Advanced Nanoscale Materials and (Flexible) Devices
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Dong, M. Recent Advances in Two-Dimensional Nanomaterials for Sustainable Wearable Electronic Devices. J. Nanobiotechnol. 2024, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, Y.; Shi, G.; Zhuo, H.; Ali, M.; Jamróz, E.; Zhang, H.; Zhong, L.; Peng, X. Advanced Flexible Materials from Nanocellulose. Adv. Funct. Mater. 2023, 33, 2214245. [Google Scholar] [CrossRef]
- Gong, S.; Lu, Y.; Yin, J.; Levin, A.; Cheng, W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem. Rev. 2024, 124, 455–553. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Shen, G. Low-dimensional Nanostructures for Monolithic 3D-Integrated Flexible and Stretchable Electronics. Chem. Soc. Rev. 2024, 53, 1316–1353. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, H.; Wang, Y.; Fan, X.; Li, Z.; Zhang, X.; Liu, T. Highly Stretchable, Ultra-Soft, and Fast Self-Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors. Adv. Funct. Mater. 2022, 32, 2204366. [Google Scholar] [CrossRef]
- Chen, S.; Liang, L.; Zhang, Y.; Lin, K.; Yang, M.; Zhu, L.; Yang, X.; Zang, L.; Lu, B. PEDOT:PSS-Based Electronic Materials: Preparation, Performance Tuning, Processing, Applications, and Future Prospect. Prog. Polym. Sci. 2025, 166, 101990. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Fu, Y.; Wang, N.; Zhan, S.; Sheng, L.; Yang, H.; Liu, C. Healable and Transparent Ionic Conductive Hydrogels Based on PNATF as Multiple-Signal Sensors. ACS Appl. Polym. Mater. 2025, 7, 2529–2540. [Google Scholar] [CrossRef]
- Quan, Q.; Fan, C.; Pan, N.; Zhu, M.; Zhang, T.; Wang, Z.; Dong, Y.; Wu, Y.; Tang, M.; Zhou, X.; et al. Tough and Stretchable Phenolic-Reinforced Double Network Deep Eutectic Solvent gels for Multifunctional Sensors with Environmental Adaptability. Adv. Funct. Mater. 2023, 33, 2303381. [Google Scholar] [CrossRef]
- Roy, A.; Lin, M.; Zenkar, S.; Yin, J.; Jain, S.; Peppas, N.; Annabi, N. Advances in Conducting Nanocomposite Hydrogels for Wearable Biomonitoring. Chem. Soc. Rev. 2025, 54, 2595–2652. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Solomon, S.; Min, J.; Tu, J.; Guo, W.; Xu, C.; Song, Y.; Gao, W. All-printed Soft Human-machine Interface for Robotic Physicochemical Sensing. Sci. Robot. 2022, 7, eabn0495. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Cai, Z.; Geng, S.; Gan, Z.; Li, J.; Qiang, T.; Jiang, Y.; Cai, M. Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors. Nanomaterials 2025, 15, 1168. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.; Ghani, I.; Xin, M.; Khan, D.; Wang, J.; Lu, D.; Cao, T.; Chen, W.; Yang, X.; et al. Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells. Nanomaterials 2025, 15, 766. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Ghani, I.; Zhang, Y.; Gao, H.; Khan, D.; Yang, X.; Tang, Z. Solvent-Engineered PEACl Passivation: A Pathway to 24.27% Efficiency and Industrially Scalable Perovskite Solar Cells. Nanomaterials 2025, 15, 699. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, C.; Lv, S.; Dong, L.; Li, Z.; Xin, Q.; Song, A.; Zhang, J.; Li, Y. Enhancement in Performance and Reliability of Fully Transparent a-IGZO Top-Gate Thin-Film Transistors by a Two-Step Annealing Treatment. Nanomaterials 2025, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Danchuk, V.; Shatalov, M.; Zinigrad, M.; Kossenko, A.; Brider, T.; Le, L.; Johnson, D.; Strzhemechny, Y.M.; Musin, A. Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films. Nanomaterials 2024, 14, 708. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lu, Z.; Zhang, X. Nano-Structure Evolution and Mechanical Properties of AlxCoCrFeNi2.1 (x = 0, 0.3, 0.7, 1.0, 1.3) High-Entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Nanomaterials 2024, 14, 641. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Chen, X.; Wan, Q. Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems. Nanomaterials 2025, 15, 863. [Google Scholar] [CrossRef]
- Li, G.; Wang, Q.; Liu, G.; Yao, M.; Wang, Y.; Li, Y.; Lin, K.; Liu, X. Hydrogel Extinguishants. Nanomaterials 2024, 14, 1128. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.; Duan, C.; Lu, B. Advanced Nanoscale Materials and (Flexible) Devices. Nanomaterials 2025, 15, 1662. https://doi.org/10.3390/nano15211662
Lin K, Duan C, Lu B. Advanced Nanoscale Materials and (Flexible) Devices. Nanomaterials. 2025; 15(21):1662. https://doi.org/10.3390/nano15211662
Chicago/Turabian StyleLin, Kaiwen, Chunhui Duan, and Baoyang Lu. 2025. "Advanced Nanoscale Materials and (Flexible) Devices" Nanomaterials 15, no. 21: 1662. https://doi.org/10.3390/nano15211662
APA StyleLin, K., Duan, C., & Lu, B. (2025). Advanced Nanoscale Materials and (Flexible) Devices. Nanomaterials, 15(21), 1662. https://doi.org/10.3390/nano15211662

