Characterisation of Nanocellulose Types Using Complementary Techniques and Its Application to Detecting Bacterial Nanocellulose in Food Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanocellulose Test Materials
2.1.1. Description of Nanocellulose Test Materials
2.1.2. Sample Preparation of Nanocellulose Test Materials
Determination of Sample Recovery During Filtration of Nanocellulose Test Materials
2.1.3. Dynamic Light Scattering (DLS, Batch Mode) on Nanocellulose Test Materials
2.1.4. Asymmetric Flow Field Flow Fractionation (AF4) Coupled to MALS and DLS on Nanocellulose Test Materials
2.1.5. Transmission Electron Microscopy (TEM) on Nanocellulose Test Materials
2.2. Food (Related) Products Containing Bacterial Nanocellulose
2.2.1. Extraction and Clean-Up Procedures
- (a)
- Extraction and clean-up of nata de coco from pudding
- (b)
- Extraction and clean-up of nata de coco from Mogu Mogu drink
- (c)
- Extraction and clean-up of SCOBY starter culture
- (d)
- Extraction and clean-up of sediment in Kombucha tea
2.2.2. Pyrolysis GC-MS on Food Samples
2.2.3. Transmission Electron Microscopy (TEM) on Food Samples
2.2.4. X-Ray Diffraction (XRD) on Food Samples
3. Results and Discussion
3.1. Nanocellulose Test Materials
3.1.1. Optimisation of the Sonication Conditions During the Sample Preparation
3.1.2. Dynamic Light Scattering (DLS—Batch Mode)
3.1.3. Asymmetric Flow Field Flow Fractionation Coupled to MALS and DLS
3.1.4. Transmission Electron Microscopy (TEM)
3.2. Bacterial Nanocellulose Extracted from Food Products
3.2.1. Pyrolysis GC-MS of Cellulose Extracted from Nata de Coco Containing Food Samples
3.2.2. Transmission Electron Microscopy of Cellulose Extracted from Nata de Coco-Containing Food Samples, from SCOBY and from the Kombucha Tea Residue
3.2.3. Determination of Crystallinity Index of Food Samples with X-Ray Diffraction (XRD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2020, 10, 65. [Google Scholar] [CrossRef]
- Pennells, J.; Godwin, I.D.; Amiralian, N.; Martin, D.J. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 2020, 27, 575–593. [Google Scholar] [CrossRef]
- Randhawa, A.; Dutta, S.D.; Ganguly, K.; Patil, T.V.; Patel, D.K.; Lim, K.-T. A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. Appl. Sci. 2022, 12, 7090. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Moses, J.A.; Anandharamakrishnan, C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll. 2022, 127, 107484. [Google Scholar] [CrossRef]
- Qin, Z.; Ng, W.; Ede, J.; Shatkin, J.A.; Feng, J.; Udo, T.; Kong, F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70049. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam. Off. J. Eur. Union 2015, L327/1. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 9 October 2025).
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, L354/16, 16. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/oj/eng (accessed on 9 October 2025).
- Vincentini, O.; Blier, A.-L.; Bogni, A.; Brun, M.; Cecchetti, S.; De Battistis, F.; Denis, S.; Etienne-Mesmin, L.; Ferraris, F.; Fumagalli, F.S.; et al. EFSA Project on the use of New Approach Methodologies (NAMs) for the hazard assessment of nanofibres. Lot 1, nanocellulose oral exposure: Gastrointestinal digestion, nanofibres uptake and local effects. EFSA Support. Publ. 2023, 20, 8258E. [Google Scholar] [CrossRef]
- Taurozzi, J.S.; Hackley, V.A.; Wiesner, M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment issues and recommendations. Nanotoxicology 2011, 5, 711–729. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Hackley, V.A. Separation and characterization of cellulose nanocrystals by multi-detector asymmetrical-flow field-flow fractionation. Analyst 2018, 143, 731–740. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 21362; Nanotechnologies—Analysis of Nano-Objects Using Asymmetrical-Flow and Centrifugal Field-Flow Fractionation. ISO: Geneva, Switzerland, 2018.
- Srithammaraj, K.; Than-ardna, B.; Sain, M.M.; Manuspiya, H. A new design of colorimetric films using bacterial cellulose nanocrystals derived from nata de coco for sensing volatile organic compounds. Int. J. Biol. Macromol. 2024, 275, 133248. [Google Scholar] [CrossRef]
- Nirmal, N.; Pillay, M.N.; Mariola, M.; Petruccione, F.; van Zyl, W.E. Formation of dialysis-free Kombucha-based bacterial nanocellulose embedded in a polypyrrole/PVA composite for bulk conductivity measurements. RSC Adv. 2020, 10, 27585–27597. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Heo, J.; Priyajanani, J.; Kim, S.H.; Khatun, M.R.; Nagarajan, R.; Noh, I. Simultaneous processing of both handheld biomixing and biowriting of kombucha cultured pre-crosslinked nanocellulose bioink for regeneration of irregular and multi-layered tissue defects. Int. J. Biol. Macromol. 2024, 282, 136966. [Google Scholar] [CrossRef]
- Artusio, F.; Fumagalli, F.; Valsesia, A.; Ceccone, G.; Pisano, R. Role of Self-Assembled Surface Functionalization on Nucleation Kinetics and Oriented Crystallization of a Small-Molecule Drug: Batch and Thin-Film Growth of Aspirin as a Case Study. ACS Appl. Mater. Interfaces 2021, 13, 15847–15856. [Google Scholar] [CrossRef]
- Harrington, G.F.; Santiso, J. Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceramics 2021, 47, 141–163. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Mech, A.; Riego Sintes, J.; Gilliland, D.; González, M.; Kearns, P.; Moss, K.; Visser, M.; Groenewold, M.; et al. Physico-chemical properties of manufactured nanomaterials—Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul. Toxicol. Pharmacol. 2018, 92, 8–28. [Google Scholar] [CrossRef] [PubMed]
- ISO 22412:2017; Particle Size Analysis Dynamic Light Scattering (DLS). ISO: Geneva, Switzerland, 2017.
- Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution—A perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 2018, 19, 732–745. [Google Scholar] [CrossRef]
- Eskelin, K.; Poranen, M.M.; Oksanen, H.M. Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications. Microorganisms 2019, 7, 555. [Google Scholar] [CrossRef] [PubMed]
- Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2008, 9, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, L.K.E.A.; Rikken, R.S.M.; Christianen, P.C.M.; van Hest, J.C.M.; Wilson, D.A. Shape characterization of polymersome morphologies via light scattering techniques. Polymer 2016, 107, 445–449. [Google Scholar] [CrossRef]
- Bruce, B.; Ph, B.W. What Is Particle Size ? ©. Brookhaven Instrum. 2010, 1–4. Available online: https://www.brookhaveninstruments.com/wp-content/uploads/2019/11/what-is-particle-size-brookhaven-instruments.pdf (accessed on 9 October 2025).
- Reid, M.; Villalobos, M.; Cranston, E. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir 2017, 33, 1583–1598. [Google Scholar] [CrossRef]
- Estrada Leon, A.; Pala, M.; Heeres, H.J.; Prins, W.; Ronsse, F. Micro-pyrolysis of various lignocellulosic biomasses in molten chloride salts. J. Anal. Appl. Pyrolysis 2022, 168, 105739. [Google Scholar] [CrossRef]
- Hu, B.; Cheng, A.; Li, Y.; Huang, Y.; Liu, J.; Zhang, B.; Li, K.; Zhao, L.; Wang, T.; Lu, Q. A sustainable strategy for the production of 1,4:3,6-dianhydro-α-d-glucopyranose through oxalic acid-assisted fast pyrolysis of cellulose. Chem. Eng. J. 2022, 436, 135200. [Google Scholar] [CrossRef]
- van Putten, R.-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. [Google Scholar] [CrossRef]
- Sanders, E.B.; Goldsmith, A.I.; Seeman, J.I. A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis 2003, 66, 29–50. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Wang, M. Impacts of selected dietary polyphenols on caramelization in model systems. Food Chem. 2013, 141, 3451–3458. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ramírez, C.; Cañas-Gutiérrez, A.; Castro, C.; Zuluaga, R.; Gañán, P. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydr. Polym. 2020, 240, 116341. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Bergottini, V.M.; Bernhardt, D. Bacterial cellulose aerogel enriched in nanofibers obtained from Kombucha SCOBY byproduct. Mater. Today Commun. 2023, 35, 105975. [Google Scholar] [CrossRef]
- Martínez, E.; Posada, L.; Botero, J.C.; Rios-Arango, J.A.; Zapata-Benabithe, Z.; López, S.; Molina-Ramírez, C.; Osorio, M.A.; Castro, C.I. Nata de fique: A cost-effective alternative for the large-scale production of bacterial nanocellulose. Ind. Crops Prod. 2023, 192, 116015. [Google Scholar] [CrossRef]
Material ID | Test Sample Material Identification Code | Type of Nanocellulose | Provider, Product Code, and Manufacturing Process (Where Available) | Concentration of Nanocellulose [%, w/w] |
---|---|---|---|---|
1 | CNC1 | Cellulose nanocrystals | University of Maine Process Developer Center (PDC) Derived from wood pulp (eucalyptus) using sulfuric acid. | 10.6% (106 mg mL−1) |
2 | CNC2 | Cellulose nanocrystals | CelluForce Product Code: NCV100-NAL90 Derived from wood pulp using sulfuric acid. | 6% (60 mg mL−1) |
6 | CNC3 | Cellulose nanocrystals | Nanografi Product Code: NG01NC0102 Derived from pine wood using sulfuric acid. | 6% (60 mg mL−1) |
4 | NFC1 | TEMPO-oxidized FPL 1 Cellulose Nanofibrils | University of Maine Process Developer Center (PDC) TOCN Carboxylation of pulp nanofibril surface using the catalyst TEMPO. | 1% (10 mg mL−1) |
5 | NFC2 | Cellulose nanofibers | University of Maine Process Developer Center (PDC) St.Felician pulp from Domtar’s mill in Canada. This facility produces market pulp used in various paper products. Mechanical refiners are then used to process further. | 3% (30 mg mL−1) |
7 | NFC3 | Cellulose nanofibers | Sappi Valida S231C Derived from wood pulp. The cellulose fibres are mechanically processed to create a highly fibrillated structure. | 3% 30 mg mL−1 |
3 | BNC1 | Bacterial nanocellulose | Material donated by a Portuguese research centre. | 1.04% (10.4 mg mL−1) |
8 | BNC2 | Bacterial nanocellulose | Cass Materials Pty Ltd., Perth, Australia Bacterial nanocellulose dry sheets (Nata de coco) from Dr. Gary Cass (founder/CEO of Cass Materials Pty Ltd., Perth, Australia), Product Code: BNC-01-AU. | 0.5% (5 mg mL−1) |
Parameter | Setting |
---|---|
Dispersant | Aqueous sodium chloride solution (5 mM) |
Dispersant refractive index | 1.330 @ 20 °C The correct refractive index for the selected measurement temperature was automatically set/adjusted by the software |
Evaluation algorithm for distribution analysis | General Purpose |
Measurement temperature | The instrument is capable of thermal regulation. The temperature in the laboratory was measured before each measurement and set accordingly in the software. This allowed optimising the equilibration time. Set temperatures ranged from 20 to 23 °C. |
Temperature equilibration time | 180 s |
Refractive index | Not set, since interested only in intensity-based size distribution |
Absorption |
Sample ID | Product | Declared Ingredients |
---|---|---|
A | Mogu Mogu Drink | Water, coconut jelly, sugar, fructose, E330 (citric acid), E327 (calcium lactate), aroma, E211 (sodium benzoate), E418 (gellan gum), E129 (Allura red AC) |
B | Pudding Nata de Coco | Water, nata de coco, sugar, fruit juice, skimmed milk powder, seaweed extract, citric acid, aroma, colorants E129 and E102 |
C | Kombucha SCOBY Starter Kit | SCOBY (bacteria and yeast), tea (residues), sugar |
D | Kombucha Green Tea | Karma Kombucha (filtered water, blond cane sugar, green tea, kombucha culture), selected live culture, and carbon dioxide resulting from fermentation. Contains traces of alcohol (<1.2%). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geiss, O.; Bianchi, I.; Blazevic, I.; Bucher, G.; El-Hadri, H.; Fumagalli, F.; Ponti, J.; Verra, C.; Barrero-Moreno, J. Characterisation of Nanocellulose Types Using Complementary Techniques and Its Application to Detecting Bacterial Nanocellulose in Food Products. Nanomaterials 2025, 15, 1565. https://doi.org/10.3390/nano15201565
Geiss O, Bianchi I, Blazevic I, Bucher G, El-Hadri H, Fumagalli F, Ponti J, Verra C, Barrero-Moreno J. Characterisation of Nanocellulose Types Using Complementary Techniques and Its Application to Detecting Bacterial Nanocellulose in Food Products. Nanomaterials. 2025; 15(20):1565. https://doi.org/10.3390/nano15201565
Chicago/Turabian StyleGeiss, Otmar, Ivana Bianchi, Ivana Blazevic, Guillaume Bucher, Hind El-Hadri, Francesco Fumagalli, Jessica Ponti, Chiara Verra, and Josefa Barrero-Moreno. 2025. "Characterisation of Nanocellulose Types Using Complementary Techniques and Its Application to Detecting Bacterial Nanocellulose in Food Products" Nanomaterials 15, no. 20: 1565. https://doi.org/10.3390/nano15201565
APA StyleGeiss, O., Bianchi, I., Blazevic, I., Bucher, G., El-Hadri, H., Fumagalli, F., Ponti, J., Verra, C., & Barrero-Moreno, J. (2025). Characterisation of Nanocellulose Types Using Complementary Techniques and Its Application to Detecting Bacterial Nanocellulose in Food Products. Nanomaterials, 15(20), 1565. https://doi.org/10.3390/nano15201565