Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of CS/CNFs, NCS, and NCS/CS/CNFs
2.3. Material Characterization
- Electrochemical measurements
3. Results and Discussion
3.1. Surface Morphology and Elemental Analysis
3.2. Structural and Surface Chemistry Analysis
3.3. Electrocatalytic Activity for OER
3.4. Methanol Oxidation Reaction (MOR) Performance as a Bifunctional Extension
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OER | Oxygen evolution reaction |
MOR | Methanol oxidation reaction |
DMFCs | Direct methanol fuel cells |
ORR | Oxygen reduction reaction |
NCS/CS/CNFs | NiCo2S4 grown/anchored on Co9S8-loaded carbon nanofibers |
CS/CNF | Carbon nanofiber |
NCS | NiCo2S4 |
DI | Deionized |
KOH | Potassium hydroxide |
PAN | Polyacrylonitrile |
DMF | N, N-dimethylformamide |
NMP | N-Methyl-2-pyrrolidone |
PVDF | polyvinylidene fluoride |
TMS | Transition metal sulfide |
FESEM | Field emission scanning electron microscopy |
TEM | Transmission electron microscopy |
XPS | X-ray photoelectron spectroscopy |
XRD | Powder X-ray diffraction |
BET | Brunauer–Emmett–Teller |
RHE | Reversible hydrogen electrode |
LSV | Linear sweep voltammetry |
ECSA | Electrochemically active surface area |
CV | Cyclic voltammetry |
EIS | Electrochemical impedance spectroscopy |
CA | Chronoamperometry |
HAADF | High-angle annular dark-field |
References
- Zhang, J. Energy Access Challenge and the Role of Fossil Fuels in Meeting Electricity Demand: Promoting Renewable Energy Capacity for Sustainable Development. Geosci. Front. 2024, 15, 101873. [Google Scholar] [CrossRef]
- Miao, Y.; Ather Bukhari, A.A.; Bukhari, W.A.A.; Ahmad, S.; Hayat, N. Why Fossil Fuels Stifle Green Economic Growth? An Environmental Management Perspective in Assessing the Spatial Spillover Impact of Energy Consumption in South Asia. J. Environ. Manag. 2025, 373, 123471. [Google Scholar] [CrossRef]
- Perera, F. Pollution from Fossil-Fuel Combustion Is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Ramgopal, N.C.; Roy, N.; El-marghany, A.; Alhammadi, S.; Sreedevi, G.; Arla, S.K.; Merum, D.; Joo, S.W. Enhancing Photo Electrocatalytic Water Splitting Efficiency Using Bi2O2CO3@Ni(OH)2 Composite with Flower-like Morphology. Ceram. Int. 2025, 51, 4388–4399. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Fei, L.; Zhou, W.; Shao, Z. Electrochemical Oxidation of Small Molecules for Energy-Saving Hydrogen Production. Adv. Energy Mater. 2024, 14, 2401242. [Google Scholar] [CrossRef]
- Liu, T.; Lu, J.; Chen, Z.; Luo, Z.; Ren, Y.; Zhuge, X.; Luo, K.; Ren, G.; Lei, W.; Liu, D. Advances, Mechanisms and Applications in Oxygen Evolution Electrocatalysis of Gold-Driven. Chem. Eng. J. 2024, 496, 153719. [Google Scholar] [CrossRef]
- Rong, C.; Huang, X.; Arandiyan, H.; Shao, Z.; Wang, Y.; Chen, Y. Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen–Oxygen Radical Coupling Pathway. Adv. Mater. 2025, 37, 2416362. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, X.F.; Zang, S.; Lou, X.W. (David) Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Tian, X.; Wang, H.; Huo, L. Ultra-High Activity Methanol Oxidation Electrocatalyzed by a Flexible Integrated Pt–Zn Array Electrode. J. Mater. Chem. C 2025, 13, 3054–3061. [Google Scholar] [CrossRef]
- Ding, J.; Jing, S.; Yin, C.; Ban, C.; Wang, K.; Liu, X.; Duan, Y.; Zhang, Y.; Han, G.; Gan, L.; et al. A New Insight into the Promoting Effects of Transition Metal Phosphides in Methanol Electrooxidation. Chin. Chem. Lett. 2023, 34, 107899. [Google Scholar] [CrossRef]
- Magama, N.; Ojemaye, M.O.; Manene, N.C.; Okoh, O.O.; Okoh, A.I. Global Research Progression on Electro-Catalysts for Direct Methanol Fuel Cells between 1992 and 2023 Using Bibliometric Indicators. Ionics 2024, 30, 5951–5968. [Google Scholar] [CrossRef]
- Raveendran, A.; Chandran, M.; Dhanusuraman, R. A Comprehensive Review on the Electrochemical Parameters and Recent Material Development of Electrochemical Water Splitting Electrocatalysts. RSC Adv. 2023, 13, 3843–3876. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Song, X.; Shen, Y.; Xu, R.; Zhao, Y.; Chen, P. Research Progress in Alloy Catalysts for Oxygen Reduction Reaction. J. Alloys Compd. 2024, 1002, 175258. [Google Scholar] [CrossRef]
- Rong, C.; Dastafkan, K.; Wang, Y.; Zhao, C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. Adv. Mater. 2023, 35, 2211884. [Google Scholar] [CrossRef]
- Patil, O.U.; Park, S. Recent Progress of the Electrocatalytic CO 2 Reduction Reaction Using Porous Materials. Chem. Commun. 2025, 61, 9531–9542. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Chen, Z.; Chen, X.; Jing, F.; Yu, H.; Chen, D.; Yu, B.; Hu, Y.H.; Jin, Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. Adv. Sci. 2024, 11, 2306132. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Chen, Z.; Zheng, X.; Jiang, R.; Tong, X.; Deng, Y.; Hu, W. Fabrication of Amorphous PdNiCuP Nanoparticles as Efficient Bifunctional and Highly Durable Electrocatalyst for Methanol and Formic Acid Oxidation. J. Mater. Sci. Technol. 2022, 122, 148–155. [Google Scholar] [CrossRef]
- Zhan, F.; Huang, L.; Luo, Y.; Chen, M.; Tan, R.; Liu, X.; Liu, G.; Feng, Z. Recent Advances on Support Materials for Enhanced Pt-Based Catalysts: Applications in Oxygen Reduction Reactions for Electrochemical Energy Storage. J. Mater. Sci. 2025, 60, 2199–2223. [Google Scholar] [CrossRef]
- Wang, L.; Luo, L.; Guo, Z.; Wang, Y.; Liu, X. Challenges and Strategic Advancements in Platinum-Based Catalysts for Tailored Methanol Oxidation Reaction. J. Electroanal. Chem. 2025, 978, 118875. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, J.; Pang, W.K.; Johannessen, B.; Li, P.; Zhao, G.; Yang, H. Advanced RuO2-Based Electrocatalysts for Oxygen Evolution Reaction: A Perspective from Coordination Structures. Mater. Today Catal. 2025, 10, 100110. [Google Scholar] [CrossRef]
- Martuza, M.A.; Mädler, L.; Pokhrel, S. Metal Sulfides as Potential Materials for Next Generation Lithium Ion Batteries: A Review. Adv. Energy Sustain. Res. 2025, 6, 2400448. [Google Scholar] [CrossRef]
- Jia, H.; Meng, L.; Lu, Y.; Liang, T.; Yuan, Y.; Hu, Y.; Dong, Z.; Zhou, Y.; Guan, P.; Zhou, L.; et al. Boosting the Efficiency of Electrocatalytic Water Splitting via in Situ Grown Transition Metal Sulfides: A Review. J. Mater. Chem. A 2024, 12, 28595–28617. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, D.; Ge, Z.; Pan, L.; Chen, Y.; Wang, W.; Mitsuzaki, N.; Jia, S.; Chen, Z. Recent Advances in Transition Metal Sulfide-Based Electrode Materials for Supercapacitors. Chem. Commun. 2025, 61, 8314–8326. [Google Scholar] [CrossRef]
- Öztürk, O.; Gür, E. Layered Transition Metal Sulfides for Supercapacitor Applications. ChemElectroChem 2024, 11, e202300575. [Google Scholar] [CrossRef]
- Tong, Y.-L.; Xing, L.; Dai, M.-Z.; Wu, X. Hybrid Co3O4@Co9S8 Electrocatalysts for Oxygen Evolution Reaction. Front. Mater. 2019, 6, 233. [Google Scholar] [CrossRef]
- Li, L.; Sheng, Z.; Xiao, Q.; Hu, Q. Co9S8 Core–Shell Hollow Spheres for Enhanced Oxygen Evolution and Methanol Oxidation Reactions by Sulfur Vacancy Engineering. Dalton Trans. 2024, 53, 180–185. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, S.; Zhu, Y.; Yin, P.; Wang, R. Enhanced OER Performances of Au@NiCo2S4 Core-Shell Heterostructure. Nanomaterials 2020, 10, 611. [Google Scholar] [CrossRef]
- Ning, Y.; Ma, D.; Shen, Y.; Wang, F.; Zhang, X. Constructing Hierarchical Mushroom-like Bifunctional NiCo/NiCo2S4@NiCo/Ni Foam Electrocatalysts for Efficient Overall Water Splitting in Alkaline Media. Electrochim. Acta 2018, 265, 19–31. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Guan, D.; Lin, Z.; Hu, Z.; Ni, M.; Huang, H.; Bhatelia, T.; Jiang, S.P.; Shao, Z. New Nanocomposites Derived from Cation-Nonstoichiometric Bax(Co, Fe, Zr, Y)O3−δ as Efficient Electrocatalysts for Water Oxidation in Alkaline Solution. ACS Mater. Lett. 2024, 6, 2985–2994. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, J.; Zhang, J. NiCo2S4@graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Y.; Yang, X.; Mao, L.; Jin, J.; Yang, S.; Fu, K.; Li, G. Co9S8 Nanoparticles Embedded in Multiple Doped and Electrospun Hollow Carbon Nanofibers as Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Battery. Appl. Catal. B Environ. 2020, 268, 118437. [Google Scholar] [CrossRef]
- Li, J.; Xia, Y.; Luo, X.; Mao, T.; Wang, Z.; Hong, Z.; Yue, G. Bi-Phase NiCo2S4-NiS2/CFP Nanocomposites as a Highly Active Catalyst for Oxygen Evolution Reaction. Coatings 2023, 13, 313. [Google Scholar] [CrossRef]
- Zeng, S.; Qu, D.; Sun, H.; Chen, Y.; Wang, J.; Zheng, Y.; Pan, J.; Cao, J.; Li, C. Crystalline/Amorphous Interface Engineering and d–Sp Orbital Hybridization Synergistically Boosting the Electrocatalytic Performance of PdCu Bimetallene toward Formic Acid-Assisted Overall Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 64797–64806. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Y.; Wu, Z.; Wang, X.; Guan, R.; Li, C.; Qiao, F.; Wang, J.; Fu, Y.; Baek, J. Amorphous/Crystalline Heterostructured Nanomaterials: An Emerging Platform for Electrochemical Energy Storage. Small 2025, 21, 2411941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, F.; Wang, D.; Li, Z.; Wang, X.; Wang, C.; Zhang, K.; Du, Y. Amorphous/Crystalline Heterostructure Transition-Metal-Based Catalysts for High-Performance Water Splitting. Coord. Chem. Rev. 2023, 475, 214916. [Google Scholar] [CrossRef]
- Li, S.; Sirisomboonchai, S.; An, X.; Ma, X.; Li, P.; Ling, L.; Hao, X.; Abudula, A.; Guan, G. Engineering Interfacial Structures to Accelerate Hydrogen Evolution Efficiency of MoS 2 over a Wide PH Range. Nanoscale 2020, 12, 6810–6820. [Google Scholar] [CrossRef] [PubMed]
- García-Osorio, D.A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R.H.; Alvarez-Ramirez, J. The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions: •OH Formation. J. Electrochem. Soc. 2017, 164, E3321–E3328. [Google Scholar] [CrossRef]
- van der Heijden, O.; Park, S.; Vos, R.E.; Eggebeen, J.J.J.; Koper, M.T.M. Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Lett. 2024, 9, 1871–1879. [Google Scholar] [CrossRef]
- Rezić Meštrović, I.; Somogyi Škoc, M. Nanofiber-Based Innovations in Energy Storage Systems. Polymers 2025, 17, 1456. [Google Scholar] [CrossRef]
- Muralee Gopi, C.V.V.; Ravi, S.; Rao, S.S.; Eswar Reddy, A.; Kim, H.-J. Carbon Nanotube/Metal-Sulfide Composite Flexible Electrodes for High-Performance Quantum Dot-Sensitized Solar Cells and Supercapacitors. Sci. Rep. 2017, 7, 46519. [Google Scholar] [CrossRef]
- Cai, W.; Lai, T.; Lai, J.; Xie, H.; Ouyang, L.; Ye, J.; Yu, C. Transition Metal Sulfides Grown on Graphene Fibers for Wearable Asymmetric Supercapacitors with High Volumetric Capacitance and High Energy Density. Sci. Rep. 2016, 6, 26890. [Google Scholar] [CrossRef]
- He, W.; Xu, W.; Li, Z.; Hu, Z.; Yang, J.; Qin, G.; Teng, W.; Zhang, T.; Zhang, W.; Sun, Z.; et al. Structural Design and Challenges of Micron-Scale Silicon-Based Lithium-ion Batteries. Adv. Sci. 2025, 12, 2407540. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-G.; Hu, Y.; Dong, L.; Zhou, T.-T.; Qian, X.-Y.; Zhang, F.-J.; Shen, J.-Q.; Shan, Z.-Y.; Yang, L.-P.; Lin, X.-J. Unlocking the Potential of Na2Ti3O7-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis. Nanomaterials 2025, 15, 423. [Google Scholar] [CrossRef]
- Fan, P.; Ye, C.; Xu, L. Core-shell Nanofiber-based Electrodes for High-performance Asymmetric Supercapacitors. ChemistrySelect 2023, 8, e202204669. [Google Scholar] [CrossRef]
- Fan, P.; Wang, J.; Ding, W.; Xu, L. Core–Shell Structured Carbon Nanofiber-Based Electrodes for High-Performance Supercapacitors. Molecules 2023, 28, 4571. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, X.; Lan, J.; Zhang, P.; Shao, G.; Miao, F. Rational Design of Core–Shell Nanofibers Structure Integrated with Cobalt Sulfide Catalyst for High-Performance Lithium-Sulfur Batteries. Appl. Surf. Sci. 2025, 710, 163944. [Google Scholar] [CrossRef]
- Govindasamy, M.; Shanthi, S.; Elaiyappillai, E.; Wang, S.-F.; Johnson, P.M.; Ikeda, H.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C. Fabrication of Hierarchical NiCo2S4@CoS2 Nanostructures on Highly Conductive Flexible Carbon Cloth Substrate as a Hybrid Electrode Material for Supercapacitors with Enhanced Electrochemical Performance. Electrochim. Acta 2019, 293, 328–337. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Sun, R.; Han, S.; Jiang, J. Hierarchical Electronic Coupling Engineering of Bimetallic Sulfide Driven by CoFe Bimetal MOFs Anchored on MXene Promotes Efficient Overall Water Splitting. Fuel 2024, 358, 130256. [Google Scholar] [CrossRef]
- Duan, Y.; Guo, Z.; Wang, T.; Zhang, J. Uniform Anchoring of MoS2 Nanosheets on MOFs-Derived CoFe2O4 Porous Nanolayers to Construct Heterogeneous Structural Configurations for Efficient and Stable Overall Water Splitting. J. Colloid Interface Sci. 2025, 680, 541–551. [Google Scholar] [CrossRef]
- Wang, C.; Kosari, M.; Xi, S.; Zeng, H.C. Uniform Si-Infused UiO-66 as a Robust Catalyst Host for Efficient CO2 Hydrogenation to Methanol. Adv. Funct. Mater. 2023, 33, 2212478. [Google Scholar] [CrossRef]
- Ding, F.; Ji, P.; Han, Z.; Hou, X.; Yang, Y.; Hu, Z.; Niu, Y.; Liu, Y.; Zhang, J.; Rong, X.; et al. Tailoring Planar Strain for Robust Structural Stability in High-Entropy Layered Sodium Oxide Cathode Materials. Nat. Energy 2024, 9, 1529–1539. [Google Scholar] [CrossRef]
- Gong, J.; Luo, W.; Zhao, Y.; Xie, M.; Wang, J.; Yang, J.; Dai, Y. Co9S8/NiCo2S4 Core-Shell Array Structure Cathode Hybridized with PPy/MnO2 Core-Shell Structure Anode for High-Performance Flexible Quasi-Solid-State Alkaline Aqueous Batteries. Chem. Eng. J. 2022, 434, 134640. [Google Scholar] [CrossRef]
- Jin, R.; Liu, J.; Yu, H.; Xia, J.; Wu, X.; Yuan, B.; Li, R.; Xu, H. Core-Shell NiCo2S4@C with Three Dimensional Carbon Frameworks for Enhanced Asymmetrical Supercapacitor and Lithium Storage Performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 697, 134445. [Google Scholar] [CrossRef]
- Kong, W.; Lu, C.; Zhang, W.; Pu, J.; Wang, Z. Homogeneous Core–Shell NiCo2S4 Nanostructures Supported on Nickel Foam for Supercapacitors. J. Mater. Chem. A 2015, 3, 12452–12460. [Google Scholar] [CrossRef]
- Meng, Y.; Ding, J.; Liu, Y.; Hu, G.; Feng, Y.; Wu, Y.; Liu, X. Advancements in Amorphous Oxides For Electrocatalytic Carbon Dioxide Reduction. Mater. Today Catal. 2024, 7, 100065. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, M.; Song, L.; Zhang, M. Research Advances in Amorphous-Crystalline Heterostructures Toward Efficient Electrochemical Applications. Small 2023, 19, 2206081. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Wang, J.; Cheng, L.; Yu, D.; Wang, H.; Guo, L. The Synthesis and Application of Crystalline–Amorphous Hybrid Materials. Chem. Soc. Rev. 2024, 53, 684–713. [Google Scholar] [CrossRef] [PubMed]
- Abedi, M.; Rezaee, S.; Shahrokhian, S. Designing Core-Shell Heterostructure Arrays Based on Snowflake NiCoFe-LTH Shelled over W2N-WC Nanowires as an Advanced Bi-Functional Electrocatalyst for Boosting Alkaline Water/Seawater Electrolysis. J. Colloid Interface Sci. 2024, 666, 307–321. [Google Scholar] [CrossRef]
- Mouloua, D.; Vicart, T.; Rajput, N.S.; Asbani, B.; El Marssi, M.; El Khakani, M.A.; Jouiad, M. Core/Shell 1T/2H-MoS2 Nanoparticle Induced Synergistic Effects for Enhanced Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2025, 687, 851–859. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, Z.; Zhang, Z.; Wu, H. Discontinuous Phase Diagram of Amorphous Carbons. Natl. Sci. Rev. 2024, 11, nwae051. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Yousaf, M.H.; Haider, S.; Imran, Z.; Batool, S.S.; Ahmad, I.; Shahzad, M.I.; Azeem, M. Solvent-Free Synthesis of NiCo2S4 Having the Metallic Nature. Front. Chem. 2022, 10, 1027024. [Google Scholar] [CrossRef] [PubMed]
- Aftab, U.; Tahira, A.; Mazzaro, R.; Morandi, V.; Ishaq Abro, M.; Baloch, M.M.; Yu, C.; Ibupoto, Z.H. Nickel–Cobalt Bimetallic Sulfide NiCo 2 S 4 Nanostructures for a Robust Hydrogen Evolution Reaction in Acidic Media. RSC Adv. 2020, 10, 22196–22203. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Y.; Li, Y.; Dai, H. Co1-xS–Graphene Hybrid: A High-Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction. Angew. Chem. Int. Ed. 2011, 50, 10969–10972. [Google Scholar] [CrossRef]
- Serhan, M.; Jackemeyer, D.; Long, M.; Sprowls, M.; Perez, I.D.; Maret, W.; Chen, F.; Tao, N.; Forzani, E. Total Iron Measurement in Human Serum with a novel Smartphone-Based Assay. IEEE J Transl Eng Health Med. 2020, 8, 2800309. [Google Scholar] [CrossRef]
- Sibokoza, S.B.; Moloto, M.J.; Moloto, N.; Sibiya, P.N. The Effect of Temperature and Precursor Concentration on the Synthesis of Cobalt Sulphide Nanoparticles Using Cobalt Diethyldithiocarbamate Complex. Chalcogenide Lett. 2017, 14, 69–78. [Google Scholar]
- Liao, M.; Zhang, K.; Yan, W.; Yue, H.; Luo, C.; Wu, G.; Zeng, H. Constructing Amorphous/Crystalline Heterointerface in Cobalt Sulfide for High-Performance Supercapacitors. J. Power Sources 2025, 625, 235663. [Google Scholar] [CrossRef]
- Ghosh, A.; Ghosh, S.; Seshadhri, G.M.; Ramaprabhu, S. Green Synthesis of Nitrogen-Doped Self-Assembled Porous Carbon-Metal Oxide Composite towards Energy and Environmental Applications. Sci. Rep. 2019, 9, 5187. [Google Scholar] [CrossRef] [PubMed]
- Greczynski, G.; Hultman, L. The Same Chemical State of Carbon Gives Rise to Two Peaks in X-Ray Photoelectron Spectroscopy. Sci. Rep. 2021, 11, 11195. [Google Scholar] [CrossRef]
- Fujimoto, A.; Yamada, Y.; Koinuma, M.; Sato, S. Origins of Sp3C Peaks in C1s X-Ray Photoelectron Spectra of Carbon Materials. Anal. Chem. 2016, 88, 6110–6114. [Google Scholar] [CrossRef] [PubMed]
- Mi, L.; Wei, W.; Huang, S.; Cui, S.; Zhang, W.; Hou, H.; Chen, W. A Nest-like Ni@Ni1.4Co1.6S2 Electrode for Flexible High-Performance Rolling Supercapacitor Device Design. J. Mater. Chem. A 2015, 3, 20973–20982. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, Y.; Sun, B.; Li, T.; Han, S.; Dong, Z.; Lin, H. Rational Construction of Reduced NiCo2S4@CuCo2S4 Composites with Sulfur Vacancies as High-Performance Supercapacitor Electrode for Enhancing Electrochemical Energy Storage. Compos. Part B Eng. 2022, 243, 110088. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Qian, Y.; Jin, H.; Tang, X.; Huang, Z.; Lou, J.; Zhang, Q.; Lei, Y.; Wang, S. Hierarchical Design of Cross-Linked NiCo2S4 Nanowires Bridged NiCo-Hydrocarbonate Polyhedrons for High-Performance Asymmetric Supercapacitor. Adv. Funct. Mater. 2023, 33, 2210238. [Google Scholar] [CrossRef]
- He, W.; Wu, S.; Zhang, Z.; Yang, Q. Vacancy-Rich Graphene Supported Electrocatalysts Synthesized by Radio-Frequency Plasma for Oxygen Evolution Reaction. Inorg. Chem. Front. 2022, 9, 3854–3864. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Cheng, R.; Yang, L.; Wang, N. Highly Dispersed Co/Co9S8 Nanoparticles Encapsulated in S, N Co-Doped Lo Ngan Shell-Derived Hierarchical Porous Carbon for Corrosion-Resistant, Waterproof High-Performance Microwave Absorption. SSRN Electron. J. 2022, 637, 147–158. [Google Scholar] [CrossRef]
- Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M.B.; Xie, Q.; Guo, H.; Qi, Q.; Peng, D.-L. Magnetic Metal Phosphide Nanorods as Effective Hydrogen-Evolution Electrocatalysts. Int. J. Hydrogen Energy 2014, 39, 18919–18928. [Google Scholar] [CrossRef]
- Dong, Y.; Ran, J.; Liu, Q.; Zhang, G.; Jiang, X.; Gao, D. Hydrogen-Etched CoS2 to Produce a Co9S8@CoS2 Heterostructure Electrocatalyst for Highly Efficient Oxygen Evolution Reaction. RSC Adv. 2021, 11, 30448–30454. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Li, M.; Zhang, W.; Liu, Y.; Wang, Y.; Qin, C.; Yu, L.; Yang, J.; Zhang, X.; Dai, X. Cobalt Nanoparticles Embedded in N, S Co-Doped Carbon towards Oxygen Reduction Reaction Derived by in Situ Reducing Cobalt Sulfide. ChemCatChem 2019, 11, 6039–6050. [Google Scholar] [CrossRef]
- Zhang, S.; Zhai, D.; Sun, T.; Han, A.; Zhai, Y.; Cheong, W.-C.; Liu, Y.; Su, C.; Wang, D.; Li, Y. In Situ Embedding Co9S8 into Nitrogen and Sulfur Codoped Hollow Porous Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Appl. Catal. B Environ. 2019, 254, 186–193. [Google Scholar] [CrossRef]
- Kim, S.; van Ommen, J.R.; La Zara, D.; Courtois, N.; Davin, J.; Recker, C.; Schoeffel, J.; Blume, A.; Talma, A.; Dierkes, W.K. Molecular Layer Deposition (MLD) of a Blocked Mercapto Silane on Precipitated Silica. Org. Mater. 2023, 5, 139–147. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, D.; Zhu, H.; Zhou, Q.; Zhang, Z.; Li, Z.; Hu, Z. Construction of Tremella-like Co9S8@NiCo2S4 Heterostructure Nanosheets Integrated Electrode for High-Performance Hybrid SupercapacitorsConceptualization, Methodology, Formal Analysis. J. Alloys Compd. 2022, 898, 162850. [Google Scholar] [CrossRef]
- Song, Y.; Li, C.; Zhou, Y.; Tang, T.; Wang, J.; Shang, Y.; Deng, C. Co/Co9S8 Nanofibers Decorated with Carbon Nanotubes as Oxygen Electrocatalysts for Zn–Air Batteries. ACS Appl. Nano Mater. 2024, 7, 25152–25161. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning Synergy between Nickel and Iron in Ruddlesden–Popper Perovskites through Controllable Crystal Dimensionalities towards Enhanced Oxygen-evolving Activity and Stability. Carbon Energy 2024, 6, e465. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Gu, Z.; Li, X.; Kang, H.; Li, Z.; Li, Z. Improved Energy Storage Performance of NiS2/CoNi2S4 Heterostructure with Reduced Graphene Oxide and Carbon Nanofiber Synergistic Optimization for Hybrid Supercapacitor. Diam. Relat. Mater. 2025, 159, 112782. [Google Scholar] [CrossRef]
- Quan, G.; Wu, Y.; Li, W.; Li, D.; Liu, X.; Wang, K.; Dai, S.; Xiao, L.; Ao, Y. Construction of Cellulose Nanofiber/Carbon Nanotube Synergistic Network on Carbon Fiber Surface to Enhance Mechanical Properties and Thermal Conductivity of Composites. Compos. Sci. Technol. 2024, 248, 110454. [Google Scholar] [CrossRef]
- Sabir, A.S.; Pervaiz, E.; Khosa, R.; Sohail, U. An Inclusive Review and Perspective on Cu-Based Materials for Electrochemical Water Splitting. RSC Adv. 2023, 13, 4963–4993. [Google Scholar] [CrossRef] [PubMed]
- Majhi, K.C.; Yadav, M. Transition Metal Chalcogenides Based Nanocomposites as Efficient Electrocatalyst for Hydrogen Evolution Reaction over the Entire PH Range. Int. J. Hydrogen Energy 2020, 45, 24219–24231. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Hu, Z.; Zhang, L.; Shao, Z.; Jung, W. Boosting Ethanol Oxidation by NiOOH-CuO Nano-Heterostructure for Energy-Saving Hydrogen Production and Biomass Upgrading. Appl. Catal. B Environ. 2023, 325, 122388. [Google Scholar] [CrossRef]
- Zafar, S.; Thomas, A.; Mahapatra, S.N.; Karmodak, N.; Arora, H.S.; Lochab, B. Morphology-Dependent Enhancement of the Electrochemical Performance of CNF-Guided Tunable VS 4 Heterostructures for Symmetric Supercapacitors. J. Mater. Chem. A 2023, 11, 21263–21271. [Google Scholar] [CrossRef]
- Jagadale, A.; Zhou, X.; Blaisdell, D.; Yang, S. Carbon Nanofibers (CNFs) Supported Cobalt- Nickel Sulfide (CoNi2S4) Nanoparticles Hybrid Anode for High Performance Lithium Ion Capacitor. Sci. Rep. 2018, 8, 1602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merum, D.; Chava, R.K.; Kang, M. Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion. Nanomaterials 2025, 15, 1559. https://doi.org/10.3390/nano15201559
Merum D, Chava RK, Kang M. Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion. Nanomaterials. 2025; 15(20):1559. https://doi.org/10.3390/nano15201559
Chicago/Turabian StyleMerum, Dhananjaya, Rama Krishna Chava, and Misook Kang. 2025. "Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion" Nanomaterials 15, no. 20: 1559. https://doi.org/10.3390/nano15201559
APA StyleMerum, D., Chava, R. K., & Kang, M. (2025). Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion. Nanomaterials, 15(20), 1559. https://doi.org/10.3390/nano15201559