Smart Surface of Steering Wheel Based on Triboelectric Nanogenerator and Artificial Intelligence in Driving Monitoring System
Abstract
1. Introduction
2. Result and Discussion
2.1. Design and Fabrication of Single-Electrode Flexible TENG
2.2. Energy Harvesting Performance of TENGs
2.3. Wireless Signal Transmission and Machine-Learning Decoding
2.4. Smart Surface of Steering Wheel Based on TENG and AI Sensors
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Dai, Y.; Zhao, Z.; Wang, A.; Zhang, T.; Wang, Z.L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88. [Google Scholar] [CrossRef]
- Park, H.; Gbadam, G.S.; Niu, S.; Ryu, H.; Lee, J.-H. Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors. Int. J. Extrem. Manuf. 2025, 7, 012006. [Google Scholar] [CrossRef]
- Krishnan, S.; Giwa, A. Advances in real-time water quality monitoring using triboelectric nanosensors. J. Mater. Chem. A 2025, 13, 11134–11158. [Google Scholar] [CrossRef]
- Ji, B.; Zhou, Q.; Hu, B.; Zhong, J.; Zhou, J.; Zhou, B. Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range. Adv. Mater. 2021, 33, 2100859. [Google Scholar] [CrossRef]
- Pu, X.; Zhang, C.; Wang, Z.L. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 2023, 10, nwac170. [Google Scholar] [CrossRef]
- Li, J.; Xie, Z.; Wang, Z.; Lin, Z.; Lu, C.; Zhao, Z.; Jin, Y.; Yin, J.; Mu, S.; Zhang, C.; et al. A triboelectric gait sensor system for human activity recognition and user identification. Nano Energy 2023, 112, 108473. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, Y.; Dai, R.; Wang, H.; Sun, X.; Qin, C.; Pan, Z.; Liang, E.; Mao, Y. Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953. [Google Scholar] [CrossRef]
- Lei, H.; Xiao, J.; Chen, Y.; Jiang, J.; Xu, R.; Wen, Z.; Dong, B.; Sun, X. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670. [Google Scholar] [CrossRef]
- Pu, X.; Guo, H.; Tang, Q.; Chen, J.; Feng, L.; Liu, G.; Wang, X.; Xi, Y.; Hu, C.; Wang, Z.L. Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 2018, 54, 453–460. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, H.; Cheng, J.; Zhu, F.; Liu, B.; Wei, S.; Ji, L.; Wang, Z.L. Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 2022, 13, 1401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef]
- Chan, C.-Y. Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 2017, 6, 208–216. [Google Scholar] [CrossRef]
- Society of Automotive Engineers (SAE) International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles J3016; SAE International: Warrendale, PA, USA, 2021; Volume J3016. [Google Scholar]
- Chen, F.; Lu, G.; Lin, Q.; Zhai, J.; Tan, H. Are novice drivers competent to take over control from level 3 automated vehicles? A comparative study with experienced drivers. Transp. Res. Part F Traffic Psychol. Behav. 2021, 81, 65–81. [Google Scholar] [CrossRef]
- Zeeb, K.; Buchner, A.; Schrauf, M. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accid. Anal. Prev. 2016, 92, 230–239. [Google Scholar] [CrossRef]
- Zeng, Q.; Tian, X.; Nguyen, D.T.; Li, C.; Chia, P.; Tee, B.C.K.; Wu, C.; Ho, J.S. A digitally embroidered metamaterial biosensor for kinetic environments. Nat. Electron. 2024, 7, 1025–1034. [Google Scholar] [CrossRef]
- Jung, S.-J.; Shin, H.-S.; Chung, W.-Y. Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transp. Syst. 2014, 8, 43–50. [Google Scholar] [CrossRef]
- Hui, X.; Kan, E.C. Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nat. Electron. 2018, 1, 74–78. [Google Scholar] [CrossRef]
- Mercuri, M.; Lorato, I.R.; Liu, Y.-H.; Wieringa, F.; Van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Stephens, T.; Eggleton, B.J. Photonic radar for contactless vital sign detection. Nat. Photonics 2023, 17, 791–797. [Google Scholar] [CrossRef]
- Schires, E.; Georgiou, P.; Lande, T.S. Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 292–302. [Google Scholar] [CrossRef] [PubMed]
- López, M.J.; Arias, C.P.; Romeu, J.; Jofre-Roca, L. In-Cabin MIMO Radar System for Human Dysfunctional Breathing Detection. IEEE Sens. J. 2022, 22, 23906–23914. [Google Scholar] [CrossRef]
- Morris, C.; Kriege, N.M.; Bause, F.; Kersting, K.; Mutzel, P.; Neumann, M. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv 2020, arXiv:2007.08663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, F.; E, S.; Kang, M.; Fan, Y.; Song, Q.; Xie, Y.; Zhou, Y.; Nie, J.; Cui, X.; Zhang, Y. Smart Surface of Steering Wheel Based on Triboelectric Nanogenerator and Artificial Intelligence in Driving Monitoring System. Nanomaterials 2025, 15, 1472. https://doi.org/10.3390/nano15191472
Fan F, E S, Kang M, Fan Y, Song Q, Xie Y, Zhou Y, Nie J, Cui X, Zhang Y. Smart Surface of Steering Wheel Based on Triboelectric Nanogenerator and Artificial Intelligence in Driving Monitoring System. Nanomaterials. 2025; 15(19):1472. https://doi.org/10.3390/nano15191472
Chicago/Turabian StyleFan, Fengguang, Shiju E, Mengzhe Kang, Yuting Fan, Qing Song, Yu Xie, Yuankai Zhou, Jiaheng Nie, Xin Cui, and Yan Zhang. 2025. "Smart Surface of Steering Wheel Based on Triboelectric Nanogenerator and Artificial Intelligence in Driving Monitoring System" Nanomaterials 15, no. 19: 1472. https://doi.org/10.3390/nano15191472
APA StyleFan, F., E, S., Kang, M., Fan, Y., Song, Q., Xie, Y., Zhou, Y., Nie, J., Cui, X., & Zhang, Y. (2025). Smart Surface of Steering Wheel Based on Triboelectric Nanogenerator and Artificial Intelligence in Driving Monitoring System. Nanomaterials, 15(19), 1472. https://doi.org/10.3390/nano15191472