Electronic and Nuclear Subsystem Response in Hybrid Halide Perovskites Under γ-Irradiation
Abstract
1. Introduction
2. Calculation Details
3. Results and Discussion
3.1. Composition Influence on Radiation Processes
3.2. Energy Influence on Radiation Processes
3.3. Layer Thickness Influence on Radiation Processes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omprakash, P.; Viswesh, P.; Bhat, P.D. Review—A Review of 2D Perovskites and Carbon-Based Nanomaterials for Applications in Solar Cells and Photodetectors. ECS J. Solid State Sci. Technol. 2021, 10, 031009. [Google Scholar] [CrossRef]
- Dudipala, K.R.; Le, T.; Nie, W.; Hoye, R.L.Z. Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications. Adv. Mater. 2024, 36, 2304523. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Xu, X.; Zhang, L. The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Appl. Sci. 2021, 11, 1453. [Google Scholar] [CrossRef]
- Nie, T.; Fang, Z.; Ren, X.; Duan, Y.; Liu, S. Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application. Nanomicro Lett. 2023, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, H.; Götz-Köhler, M.; Neugebohrn, N.; Banik, U.; Osterthun, N.; Sergeev, O.; Berends, D.; Lattyak, C.; Gehrke, K.; Vehse, M. Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Adv. Energy Mater. 2022, 12, 2200713. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Akel, S.; Kulkarni, A.; Rau, U.; Kirchartz, T. Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. PRX Energy 2023, 2, 013004. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite Solar Cells for Space Applications: Progress and Challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A Comprehensive Review on the Advancements and Challenges in Perovskite Solar Cell Technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef]
- He, X.; Deng, Y.; Ouyang, D.; Zhang, N.; Wang, J.; Murthy, A.A.; Spanopoulos, I.; Islam, S.M.; Tu, Q.; Xing, G.; et al. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem. Rev. 2023, 123, 1207–1261. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.; Khan, M.R.; Abzieher, T.; Voigt, A.; Lupascu, D.C.; Lemmer, U.; Richards, B.S.; Paetzold, U.W. Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions. ACS Appl. Energy Mater. 2021, 4, 3083–3092. [Google Scholar] [CrossRef]
- Zhu, H.; Teale, S.; Lintangpradipto, M.N.; Mahesh, S.; Chen, B.; McGehee, M.D.; Sargent, E.H.; Bakr, O.M. Long-Term Operating Stability in Perovskite Photovoltaics. Nat. Rev. Mater. 2023, 8, 569–586. [Google Scholar] [CrossRef]
- Kar, S.; Dey, K. Instabilities and Degradation in Perovskite Materials and Devices. In Perovskite Optoelectronic Devices; Springer: Cham, Switzerland, 2024; pp. 573–637. [Google Scholar]
- Kirmani, A.R.; Sellers, I.R. Are Metal-Halide Perovskite Solar Cells Really Radiation Tolerant? Joule 2025, 9, 101852. [Google Scholar] [CrossRef]
- Pratt, R.H. Tutorial on Fundamentals of Radiation Physics:: Interactions of photons with matter. Radiat. Phys. Chem. 2004, 70, 595–603. [Google Scholar] [CrossRef]
- Rossi, B.; Greisen, K. Cosmic-Ray Theory. Rev. Mod. Phys. 1941, 13, 240–309. [Google Scholar] [CrossRef]
- García-Fernández, A.; Kammlander, B.; Riva, S.; Rensmo, H.; Cappel, U.B. Composition Dependence of X-Ray Stability and Degradation Mechanisms at Lead Halide Perovskite Single Crystal Surfaces. Phys. Chem. Chem. Phys. 2024, 26, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Endres, J.; Egger, D.A.; Kulbak, M.; Kerner, R.A.; Zhao, L.; Silver, S.H.; Hodes, G.; Rand, B.P.; Cahen, D.; Kronik, L.; et al. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study. J. Phys. Chem. Lett. 2016, 7, 2722–2729. [Google Scholar] [CrossRef]
- Boldyreva, A.G.; Frolova, L.A.; Zhidkov, I.S.; Gutsev, L.G.; Kurmaev, E.Z.; Ramachandran, B.R.; Petrov, V.G.; Stevenson, K.J.; Aldoshin, S.M.; Troshin, P.A. Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI3 Breaks the Records. J. Phys. Chem. Lett. 2020, 11, 2630–2636. [Google Scholar] [CrossRef]
- Boldyreva, A.G.; Akbulatov, A.F.; Tsarev, S.A.; Luchkin, S.Y.; Zhidkov, I.S.; Kurmaev, E.Z.; Stevenson, K.J.; Petrov, V.G.; Troshin, P.A. γ-Ray-Induced Degradation in the Triple-Cation Perovskite Solar Cells. J. Phys. Chem. Lett. 2019, 10, 813–818. [Google Scholar] [CrossRef]
- Kukharenko, A.I.; Ustinova, M.I.; Cholakh, S.O.; Troshin, P.A.; Zhidkov, I.S. Influence of Partial Substitution of Pb by Ge Atoms on the Stability of CSFAPbI3 Hybrid Perovskites to Strong Electron Fluxes. Int. Res. J. 2024, 143, 1–6. [Google Scholar]
- Ozerova, V.V.; Emelianov, N.A.; Kiryukhin, D.P.; Kushch, P.P.; Shilov, G.V.; Kichigina, G.A.; Aldoshin, S.M.; Frolova, L.A.; Troshin, P.A. Exploring the Limits: Degradation Behavior of Lead Halide Perovskite Films under Exposure to Ultrahigh Doses of γ Rays of Up to 10 MGy. J. Phys. Chem. Lett. 2023, 14, 743–749. [Google Scholar] [CrossRef]
- Yao, F.; Dong, K.; Ke, W.; Fang, G. Micro/Nano Perovskite Materials for Advanced X-Ray Detection and Imaging. ACS Nano 2024, 18, 6095–6110. [Google Scholar] [CrossRef]
- Ciavatti, A.; Sorrentino, R.; Basiricò, L.; Passarella, B.; Caironi, M.; Petrozza, A.; Fraboni, B. High-Sensitivity Flexible X-Ray Detectors Based on Printed Perovskite Inks. Adv. Funct. Mater. 2021, 31, 2009072. [Google Scholar] [CrossRef]
- Lin, C.-F.; Huang, K.-W.; Chen, Y.-T.; Hsueh, S.-L.; Li, M.-H.; Chen, P. Perovskite-Based X-Ray Detectors. Nanomaterials 2023, 13, 2024. [Google Scholar] [CrossRef]
- Liu, F.; Wu, R.; Wei, J.; Nie, W.; Mohite, A.D.; Brovelli, S.; Manna, L.; Li, H. Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Lett. 2022, 7, 1066–1085. [Google Scholar] [CrossRef]
- Liu, F.; Wu, R.; Zeng, Y.; Wei, J.; Li, H.; Manna, L.; Mohite, A.D. Halide Perovskites and Perovskite Related Materials for Particle Radiation Detection. Nanoscale 2022, 14, 6743–6760. [Google Scholar] [CrossRef]
- Schwenzer, J.A.; Hellmann, T.; Nejand, B.A.; Hu, H.; Abzieher, T.; Schackmar, F.; Hossain, I.M.; Fassl, P.; Mayer, T.; Jaegermann, W.; et al. Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites. ACS Appl. Mater. Interfaces 2021, 13, 15292–15304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, Y.; Zhang, J.; Chen, K.; Brabec, C.J.; Feng, Y. Phase Diagram and Stability of Mixed-Cation Lead Iodide Perovskites: A Theory and Experiment Combined Study. Phys. Rev. Mater. 2020, 4, 095401. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A Simulation Toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Datta, A.; Fiala, J.; Motakef, S. 2D Perovskite-Based High Spatial Resolution X-Ray Detectors. Sci. Rep. 2021, 11, 22897. [Google Scholar] [CrossRef]
- Sakhatskyi, K.; Turedi, B.; Matt, G.J.; Wu, E.; Sakhatska, A.; Bartosh, V.; Lintangpradipto, M.N.; Naphade, R.; Shorubalko, I.; Mohammed, O.F.; et al. Stable Perovskite Single-Crystal X-Ray Imaging Detectors with Single-Photon Sensitivity. Nat. Photonics 2023, 17, 510–517. [Google Scholar] [CrossRef]
- Liu, R.; Li, F.; Zeng, F.; Zhao, R.; Zheng, R. Halide Perovskite X-Ray Detectors: Fundamentals, Progress, and Outlook. Appl. Phys. Rev. 2024, 11, 021327. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, G.; Ma, W.; Hua, Y.; Liu, H.; Liu, J.; Yue, Z.; Wang, X.; Song, J.; Tao, X. Growth of Two-Inch Perovskite CsPbBr3 Single-Crystal with High Irradiation Resistance for X-ray Detection. Adv. Mater. 2025, e12788. [Google Scholar] [CrossRef] [PubMed]
- Svanström, S.; García Fernández, A.; Sloboda, T.; Jacobsson, T.J.; Rensmo, H.; Cappel, U.B. X-Ray Stability and Degradation Mechanism of Lead Halide Perovskites and Lead Halides. Phys. Chem. Chem. Phys. 2021, 23, 12479–12489. [Google Scholar] [CrossRef]
- Sakhatskyi, K.; Bhardwaj, A.; Matt, G.J.; Yakunin, S.; Kovalenko, M.V. A Decade of Lead Halide Perovskites for Direct-Conversion X-Ray and Gamma Detection: Technology Readiness Level and Challenges. Adv. Mater. 2025, 37, 2418465. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, L.; Xu, Y.; Yang, D.; Ni, Z. Metal Halide Perovskite for Room Temperature Gamma-Ray Spectrum Detection. Inf. Funct. Mater. 2025, 2, 40–61. [Google Scholar] [CrossRef]
- Balvanz, A.; Bayikadi, K.S.; Liu, Z.; Ie, T.S.; Peters, J.A.; Kanatzidis, M.G. Unveiling the Monoclinic Phase in CsPbBr3–XClx Perovskite Crystals, Phase Transition Suppression and High Energy Resolution γ-Ray Detection. J. Am. Chem. Soc. 2024, 146, 31836–31848. [Google Scholar] [CrossRef] [PubMed]
- Ustinova, M.I.; Frolova, L.A.; Rasmetyeva, A.V.; Emelianov, N.A.; Sarychev, M.N.; Kushch, P.P.; Dremova, N.N.; Kichigina, G.A.; Kukharenko, A.I.; Kiryukhin, D.P.; et al. Enhanced Radiation Hardness of Lead Halide Perovskite Absorber Materials via Incorporation of Dy2+ Cations. Chem. Eng. J. 2024, 493, 152522. [Google Scholar] [CrossRef]
- Rasmetyeva, A.V.; Zyryanov, S.S.; Novoselov, I.E.; Kukharenko, A.I.; Makarov, E.V.; Cholakh, S.O.; Kurmaev, E.Z.; Zhidkov, I.S. Proton Irradiation on Halide Perovskites: Numerical Calculations. Nanomaterials 2024, 14, 1. [Google Scholar] [CrossRef]
- Lewis, F.H.; Walecka, J.D. Electromagnetic Structure of the Giant Dipole Resonance. Phys. Rev. 1964, 133, B849–B868. [Google Scholar] [CrossRef]
- Maruhn, J.A.; Reinhard, P.G.; Stevenson, P.D.; Stone, J.R.; Strayer, M.R. Dipole Giant Resonances in Deformed Heavy Nuclei. Phys. Rev. C 2005, 71, 64328. [Google Scholar] [CrossRef]
- Berman, B.L.; Fultz, S.C. Measurements of the Giant Dipole Resonance with Monoenergetic Photons. Rev. Mod. Phys. 1975, 47, 713–761. [Google Scholar] [CrossRef]
Energy, MeV | Parameter | MAPbI3 | FAPbI3 | Cs0.12FA0.88PbI3 | Cs0.1MA0.15FA0.75PbI3 | CsPbI3 |
---|---|---|---|---|---|---|
0.66 | Deposit Energy, keV | 122.52 | 119.75 | 121.71 | 123.83 | 132.86 |
NIEL, eV∙cm2∙g−1 | 3.21 | 3.13 | 3.14 | 3.21 | 3.23 | |
Number of scattering events with energy loss | 0.39 | 0.38 | 0.38 | 0.39 | 0.42 | |
Projective range, mm | 9.18 | 9.22 | 9.21 | 9.19 | 9.12 | |
1.17 | Deposit Energy, keV | 141.94 | 136.28 | 140.34 | 138.02 | 140.08 |
NIEL, eV∙cm2∙g−1 | 3.61 | 3.45 | 3.51 | 3.47 | 3.29 | |
Number of scattering events with energy loss | 0.27 | 0.27 | 0.27 | 0.26 | 0.27 | |
Projective range, mm | 9.64 | 9.67 | 9.63 | 9.67 | 9.65 | |
1.33 | Deposit Energy, keV | 139.84 | 141.37 | 151.70 | 139.83 | 151.12 |
NIEL, eV∙cm2∙g−1 | 3.47 | 3.55 | 3.80 | 3.48 | 3.52 | |
Number of scattering events with energy loss | 0.24 | 0.23 | 0.25 | 0.24 | 0.26 | |
Projective range, mm | 9.74 | 9.75 | 9.71 | 9.75 | 9.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselov, I.E.; Zhidkov, I.S. Electronic and Nuclear Subsystem Response in Hybrid Halide Perovskites Under γ-Irradiation. Nanomaterials 2025, 15, 1474. https://doi.org/10.3390/nano15191474
Novoselov IE, Zhidkov IS. Electronic and Nuclear Subsystem Response in Hybrid Halide Perovskites Under γ-Irradiation. Nanomaterials. 2025; 15(19):1474. https://doi.org/10.3390/nano15191474
Chicago/Turabian StyleNovoselov, Ivan E., and Ivan S. Zhidkov. 2025. "Electronic and Nuclear Subsystem Response in Hybrid Halide Perovskites Under γ-Irradiation" Nanomaterials 15, no. 19: 1474. https://doi.org/10.3390/nano15191474
APA StyleNovoselov, I. E., & Zhidkov, I. S. (2025). Electronic and Nuclear Subsystem Response in Hybrid Halide Perovskites Under γ-Irradiation. Nanomaterials, 15(19), 1474. https://doi.org/10.3390/nano15191474