nanomaterials 2025, 15, 1362. [Google Scholar] [CrossRef] [PubMed]
- Quispe Cohaila, A.B.; Fora Quispe, G.d.L.; Cáceda Quiroz, C.J.; Mamani Anccasi, R.; Mejía García, T.A.; Tamayo Calderón, R.M.; Gamarra Gómez, F.; Sacari Sacari, E.J. Biogenic ZnO Nanoparticles Synthesized by B. licheniformis: A Selective Cytotoxicity Against NG-108 Glioblastoma Cells. Nanomaterials 2025, 15, 1338. [Google Scholar] [CrossRef] [PubMed]
- Zimina, T.; Sitkov, N.; Brusina, K.; Fedorov, V.; Mikhailova, N.; Testov, D.; Gareev, K.; Samochernykh, K.; Combs, S.; Shevtsov, M. Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format. Nanomaterials 2024, 14, 2030. [Google Scholar] [CrossRef] [PubMed]
- Stawarska, A.; Bamburowicz-Klimkowska, M.; Szeszkowski, W.; Grudzinski, I.P. Dynamic Susceptibility Contrast Magnetic Resonance Imaging with Carbon-Encapsulated Iron Nanoparticles Navigated to Integrin Alfa V Beta 3 Receptors in Rat Glioma. Nanomaterials 2025, 15, 1277. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L.; Ruda, H.E. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024, 13, 835. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L. Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy. Nanomaterials 2025, 15, 117. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.D.; Chow, J.C.L. Reactive Oxygen Species Yield near Gold Nanoparticles Under Ultrahigh-Dose-Rate Electron Beams: A Monte Carlo Study. Nanomaterials 2025, 15, 1303. [Google Scholar] [CrossRef] [PubMed]
- Sarwat, S.; Stapleton, F.; Willcox, M.D.P.; O’Mara, P.B.; Roy, M. Hydrophobic Silicon Quantum Dots for Potential Imaging of Tear Film Lipid Layer. Nanomaterials 2025, 15, 552. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, J.C.L. Applications of Nanomaterials in Biomedical Imaging and Cancer Therapy: 3rd Edition. Nanomaterials 2025, 15, 1761. https://doi.org/10.3390/nano15231761
Chow JCL. Applications of Nanomaterials in Biomedical Imaging and Cancer Therapy: 3rd Edition. Nanomaterials. 2025; 15(23):1761. https://doi.org/10.3390/nano15231761
Chicago/Turabian StyleChow, James C. L. 2025. "Applications of Nanomaterials in Biomedical Imaging and Cancer Therapy: 3rd Edition" Nanomaterials 15, no. 23: 1761. https://doi.org/10.3390/nano15231761
APA StyleChow, J. C. L. (2025). Applications of Nanomaterials in Biomedical Imaging and Cancer Therapy: 3rd Edition. Nanomaterials, 15(23), 1761. https://doi.org/10.3390/nano15231761
