Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene
Abstract
1. Introduction
1.1. Definition, Properties, and Applications
1.2. Overview of Synthesis and Characterization Techniques
1.3. Purpose of Review
2. LIG for Environmental Applications
2.1. Water Purification
2.1.1. Electrochemical Detection of Heavy Metal (HM) Ions
2.1.2. Electrochemical Immobilization of Heavy Metal (HM) Ions
2.1.3. Filtration Systems
Enhancing LIG-Based Membrane Filtration Performance (BSA Rejection)
LIG-Based Membranes for Thermally Enhanced Filtration Techniques
LIG-Based Membranes for Filtration of Complex Contaminant Water Mixtures
2.2. Energy Storage and Harvesting
2.2.1. Energy Storage
Batteries
Supercapacitors (SCs)
2.2.2. Energy Harvesting
Triboelectric Nanogenerators (TENGs)
Photovoltaic (PV) Cells
3. Mitigating Bacteriological Threats with LIG—Antibacterial Applications of LIG
3.1. Antimicrobial Remediation of Drinking and Wastewater
3.2. Biofouling Inhibition
3.3. Antimicrobial Surface Treatments
4. Mechanisms of Bacterial Death: Physical, Chemical, Electrical
4.1. Physical Bactericidal Mechanisms
4.2. Chemical Bactericidal Mechanisms
4.2.1. Oxidative Stress
4.2.2. Surface Functionalization
4.3. Electrical Bactericidal Mechanisms
4.4. Thermal Bactericidal Mechanisms
5. Conclusions
5.1. State-of-the-Art Advances in LIG
5.2. Limitations of LIG
5.3. Future Research and Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avinash, K.; Patolsky, F. Laser-Induced Graphene Structures: From Synthesis and Applications to Future Prospects. Mater. Today 2023, 70, 104–136. [Google Scholar] [CrossRef]
- Gutiérrez-Cruz, A.; Ruiz-Hernández, A.R.; Vega-Clemente, J.F.; Luna-Gazcón, D.G.; Campos-Delgado, J. A Review of Top-down and Bottom-up Synthesis Methods for the Production of Graphene, Graphene Oxide and Reduced Graphene Oxide. J. Mater. Sci. 2022, 57, 14543–14578. [Google Scholar] [CrossRef]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, X.; Song, W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021, 15, 18708–18741. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, C.; Cao, F.; Zhang, Y.; Xia, X. The Development Trend of Graphene Derivatives. J. Electron. Mater. 2022, 51, 4107–4114. [Google Scholar] [CrossRef]
- Li, Z.; Huang, L.; Cheng, L.; Guo, W.; Ye, R. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications. Small Methods 2024, 8, 2400118. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31, 1803621. [Google Scholar] [CrossRef]
- Jeong, S.; Yang, S.; Lee, Y.J.; Lee, S.H. Laser-Induced Graphene Incorporated with Silver Nanoparticles Applied for Heavy Metal Multi-Detection. J. Mater. Chem. A 2023, 11, 13409–13418. [Google Scholar] [CrossRef]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef]
- Reina, M.; Scalia, A.; Auxilia, G.; Fontana, M.; Bella, F.; Ferrero, S.; Lamberti, A. Boosting Electric Double Layer Capacitance in Laser-Induced Graphene-Based Supercapacitors. Adv. Sustain. Syst. 2022, 6, 2100228. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sharma, C.P.; Arnusch, C.J. Simple Scalable Fabrication of Laser-Induced Graphene Composite Membranes for Water Treatment. ACS EST Water 2021, 1, 881–887. [Google Scholar] [CrossRef]
- Jeong, S.-E.; Kim, S.; Han, J.-H.; Pak, J.J. Simple Laser-Induced Graphene Fiber Electrode Fabrication for High-Performance Heavy-Metal Sensing. Microchem. J. 2022, 172, 106950. [Google Scholar] [CrossRef]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Wang, X.; Su, T.; Chai, Y. Recovery of Metal Ions (Cd2+, Co2+, and Ni2+) from Nitrate and Sulfate on Laser-Induced Graphene Film Using Applied Voltage and Its Application. Materials 2024, 17, 2965. [Google Scholar] [CrossRef]
- Sun, F.; Wang, D.; Hu, Q.; Jiao, R.; Zhang, J.; Li, N.; Li, J. Hydrolyzed Hydrated Titanium Oxide on Laser-Induced Graphene as CDI Electrodes for U(VI) Adsorption. Langmuir 2024, 40, 704–713. [Google Scholar] [CrossRef]
- Mahbub, H.; Nowrin, F.H.; Saed, M.A.; Malmali, M. Radiofrequency-Triggered Surface-Heated Laser-Induced Graphene Membranes for Enhanced Membrane Distillation. J. Mater. Chem. A 2025, 13, 1950–1963. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, A.; George, J.K.; Verma, N. Activated Carbon Fabric-Supported Laser Induced Graphene-Based Super-Hydrophobic Membrane for Microfiltration of Water-in-Oil Emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136085. [Google Scholar] [CrossRef]
- Thakur, A.K.; Mahbub, H.; Nowrin, F.H.; Malmali, M. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS Appl. Mater. Interfaces 2022, 14, 46884–46895. [Google Scholar] [CrossRef]
- Islam, J.; Silva, R.R.A.; Imbrogno, A.; Otoni, C.G.; Martins, R.; Capparelli Mattoso, L.H.; Quinn, A.J.; Iacopino, D. Eco-Friendly Energy Storage and Energy Harvesting Devices Fabricated by Direct Laser Writing of Chitosan-Lignin-Boric Acid Substrates. ACS Appl. Electron. Mater. 2025, 7, 4801–4813. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Zhang, K.; Qiao, F.; Yu, G. Laser-Induced Graphene Toward Flexible Energy Harvesting and Storage Electronics. Adv. Mater. Technol. 2024, 9, 2301602. [Google Scholar] [CrossRef]
- Thakur, A.K.; Singh, S.P.; Thamaraiselvan, C.; Kleinberg, M.N.; Arnusch, C.J. Graphene Oxide on Laser-Induced Graphene Filters for Antifouling, Electrically Conductive Ultrafiltration Membranes. J. Membr. Sci. 2019, 591, 117322. [Google Scholar] [CrossRef]
- Barbhuiya, N.H.; Singh, S.P.; Makovitzki, A.; Narkhede, P.; Oren, Z.; Adar, Y.; Lupu, E.; Cherry, L.; Monash, A.; Arnusch, C.J. Virus Inactivation in Water Using Laser-Induced Graphene Filters. Materials 2021, 14, 3179. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ma, T.; Zhang, B.; Huang, L.; Guo, W.; Hu, F.; Zhu, H.; Wang, Z.; Zheng, T.; Yang, D.-T.; et al. Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catal. 2022, 12, 11639–11650. [Google Scholar] [CrossRef]
- Misra, U.; Dixit, N.; Singh, S.P. Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS Appl. Mater. Interfaces 2023, 15, 7899–7910. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Zhang, J.; Tour, J.M.; Arnusch, C.J. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano 2018, 12, 289–297. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, S.; Pan, B.; Dai, X.; Zhao, W.; Liu, Y.; Xie, W.; Kuang, Y.; Liu, X. Stable and Durable Laser-Induced Graphene Patterns Embedded in Polymer Substrates. Carbon 2020, 163, 85–94. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, L.; Wang, Z.; Wang, S.; Xu, R. Boosting the Performance of Flexible In-Plane Micro-Supercapacitors by Engineering MoS2 Nanoparticles Embedded in Laser-Induced Graphene. J. Alloys Compd. 2021, 887, 161514. [Google Scholar] [CrossRef]
- Lin, N.; Chen, H.; Wang, W.; Lu, L. Laser-Induced Graphene/MoO2 Core-Shell Electrodes on Carbon Cloth for Integrated, High-Voltage, and In-Planar Microsupercapacitors. Adv. Mater. Technol. 2021, 6, 2000991. [Google Scholar] [CrossRef]
- Lu, K.; Ma, Y.; Ye, J. Combination of Chemical Foaming Strategy and Laser-Induced Graphene Technology for Enhanced Paper-Based Microsupercapacitor. J. Power Sources 2022, 535, 231488. [Google Scholar] [CrossRef]
- Rao, Y.; Yuan, M.; Gao, B.; Li, H.; Yu, J.; Chen, X. Laser-Scribed Phosphorus-Doped Graphene Derived from Kevlar Textile for Enhanced Wearable Micro-Supercapacitor. J. Colloid Interface Sci. 2023, 630, 586–594. [Google Scholar] [CrossRef]
- Du, L.; Quan, B.; Xu, Z.; Sun, X.; Luo, Y.; Travas-Sejdic, J.; Zhu, B. Biomass-Derived Laser-Induced Graphene Doped with Nitrogen and Sulfur for Enhanced Supercapacitor Performance. Carbon 2025, 238, 120225. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, B.; Long, J.; Kuang, Y.; Chen, X.; Hou, M.; Gao, J.; Zhou, S.; Fan, B.; He, Y.; et al. Interfacial Laser-Induced Graphene Enabling High-Performance Liquid−Solid Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2104290. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Li, Y.; Luong, D.X.; Zhang, J.; Tarkunde, Y.R.; Kittrell, C.; Sargunaraj, F.; Ji, Y.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Adv. Mater. 2017, 29, 1700496. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Liu, G.; Cao, Y.; Liu, N.; Thi Dieu Thuy, N.; Zhang, L.; Yu, M. A Flexible and Disposable Electrochemical Sensor for the Evaluation of Arsenic Levels: A New and Efficient Method for the Batch Fabrication of Chemically Modified Electrodes. Anal. Chim. Acta 2022, 1194, 339413. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Roy, K.; Sharma, N.; Nandi, S.; Vaidhyanathan, R.; Rane, S.; Rode, C.; Ogale, S. CO2 Laser Direct Written MOF-Based Metal-Decorated and Heteroatom-Doped Porous Graphene for Flexible All-Solid-State Microsupercapacitor with Extremely High Cycling Stability. ACS Appl. Mater. Interfaces 2016, 8, 31841–31848. [Google Scholar] [CrossRef] [PubMed]
- Kotthoff, L.; Dey, S.; Jain, V.; Tyrrell, A.; Wahab, H.; Johnson, P. Modeling and Optimizing Laser-Induced Graphene. arXiv 2021, arXiv:2107.14257. [Google Scholar]
- Ghimire, G.; Noormohammadi, F.; Kohl, J.; Devenport, H.; Johnson, P.A. Machine Learning Optimization of Laser-Induced Graphene Parameters for Surface-Enhanced Raman Spectroscopic Detection of Glucose. Sens. Actuators B Chem. 2025, 432, 137466. [Google Scholar] [CrossRef]
- Xie, B.; Guo, Y.; Chen, Y.; Luo, X.; Zhang, H.; Long, J.; Wen, G.; Hou, M.; Liu, H.; Ma, L.; et al. Dual-Indicators Machine Learning Assisted Processing High-Quality Laser-Induced Fluorine-Doped Graphene and Its Application on Droplet Velocity Monitoring Sensor. Carbon 2024, 226, 119231. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Huang, Z.; Zhao, Z.; Jiang, F.; Hu, Y. Intelligent Process Monitoring of Laser-Induced Graphene Production With Deep Transfer Learning. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, J.; Wang, D.; Sun, F.; Li, N.; Li, J. Electrodeposition Cobalt Sulfide Nanosheet on Laser-Induced Graphene as Capacitive Deionization Electrodes for Uranium Adsorption. Chem. Eng. J. 2023, 461, 142080. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, J.; Ying, Y. Evaluation of Trans-Resveratrol Level in Grape Wine Using Laser-Induced Porous Graphene-Based Electrochemical Sensor. Sci. Total Environ. 2020, 714, 136687. [Google Scholar] [CrossRef]
- Tseng, S.-F.; Chen, P.-S.; Hsu, S.-H.; Hsiao, W.-T.; Peng, W.-J. Investigation of Fiber Laser-Induced Porous Graphene Electrodes in Controlled Atmospheres for ZnO Nanorod-Based NO2 Gas Sensors. Appl. Surf. Sci. 2023, 620, 156847. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Q.; Chang, C.; Wang, R.; Wang, Q.; Shan, X. Highly Efficient Detection of Cd(II) Ions by a Stannum and Cerium Bimetal-Modified Laser-Induced Graphene Electrode in Water. Chem. Eng. J. 2022, 433, 133791. [Google Scholar] [CrossRef]
- Thakur, A.K.; Lin, B.; Nowrin, F.H.; Malmali, M. Comparing Structure and Sorption Characteristics of Laser-Induced Graphene (LIG) from Various Polymeric Substrates. ACS EST Water 2022, 2, 75–87. [Google Scholar] [CrossRef]
- Diédhiou, I.; Raouafi, A.; Hamzaoui, S.; Fall, M.; Raouafi, N. Optimizing the Preparation of Laser-Derived 3D Porous Graphene Electrodes for Modification-Free Sensing of Heavy Metal Ions. Sens. Diagn. 2025, 4, 202–215. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Li, J.; Qu, M.; Kang, M.; Zhang, C. Nonmodified Laser-Induced Graphene Sensors for Lead-Ion Detection. ACS Appl. Nano Mater. 2023, 6, 3599–3607. [Google Scholar] [CrossRef]
- Ali, H.; Gupta, D.; Gupta, R.; Verma, N. Laser Induced Graphene and Cu Nanoparticles Functionalized Microtextured Chemiresistive Sensor for the Fast Detection of Aqueous Hg2+. Chem. Eng. Process. Process Intensif. 2022, 181, 109146. [Google Scholar] [CrossRef]
- Li, N.; Zhang, D.; Zhang, Q.; Lu, Y.; Jiang, J.; Liu, G.L.; Liu, Q. Combining Localized Surface Plasmon Resonance with Anodic Stripping Voltammetry for Heavy Metal Ion Detection. Sens. Actuators B Chem. 2016, 231, 349–356. [Google Scholar] [CrossRef]
- Vivaldi, F.M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260. [Google Scholar] [CrossRef] [PubMed]
- Rassaei, L.; Marken, F.; Sillanpää, M.; Amiri, M.; Cirtiu, C.M.; Sillanpää, M. Nanoparticles in Electrochemical Sensors for Environmental Monitoring. TrAC Trends Anal. Chem. 2011, 30, 1704–1715. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.; Liu, Y. Study on Cd2+ Determination Using Bud-like Poly-L-Tyrosine/Bi Composite Film Modified Glassy Carbon Electrode Combined with Eliminating of Cu2+ Interference by Electrodeposition. Electroanalysis 2021, 33, 744–754. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical Determination of Mercury: A Review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, H.; Yuan, P.; Jia, Y.; Zhuang, L.; Zhang, H.; Yan, X.; Liu, G.; Zhao, Y.; Liu, J.; et al. Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Characteristics of Subtractive Anodic Stripping Voltammetry of Pb and Cd at Silver and Gold Electrodes. Anal. Chim. Acta 2002, 464, 99–114. [Google Scholar] [CrossRef]
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the Dynamics of the Relationship between Water pH and Other Water Quality Parameters in Ground and Surface Water Systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Sarzanini, C.; Mentasti, E. Preconcentration of Contaminants in Water Analysis. J. Chromatogr. A 2000, 902, 289–309. [Google Scholar] [CrossRef]
- Ateia, M.; Wei, H.; Andreescu, S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. Environ. Sci. Technol. 2024, 58, 2636–2651. [Google Scholar] [CrossRef]
- Speight, J.G. The Concept of Fouling. In Fouling in Refineries; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–30. ISBN 978-0-12-800777-8. [Google Scholar]
- Leam, J.J.; Bilad, M.R.; Wibisono, Y.; Hakim Wirzal, M.D.; Ahmed, I. Membrane Technology for Microalgae Harvesting. In Microalgae Cultivation for Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–110. ISBN 978-0-12-817536-1. [Google Scholar]
- Zhao, Y.; Kang, Y.; Fan, M.; Li, T.; Wozny, J.; Zhou, Y.; Wang, X.; Chueh, Y.-L.; Liang, Z.; Zhou, G.; et al. Precise Separation of Spent Lithium-Ion Cells in Water without Discharging for Recycling. Energy Storage Mater. 2022, 45, 1092–1099. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Peng, J.; Hu, J.; Yang, L.; Ma, A.; Xia, H.; Guo, W.; Yu, X. Removal of Uranium from Uranium Plant Wastewater Using Zero-Valent Iron in an Ultrasonic Field. Nucl. Eng. Technol. 2016, 48, 744–750. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, D.; Shen, Z.; Yao, L.; Zhao, G.; Wang, X. Photochemically Triggered Self-Extraction of Uranium from Aqueous Solution under Ambient Conditions. Appl. Catal. B Environ. 2023, 322, 122092. [Google Scholar] [CrossRef]
- Bryant, D.E.; Stewart, D.I.; Kee, T.P.; Barton, C.S. Development of a Functionalized Polymer-Coated Silica for the Removal of Uranium from Groundwater. Environ. Sci. Technol. 2003, 37, 4011–4016. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, S.; Zhao, K.; Wang, Z.; Xu, S.; Liang, Z.; Wu, K. Adsorption of La3+ and Ce3+ by Poly-γ-Glutamic Acid Crosslinked with Polyvinyl Alcohol. J. Rare Earths 2015, 33, 884–891. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.-Y.; Zhang, Q.; Liu, H. Overview of Recent Developments of Resource Recovery from Wastewater via Electrochemistry-Based Technologies. Sci. Total Environ. 2021, 757, 143901. [Google Scholar] [CrossRef]
- Zhou, L.-F.; Yang, D.; Du, T.; Gong, H.; Luo, W.-B. The Current Process for the Recycling of Spent Lithium Ion Batteries. Front. Chem. 2020, 8, 578044. [Google Scholar] [CrossRef]
- Kegl, T.; Košak, A.; Lobnik, A.; Novak, Z.; Kralj, A.K.; Ban, I. Adsorption of Rare Earth Metals from Wastewater by Nanomaterials: A Review. J. Hazard. Mater. 2020, 386, 121632. [Google Scholar] [CrossRef]
- Yang, L.; Hu, W.; Chang, Z.; Liu, T.; Fang, D.; Shao, P.; Shi, H.; Luo, X. Electrochemical Recovery and High Value-Added Reutilization of Heavy Metal Ions from Wastewater: Recent Advances and Future Trends. Environ. Int. 2021, 152, 106512. [Google Scholar] [CrossRef]
- Mousset, E.; Fournier, M.; Su, X. Recent Advances of Reactive Electroseparation Systems for Water Treatment and Selective Resource Recovery. Curr. Opin. Electrochem. 2023, 42, 101384. [Google Scholar] [CrossRef]
- Drouiche, N.; Aoudj, S.; Hecini, M.; Ghaffour, N.; Lounici, H.; Mameri, N. Study on the Treatment of Photovoltaic Wastewater Using Electrocoagulation: Fluoride Removal with Aluminium Electrodes—Characteristics of Products. J. Hazard. Mater. 2009, 169, 65–69. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Wang, X.; Chai, Y.; Sun, X. Efficient and Sustainable Electro-Sorption of Rare Earth by Laser-Induced Graphene Film. Sep. Purif. Technol. 2022, 300, 121853. [Google Scholar] [CrossRef]
- Liu, C.; Hsu, P.-C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Chu, S.; Cui, Y. A Half-Wave Rectified Alternating Current Electrochemical Method for Uranium Extraction from Seawater. Nat. Energy 2017, 2, 17007. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef]
- Therese Angeles, A.; Park, J.; Ham, K.; Bong, S.; Lee, J. High-Performance Capacitive Deionization Electrodes through Regulated Electrodeposition of Manganese Oxide and Nickel-Manganese Oxide/Hydroxide onto Activated Carbon. Sep. Purif. Technol. 2022, 280, 119873. [Google Scholar] [CrossRef]
- Lai, W.; Zhang, K.; Shao, P.; Yang, L.; Ding, L.; Pavlostathis, S.G.; Shi, H.; Zou, L.; Liang, D.; Luo, X. Optimization of Adsorption Configuration by DFT Calculation for Design of Adsorbent: A Case Study of Palladium Ion-Imprinted Polymers. J. Hazard. Mater. 2019, 379, 120791. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Thakur, A.K.; Gupta, A.; Arnusch, C.J. Electrochemical Removal of Organic and Inorganic Pollutants Using Robust Laser-Induced Graphene Membranes. ACS Appl. Mater. Interfaces 2021, 13, 1452–1462. [Google Scholar] [CrossRef]
- Luong, D.X.; Yang, K.; Yoon, J.; Singh, S.P.; Wang, T.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene Composites as Multifunctional Surfaces. ACS Nano 2019, 13, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Stanford, M.G.; Chen, W.; Presutti, S.E.; Tour, J.M. Laminated Laser-Induced Graphene Composites. ACS Nano 2020, 14, 7911–7919. [Google Scholar] [CrossRef]
- Bergsman, D.S.; Getachew, B.A.; Cooper, C.B.; Grossman, J.C. Preserving Nanoscale Features in Polymers during Laser Induced Graphene Formation Using Sequential Infiltration Synthesis. Nat. Commun. 2020, 11, 3636. [Google Scholar] [CrossRef]
- Thakur, A.K.; Singh, S.P.; Kleinberg, M.N.; Gupta, A.; Arnusch, C.J. Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Appl. Mater. Interfaces 2019, 11, 10914–10921. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Kapavarapu, M.S.R.S.; Oor, J.Z.; Ong, C.S.; Chew, J.W. Laser-Induced Graphene Janus Membrane for Electrothermal Membrane Distillation. Desalination 2022, 540, 115994. [Google Scholar] [CrossRef]
- Vashisth, A.; Upama, S.T.; Anas, M.; Oh, J.-H.; Patil, N.; Green, M.J. Radio Frequency Heating and Material Processing Using Carbon Susceptors. Nanoscale Adv. 2021, 3, 5255–5264. [Google Scholar] [CrossRef]
- Alhajji, E.; Zhang, F.; Alshareef, H.N. Status and Prospects of Laser-Induced Graphene for Battery Applications. Energy Technol. 2021, 9, 2100454. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Koskinen, O.; Breyer, C. Energy Storage in Global and Transcontinental Energy Scenarios: A Critical Review. Energy Procedia 2016, 99, 53–63. [Google Scholar] [CrossRef]
- Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef]
- Mejia, C.; Kajikawa, Y. Emerging Topics in Energy Storage Based on a Large-Scale Analysis of Academic Articles and Patents. Appl. Energy 2020, 263, 114625. [Google Scholar] [CrossRef]
- Aslam, S.; Sagar, R.U.R.; Liu, Y.; Anwar, T.; Zhang, L.; Zhang, M.; Mahmood, N.; Qiu, Y. Graphene Decorated Polymeric Flexible Materials for Lightweight High Areal Energy Lithium-Ion Batteries. Appl. Mater. Today 2019, 17, 123–129. [Google Scholar] [CrossRef]
- Fang, X.; Hu, F.; Lu, J.; Han, X.; Pu, J.; Li, Y.; Yue, C.; Yang, Y. Laser-Induced Graphene as an Effective Supporting Structure for High Performance Ge Anode Applied in Li-Ion Batteries. J. Colloid Interface Sci. 2025, 688, 656–663. [Google Scholar] [CrossRef]
- Naraprawatphong, R.; Chokradjaroen, C.; Thiangtham, S.; Yang, L.; Saito, N. Nanoscale Advanced Carbons as an Anode for Lithium-Ion Battery. Mater. Today Adv. 2022, 16, 100290. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries. Adv. Energy Mater. 2019, 9, 1803342. [Google Scholar] [CrossRef]
- Yi, J.; Chen, J.; Yang, Z.; Dai, Y.; Li, W.; Cui, J.; Ciucci, F.; Lu, Z.; Yang, C. Facile Patterning of Laser-Induced Graphene with Tailored Li Nucleation Kinetics for Stable Lithium-Metal Batteries. Adv. Energy Mater. 2019, 9, 1901796. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, K.; Hong, M.; Yang, Y.; Hu, N.; Su, Y.; Zhang, L.; Zhang, Y. Laser-Induced MnO/Mn3O4/N-Doped-Graphene Hybrid as Binder-Free Anodes for Lithium Ion Batteries. Chem. Eng. J. 2020, 385, 123720. [Google Scholar] [CrossRef]
- Cho, E.-C.; Chang-Jian, C.-W.; Wu, Y.-J.; Chao, S.-H.; Huang, J.-H.; Lee, K.-C.; Weng, H.C.; Hsu, S.-C. Modification of Aluminum Current Collectors with Laser-Scribed Graphene for Enhancing the Performance of Lithium Ion Batteries. J. Power Sources 2021, 506, 230060. [Google Scholar] [CrossRef]
- Xu, X.; Xu, F.; Zhang, X.; Qu, C.; Zhang, J.; Qiu, Y.; Zhuang, R.; Wang, H. Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS2 on Graphene for High-Flux Electron/Ion Bridging in Sodium Storage. Nano-Micro Lett. 2022, 14, 91. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Y.; Chen, R.; Xie, T.; Xu, P.; Zhu, H.; He, J.; Zheng, W.; Huang, S. Integrative Design of Laser-Induced Graphene Array with Lithiophilic MnOx Nanoparticles Enables Superior Lithium Metal Batteries. eScience 2023, 3, 100134. [Google Scholar] [CrossRef]
- Bai, S.; Ruan, L.; Chen, H.; Du, Y.; Deng, H.; Dai, N.; Tang, Y. Laser-Induced Graphene: Carbon Precursors, Fabrication Mechanisms, Material Characteristics, and Applications in Energy Storage. Chem. Eng. J. 2024, 493, 152805. [Google Scholar] [CrossRef]
- Panghal, A.; Singh, T.; Deepak, D.; Kumar, R.; Roy, S.S. Fabrication of Nickel Decorated Laser-Induced Graphene for Flexible Wearable Microsupercapacitors. J. Energy Storage 2025, 115, 115981. [Google Scholar] [CrossRef]
- Zhou, C.; Hong, M.; Yang, Y.; Yang, C.; Hu, N.; Zhang, L.; Yang, Z.; Zhang, Y. Laser-Induced Bi-Metal Sulfide/Graphene Nanoribbon Hybrid Frameworks for High-Performance All-in-One Fiber Supercapacitors. J. Power Sources 2019, 438, 227044. [Google Scholar] [CrossRef]
- Kim, K.Y.; Choi, H.; Tran, C.V.; In, J.B. Simultaneous Densification and Nitrogen Doping of Laser-Induced Graphene by Duplicated Pyrolysis for Supercapacitor Applications. J. Power Sources 2019, 441, 227199. [Google Scholar] [CrossRef]
- Cai, J.; Lv, C.; Hu, C.; Luo, J.; Liu, S.; Song, J.; Shi, Y.; Chen, C.; Zhang, Z.; Ogawa, S.; et al. Laser Direct Writing of Heteroatom-Doped Porous Carbon for High-Performance Micro-Supercapacitors. Energy Storage Mater. 2020, 25, 404–415. [Google Scholar] [CrossRef]
- Xu, R.; Liu, P.; Ji, G.; Gao, L.; Zhao, J. Versatile Strategy to Design Flexible Planar-Integrated Microsupercapacitors Based on Co3 O4 -Decorated Laser-Induced Graphene. ACS Appl. Energy Mater. 2020, 3, 10676–10684. [Google Scholar] [CrossRef]
- Liu, H.; Moon, K.; Li, J.; Xie, Y.; Liu, J.; Sun, Z.; Lu, L.; Tang, Y.; Wong, C.-P. Laser-Oxidized Fe3O4 Nanoparticles Anchored on 3D Macroporous Graphene Flexible Electrodes for Ultrahigh-Energy in-Plane Hybrid Micro-Supercapacitors. Nano Energy 2020, 77, 105058. [Google Scholar] [CrossRef]
- Liu, H.; Xie, Y.; Liu, J.; Moon, K.; Lu, L.; Lin, Z.; Yuan, W.; Shen, C.; Zang, X.; Lin, L.; et al. Laser-Induced and KOH-Activated 3D Graphene: A Flexible Activated Electrode Fabricated via Direct Laser Writing for in-Plane Micro-Supercapacitors. Chem. Eng. J. 2020, 393, 124672. [Google Scholar] [CrossRef]
- Khandelwal, M.; Nguyen, A.P.; Tran, C.V.; In, J.B. Simple Fabrication of Co3 O4 Nanoparticles on N-Doped Laser-Induced Graphene for High-Performance Supercapacitors. RSC Adv. 2021, 11, 38547–38554. [Google Scholar] [CrossRef]
- Khandelwal, M.; Tran, C.V.; In, J.B. Nitrogen and Phosphorous Co-Doped Laser-Induced Graphene: A High-Performance Electrode Material for Supercapacitor Applications. Appl. Surf. Sci. 2022, 576, 151714. [Google Scholar] [CrossRef]
- He, M.; Wang, G.; Zhu, Y.; Wang, Y.; Liu, F.; Luo, S. In-Situ Joule Heating-Triggered Nanopores Generation in Laser-Induced Graphene Papers for Capacitive Enhancement. Carbon 2022, 186, 215–226. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Y.; Moon, K.-S.; Chen, Y.; Shi, D.; Chen, X.; Wong, C.-P. Ambient-Air in Situ Fabrication of High-Surface-Area, Superhydrophilic, and Microporous Few-Layer Activated Graphene Films by Ultrafast Ultraviolet Laser for Enhanced Energy Storage. Nano Energy 2022, 94, 106902. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Lu, K.; Ma, Y.; Li, H.; Ye, J. Preparation of High-Performance Flexible Microsupercapacitors Based on Papermaking and Laser-Induced Graphene Techniques. Electrochim. Acta 2022, 401, 139490. [Google Scholar] [CrossRef]
- Correia, R.; Deuermeier, J.; Correia, M.R.; Vaz Pinto, J.; Coelho, J.; Fortunato, E.; Martins, R. Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications. ACS Appl. Mater. Interfaces 2022, 14, 46427–46438. [Google Scholar] [CrossRef]
- Hawes, G.F.; Verma, P.; Uceda, M.; Karimi, G.; Noremberg, B.S.; Pope, M.A. Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors. ACS Appl. Mater. Interfaces 2023, 15, 10570–10584. [Google Scholar] [CrossRef]
- Yao, J.; Liu, L.; Zhang, S.; Wu, L.; Tang, J.; Qiu, Y.; Huang, S.; Wu, H.; Fan, L. Metal-Incorporated Laser-Induced Graphene for High Performance Supercapacitors. Electrochim. Acta 2023, 441, 141719. [Google Scholar] [CrossRef]
- Ai, Y.; Ara, B.; Wang, B.; Ahmad, M.; Han, X.; Wang, L.; He, S.; Li, R.; Sun, W. One Step Laser-Induced Fe3O4 Loaded 3D Graphene Electrode for Electrochemical Sensing and Supercapacitor Applications. Microchem. J. 2025, 209, 112776. [Google Scholar] [CrossRef]
- Mensah, S.A.; Fath El-Bab, A.M.R.; Tominaga, Y.; Khalil, A.S.G. Precisely Engineered Interface of Laser-Induced Graphene and MoS2 Nanosheets for Enhanced Supercapacitor Electrode Performance. Appl. Surf. Sci. 2025, 688, 162230. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumari, K.; Dalela, S.; Ahmed, F.; Shaalan, N.M.; Alvi, P.A.; Brajpuriya, R.K.; Kumar, S. Enhanced Capacitance of Nickel Ferrite Decorated Laser-Induced Graphene Nanocomposite for Symmetric Supercapacitor Device. J. Energy Storage 2025, 106, 114743. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing Mechanisms in Lithium-Ion Batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Kötz, R.; Carlen, M. Principles and Applications of Electrochemical Capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef]
- Balakrishnan, P.G.; Ramesh, R.; Prem Kumar, T. Safety Mechanisms in Lithium-Ion Batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Benny, S.; Vidyanagar, A.V.; Bhat, S.V. Progress and Prospects with Cationic and Anionic Doping of Solution-Processed Kesterite Solar Absorbers: A Mini-Review. Energy Fuels 2024, 38, 61–72. [Google Scholar] [CrossRef]
- Alghamdi, M.S.; Morgan, J.J.; Walsh, K.; Shin, D.W.; Nigmatullin, R.; Saadi, Z.; Routledge, J.; Neves, A.I.S.; Russo, S.; Eichhorn, S.J.; et al. Triboelectric Nanogenerator Based on Cellulose Nanocrystals and Graphene for Energy Harvesting from Piano Playing Motion. Nano Energy 2025, 138, 110816. [Google Scholar] [CrossRef]
- Xie, B.; Guo, Y.; Chen, Y.; Zhang, H.; Xiao, J.; Hou, M.; Liu, H.; Ma, L.; Chen, X.; Wong, C. Advances in Graphene-Based Electrode for Triboelectric Nanogenerator. Nano-Micro Lett. 2025, 17, 17. [Google Scholar] [CrossRef]
- Dassanayaka, D.G.; Alves, T.M.; Wanasekara, N.D.; Dharmasena, I.G.; Ventura, J. Recent Progresses in Wearable Triboelectric Nanogenerators. Adv. Funct. Mater. 2022, 32, 2205438. [Google Scholar] [CrossRef]
- Choi, K.-H.; Park, S.; Hyeong, S.-K.; Bae, S.; Hong, J.-M.; Kim, T.-W.; Lee, S.H.; Ryu, S.; Lee, S.-K. Triboelectric Effect of Surface Morphology Controlled Laser Induced Graphene. J. Mater. Chem. A 2020, 8, 19822–19832. [Google Scholar] [CrossRef]
- Stanford, M.G.; Li, J.T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J.M. Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano 2019, 13, 7166–7174. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Han, M.; Liu, F.; Wang, D.; Gao, Y.; Wang, G.; Ding, X.; Luo, S. Structure-Foldable and Performance-Tailorable PI Paper-Based Triboelectric Nanogenerators Processed and Controlled by Laser-Induced Graphene. Adv. Sci. 2024, 11, 2310017. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.C.A.; Freire, A.L.; Candido, I.C.M.; Messaddeq, Y.; Lapointe, J.; Fréchette, J.; Vallée, R.; De Oliveira, H.P. Flexible Micro Supercapacitor and Triboelectric Nanogenerator Based on Laser-Induced Graphene for Self-Powered Applications. Next Energy 2024, 4, 100141. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Long, Y.; Huang, Z.; Zi, Y.; Tao, L.-Q.; Li, C.-H.; Sun, H.; Li, J. Laser-Induced Graphene (LIG)-Based Pressure Sensor and Triboelectric Nanogenerator towards High-Performance Self-Powered Measurement-Control Combined System. Nano Energy 2022, 96, 107099. [Google Scholar] [CrossRef]
- Wu, P.; Shirvanimoghaddam, K.; Leon, R.T.; Ravi Anusuyadevi, I.P.; Taheri, P.; Gonugunta, P.; Ellis, A.V.; Naebe, M. Beyond the Limits: Pushing the Boundaries of Polyimide Triboelectric Nanogenerator Performance at Elevated Temperatures. Chem. Eng. J. 2025, 512, 161809. [Google Scholar] [CrossRef]
- Callaty, C.; Rodrigues, C.; Ventura, J. Triboelectric Nanogenerators in Harsh Conditions: A Critical Review. Nano Energy 2025, 135, 110661. [Google Scholar] [CrossRef]
- Walden, R.; Kumar, C.; Mulvihill, D.M.; Pillai, S.C. Opportunities and Challenges in Triboelectric Nanogenerator (TENG) Based Sustainable Energy Generation Technologies: A Mini-Review. Chem. Eng. J. Adv. 2022, 9, 100237. [Google Scholar] [CrossRef]
- Mohammad Bagher, A. Types of Solar Cells and Application. AJOP 2015, 3, 94. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A Review of Thin Film Solar Cell Technologies and Challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Renuka, H.; Enaganti, P.K.; Kundu, S.; Goel, S. Laser-Induced Graphene Electrode Based Flexible Heterojunction Photovoltaic Cells. Microelectron. Eng. 2022, 251, 111673. [Google Scholar] [CrossRef]
- Yang, B.; Guan, Y.; Lu, Y.; Chu, Z. Laser-Induced Nitrogen and Boron Co-Doped Graphene Film for Dye-Sensitized Solar Cell Applications. Mater. Lett. 2024, 366, 136505. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Mo, H.; Cheng, D.; Liu, X.; Liu, W.; Jacobs, J.; Thomas, A.G.; Liu, Z.; Curry, R.J. In Situ Laser Generation of NiO Nanoparticles Embedded in Graphene Flakes for Ambient-Processed Hole-Transport-Layer-Free Perovskite Solar Cells. Carbon 2023, 214, 118360. [Google Scholar] [CrossRef]
- Speranza, R.; Reina, M.; Zaccagnini, P.; Pedico, A.; Lamberti, A. Laser-Induced Graphene as a Sustainable Counter Electrode for DSSC Enabling Flexible Self-Powered Integrated Harvesting and Storage Device for Indoor Application. Electrochim. Acta 2023, 460, 142614. [Google Scholar] [CrossRef]
- Chu, Z.; Lu, Y.; Liu, C. Preparation and Characterization of Laser-Induced Graphene Derived from Polyimide for Dye-Sensitized Solar Cell Applications. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 380–387. [Google Scholar] [CrossRef]
- Abdellatif, S.O.; Ghannam, R.; Khalifa, Z. Optoelectronic and Morphological Surface Resistance Evaluation of Laser-Induced Graphene Counter Electrodes for Potential Applications in Cesium Lead Halide Perovskite Solar Cells. ACS Appl. Electron. Mater. 2024, 6, 5745–5758. [Google Scholar] [CrossRef]
- Forstinus, N.; Ikechukwu, N.; Emenike, M.; Christiana, A. Water and Waterborne Diseases: A Review. Int. J. Trop. Dis. Health 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Sabiu, S.; Edokpayi, J.N.; Swalaha, F.M. Global Public Health Implications of Human Exposure to Viral Contaminated Water. Front. Microbiol. 2022, 13, 981896. [Google Scholar] [CrossRef]
- Boussettine, R.; Hassou, N.; Bessi, H.; Ennaji, M.M. Chapter 40—Waterborne Transmission of Enteric Viruses and Their Impact on Public Health. In Emerging and Reemerging Viral Pathogens; Ennaji, M.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 907–932. ISBN 978-0-12-819400-3. [Google Scholar]
- Dixit, N.; Singh, S.P. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS Omega 2022, 7, 5112–5130. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Guo, W.; Cao, X.; Dou, Y.; Huang, L.; Song, Y.; Su, J.; Zeng, Z.; Ye, R. Laser-Induced Graphene for Environmental Applications: Progress and Opportunities. Mater. Chem. Front. 2021, 5, 4874–4891. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Be’er, A.; Oren, Y.; Tour, J.M.; Arnusch, C.J. Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Appl. Mater. Interfaces 2017, 9, 18238–18247. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, J.; Wang, Y.; Liu, F.; Wang, G.; Ding, X.; Luo, S.; Chen, G. Laser-Induced Graphene Papers with Tunable Microstructures as Antibacterial Agents. ACS Appl. Nano Mater. 2022, 5, 6841–6851. [Google Scholar] [CrossRef]
- Powell, C.D.; Pisharody, L.; Jopp, J.; Sharon-Gojman, R.; Tesfahunegn, B.A.; Arnusch, C.J. Laser-Induced Graphene Capacitive Killing of Bacteria. ACS Appl. Bio. Mater. 2023, 6, 883–890. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, G.; Liu, C.; Marques, A.R.; Go, Y.Y.; St-Hilaire, S. Rapid and Efficient Inactivation of Viruses in Seawater by LIG Electrodes. Appl. Water Sci. 2023, 14, 1. [Google Scholar] [CrossRef]
- Gu, M.; Huang, L.; Wang, Z.; Guo, W.; Cheng, L.; Yuan, Y.; Zhou, Z.; Hu, L.; Chen, S.; Shen, C.; et al. Molecular Engineering of Laser-Induced Graphene for Potential-Driven Broad-Spectrum Antimicrobial and Antiviral Applications. Small 2021, 17, 2102841. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Zhang, W.; Zhang, Z.; Lu, J.; Xu, K.; Liu, Y.; Saetang, V. A Review of Laser-Induced Graphene: From Experimental and Theoretical Fabrication Processes to Emerging Applications. Carbon 2023, 214, 118356. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Tamilselvam, N.R.; Alias, N.H.; Oor, J.Z.; Goei, R.; Tok, A.I.Y.; Chew, J.W. Optimization of Laser-Induced Graphene Membrane for Simultaneous Photo- and Electro-Thermal Membrane Distillation. J. Membr. Sci. 2024, 705, 122900. [Google Scholar] [CrossRef]
- Sharma, C.P.; Modi, A.; Jose, A.; Rostovsky, I.; Sal-Man, N.; Be’er, A.; Kasher, R.; Arnusch, C.J. Enhanced Antimicrobial Activity of Laser-Induced Graphene-Wrapped Trimetal Organic Framework Nanocomposites. Adv. Eng. Mater. 2024, 26, 2400226. [Google Scholar] [CrossRef]
- Stanford, M.G.; Li, J.T.; Chen, Y.; McHugh, E.A.; Liopo, A.; Xiao, H.; Tour, J.M. Self-Sterilizing Laser-Induced Graphene Bacterial Air Filter. ACS Nano 2019, 13, 11912–11920. [Google Scholar] [CrossRef]
- Huang, L.; Xu, S.; Wang, Z.; Xue, K.; Su, J.; Song, Y.; Chen, S.; Zhu, C.; Tang, B.Z.; Ye, R. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano 2020, 14, 12045–12053. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Wang, Z.; Zhang, C.; Wu, Y.; Zheng, H. Enhancement of Antibacterial Function by Incorporation of Silver-Doped ZnO Nanocrystals onto a Laser-Induced Graphene Surface. RSC Adv. 2021, 11, 33883–33889. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Akbarinejad, A.; Taylor, J.; Swift, S.; Simonov, D.; Ross, J.; Perera, J.; Kilmartin, P.A.; Travas-Sejdic, J. Charged Laser-Induced Graphene Electrodes Exhibit Strong Capacitance-Based Antibacterial and Antiviral Properties. Appl. Mater. Today 2023, 31, 101753. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Zhou, C.; Zhou, K.; Yu, J.; Su, Y.; Hu, N.; Zhang, Y. Laser-Induced MoOx/Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir 2021, 37, 1596–1604. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, C.; Chen, Y.; Nie, Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials 2022, 12, 2336. [Google Scholar] [CrossRef] [PubMed]
- Misra, U.; Barbhuiya, N.H.; Dixit, N.; Singh, S.P. Photothermal and Joule Heating for Interfacial Evaporation: Synergy through Nanomaterial Incorporation in Laser-Induced Graphene. ACS Appl. Eng. Mater. 2025, 3, 883–893. [Google Scholar] [CrossRef]
- Barbhuiya, N.H.; Misra, U.; Singh, S.P. Stacked Laser-Induced Graphene Joule Heaters for Desalination and Water Recycling. ACS Appl. Nano Mater. 2022, 5, 10991–11002. [Google Scholar] [CrossRef]
- Barbhuiya, N.H.; Kumar, A.; Singh, S.P. A Journey of Laser-Induced Graphene in Water Treatment. Trans. Indian. Natl. Acad. Eng. 2021, 6, 159–171. [Google Scholar] [CrossRef]
- Gizer, G.; Önal, U.; Ram, M.; Şahiner, N. Biofouling and Mitigation Methods: A Review. Biointerface Res. Appl. Chem. 2023, 13. [Google Scholar] [CrossRef]
- Jayaprakashvel, M.; Sami, M.; Subramani, R. Applications. In Nanostructures for Antimicrobial and Antibiofilm Applications; Prasad, R., Siddhardha, B., Dyavaiah, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 233–272. ISBN 978-3-030-40337-9. [Google Scholar]
- Shehata, N.; Egirani, D.; Olabi, A.G.; Inayat, A.; Abdelkareem, M.A.; Chae, K.-J.; Sayed, E.T. Membrane-Based Water and Wastewater Treatment Technologies: Issues, Current Trends, Challenges, and Role in Achieving Sustainable Development Goals, and Circular Economy. Chemosphere 2023, 320, 137993. [Google Scholar] [CrossRef] [PubMed]
- El Batouti, M.; Alharby, N.F.; Elewa, M.M. Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. Separations 2022, 9, 1. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G.A. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. Membranes 2022, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- Díez, B.; Rosal, R. A Critical Review of Membrane Modification Techniques for Fouling and Biofouling Control in Pressure-Driven Membrane Processes. Nanotechnol. Environ. Eng. 2020, 5, 15. [Google Scholar] [CrossRef]
- Pourhashem, S.; Seif, A.; Saba, F.; Nezhad, E.G.; Ji, X.; Zhou, Z.; Zhai, X.; Mirzaee, M.; Duan, J.; Rashidi, A.; et al. Antifouling Nanocomposite Polymer Coatings for Marine Applications: A Review on Experiments, Mechanisms, and Theoretical Studies. J. Mater. Sci. Technol. 2022, 118, 73–113. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S.; Xing, S.; Wang, T.; Hou, J.; Zhao, Y.; Li, W. Research Progress of Marine Anti-Fouling Coatings. Coatings 2024, 14, 1227. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, R.; Anand, J.; Gupta, R.; Gupta, A.; Pant, K.; Dohare, S.; Tiwari, P.; Kesari, K.K.; Krishnan, S.; et al. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS Appl. Nano Mater. 2023, 6, 12828–12848. [Google Scholar] [CrossRef]
- Yong, L.X.; Calautit, J.K. A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment. Sustainability 2023, 15, 3394. [Google Scholar] [CrossRef]
- Panigrahi, S.; Konatam, S.; Tandi, A.; Roy, D.N. A Comprehensive Review of Emerging 3D-Printing Materials against Bacterial Biofilm Growth on the Surface of Healthcare Settings. Biomed. Mater. 2025, 20, 032007. [Google Scholar] [CrossRef] [PubMed]
- Thamaraiselvan, C.; Wang, J.; James, D.K.; Narkhede, P.; Singh, S.P.; Jassby, D.; Tour, J.M.; Arnusch, C.J. Laser-Induced Graphene and Carbon Nanotubes as Conductive Carbon-Based Materials in Environmental Technology. Mater. Today 2020, 34, 115–131. [Google Scholar] [CrossRef]
- Lee, S.W.; Phillips, K.S.; Gu, H.; Kazemzadeh-Narbat, M.; Ren, D. How Microbes Read the Map: Effects of Implant Topography on Bacterial Adhesion and Biofilm Formation. Biomaterials 2021, 268, 120595. [Google Scholar] [CrossRef] [PubMed]
- Carniello, V.; Peterson, B.W.; van der Mei, H.C.; Busscher, H.J. Physico-Chemistry from Initial Bacterial Adhesion to Surface-Programmed Biofilm Growth. Adv. Colloid Interface Sci. 2018, 261, 1–14. [Google Scholar] [CrossRef]
- Singh, S.P.; Ramanan, S.; Kaufman, Y.; Arnusch1, C.J. Laser-Induced Graphene Biofilm Inhibition: Texture Does Matter. ACS Appl. Nano Mater. 2018, 1, 1713–1720. [Google Scholar] [CrossRef]
- Jashrapuria, K.; Singh, S.P. Biofilm Inhibition by Laser-Induced Graphene: Impact of Surface Texture on Rod-Shaped E. coli and Coccus-Shaped Staphylococcus. ACS Appl. Mater. Interfaces 2025, 17, 21819–21829. [Google Scholar] [CrossRef]
- Manderfeld, E.; Nunes Kleinberg, M.; Thamaraiselvan, C.; Arnusch, C.J.; Rosenhahn, A. Thermoregeneration of Fouling-Inhibiting Plastrons on Conductive Laser-Induced Graphene Coatings by Joule Heating. Adv. Mater. Interfaces 2022, 9, 2201336. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, H.; Yang, G.; Zhu, D.; Luan, X.; He, P.; Wei, G. Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. Appl. Sci. 2022, 12, 4834. [Google Scholar] [CrossRef]
- Barbhuiya, N.H.; Singh, S.P. Ex Situ and In Situ Organic Fouling Monitoring in Laser-Induced Graphene-Based Electroconductive Membranes for Desalination and Wastewater Treatment. ACS Appl. Nano Mater. 2024, 7, 12830–12838. [Google Scholar] [CrossRef]
- Zambrano, A.C.; Loiola, L.M.D.; Bukhamsin, A.; Gorecki, R.; Harrison, G.; Mani, V.; Fatayer, S.; Nunes, S.P.; Salama, K.N. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces. ACS Appl. Mater. Interfaces 2024, 16, 4408–4419. [Google Scholar] [CrossRef]
- Pisharody, L.; Thamaraiselvan, C.; Manderfeld, E.; Singh, S.P.; Rosenhahn, A.; Arnusch, C.J. Antimicrobial and Antibiofouling Electrically Conducting Laser-Induced Graphene Spacers in Reverse Osmosis Membrane Modules. Adv. Mater. Interfaces 2022, 9, 2201443. [Google Scholar] [CrossRef]
- Van Volkenburg, T.; Ayoub, D.; Alemán Reyes, A.; Xia, Z.; Hamilton, L. Practical Considerations for Laser-Induced Graphene Pressure Sensors Used in Marine Applications. Sensors 2023, 23, 9044. [Google Scholar] [CrossRef] [PubMed]
- Zhan, M.; Xu, M.; Lin, W.; He, H.; He, C. Graphene Oxide Research: Current Developments and Future Directions. Nanomaterials 2025, 15, 507. [Google Scholar] [CrossRef]
- Cobrado, L.; Silva-Dias, A.; Azevedo, M.M.; Rodrigues, A.G. High-Touch Surfaces: Microbial Neighbours at Hand. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2053–2062. [Google Scholar] [CrossRef]
- Nygren, E.; Strömberg, L.G.; Logenius, J.; Husmark, U.; Löfström, C.; Bergström, B. Potential Sources of Contamination on Textiles and Hard Surfaces Identified as High-Touch Sites near the Patient Environment. PLoS ONE 2023, 18, e0287855. [Google Scholar] [CrossRef]
- Mahanta, U.; Khandelwal, M.; Deshpande, A.S. Antimicrobial Surfaces: A Review of Synthetic Approaches, Applicability and Outlook. J. Mater. Sci. 2021, 56, 17915–17941. [Google Scholar] [CrossRef]
- Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci. 2021, 8, 2100368. [Google Scholar] [CrossRef] [PubMed]
- Doveri, L.; Diaz Fernandez, Y.A.; Dacarro, G. Nanomaterials for Photothermal Antimicrobial Surfaces. ACS Omega 2024, 9, 25575–25590. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.D.; Pisharody, L.; Thamaraiselvan, C.; Gupta, A.; Park, H.; Tesfahunegn, B.A.; Sharma, C.P.; Kleinberg, M.N.; Burch, R.; Arnusch, C.J. Functional Laser-Induced Graphene Composite Art. ACS Appl. Nano Mater. 2022, 5, 11923–11931. [Google Scholar] [CrossRef]
- Wanjari, V.P.; Reddy, A.S.; Duttagupta, S.P.; Singh, S.P. Laser-Induced Graphene-Based Electrochemical Biosensors for Environmental Applications: A Perspective. Environ. Sci. Pollut. Res. 2023, 30, 42643–42657. [Google Scholar] [CrossRef]
- Movaghgharnezhad, S.; Kang, P. Laser-Induced Graphene: Synthesis Advances, Structural Tailoring, Enhanced Properties, and Sensing Applications. J. Mater. Chem. C 2024, 12, 6718–6742. [Google Scholar] [CrossRef]
- Cui, T.-R.; Li, D.; Hirtz, T.; Shao, W.-C.; Zhou, Z.-B.; Ji, S.-R.; Li, X.; Xu, J.-D.; Jian, J.-M.; Chen, Z.-K.; et al. Laser-Induced Graphene for Multifunctional and Intelligent Wearable Systems: For Health Care and Human–Computer Interaction. Appl. Sci. 2023, 13, 4688. [Google Scholar] [CrossRef]
- Huang, L.; Su, J.; Song, Y.; Ye, R. Laser-Induced Graphene: En Route to Smart Sensing. Nano-Micro Lett. 2020, 12, 157. [Google Scholar] [CrossRef]
- Bhatt, S.; Pathak, R.; Punetha, V.D.; Punetha, M. Recent Advances and Mechanism of Antimicrobial Efficacy of Graphene-Based Materials: A Review. J. Mater. Sci. 2023, 58, 7839–7867. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.; Sarkhel, S.; Mukherjee, N.; Jaiswal, A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega 2022, 7, 45962–45980. [Google Scholar] [CrossRef] [PubMed]
- Nasker, S.S.; Ajayan, P.M.; Nayak, S. Emerging Trends and Future Direction of Graphene Family of Materials as Potential Antimicrobials: A Critical Review. ACS Mater. Lett. 2023, 5, 673–693. [Google Scholar] [CrossRef]
- Ravikumar, V.; Mijakovic, I.; Pandit, S. Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. Int. J. Nanomed. 2022, 17, 6707–6721. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pandit, S.; Rahimi, S.; Mijakovic, I. Graphene Nanospikes Exert Bactericidal Effect through Mechanical Damage and Oxidative Stress. Carbon 2024, 218, 118740. [Google Scholar] [CrossRef]
- Zhang, T.; Tremblay, P.-L. Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation? iScience 2020, 23, 101787. [Google Scholar] [CrossRef]
- Mohammed, H.; Kumar, A.; Bekyarova, E.; Al-Hadeethi, Y.; Zhang, X.; Chen, M.; Ansari, M.S.; Cochis, A.; Rimondini, L. Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Front. Bioeng. Biotechnol. 2020, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Z.; Zhang, Y.; Li, Y.; Li, N.; Huang, D.; Xu, B. Interaction with Teichoic Acids Contributes to Highly Effective Antibacterial Activity of Graphene Oxide on Gram-Positive Bacteria. J. Hazard. Mater. 2021, 412, 125333. [Google Scholar] [CrossRef]
- Linklater, D.P.; Baulin, V.A.; Juodkazis, S.; Ivanova, E.P. Mechano-Bactericidal Mechanism of Graphene Nanomaterials. Interface Focus. 2018, 8, 20170060. [Google Scholar] [CrossRef]
- Le, T.-S.D.; Phan, H.-P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.-W.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Available online: https://www.mdpi.com/2079-7737/11/2/155?trk=public_post-text (accessed on 31 May 2025).
- Wang, F.; Wang, K.; Zheng, B.; Dong, X.; Mei, X.; Lv, J.; Duan, W.; Wang, W. Laser-Induced Graphene: Preparation, Functionalization and Applications. Mater. Technol. 2018, 33, 340–356. [Google Scholar] [CrossRef]
- Brustoloni, C.J.-M.; Soltan Khamsi, P.; Kammarchedu, V.; Ebrahimi, A. Systematic Study of Various Functionalization Steps for Ultrasensitive Detection of SARS-CoV-2 with Direct Laser-Functionalized Au-LIG Electrochemical Sensors. ACS Appl. Mater. Interfaces 2024, 16, 49041–49052. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Holoidovsky, L.; Thamaraiselvan, C.; Thakur, A.K.; Singh, S.P.; Meijler, M.M.; Arnusch, C.J. Silver-Doped Laser-Induced Graphene for Potent Surface Antibacterial Activity and Anti-Biofilm Action. Chem. Commun. 2019, 55, 6890–6893. [Google Scholar] [CrossRef]
- Teixeira-Santos, R.; Belo, S.; Vieira, R.; Mergulhão, F.J.M.; Gomes, L.C. Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility. Biomolecules 2023, 13, 1571. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Zhuang, Y.; Chen, Y.; Zhou, Y. Antimicrobial Copper Ion-Graphene Oxide Composite to Inhibit Pseudomonas Aeruginosa Keratitis in Rabbits. MedComm Biomater. Appl. 2023, 2, e56. [Google Scholar] [CrossRef]
- Guo, Z.; Chakraborty, S.; Monikh, F.A.; Varsou, D.-D.; Chetwynd, A.J.; Afantitis, A.; Lynch, I.; Zhang, P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv. Biol. 2021, 5, 2100637. [Google Scholar] [CrossRef]
- Nanomaterial-Based ROS-Mediated Strategies for Combating Bacteria and Biofilms | Journal of Materials Research. Available online: https://link.springer.com/article/10.1557/s43578-021-00134-4 (accessed on 11 June 2025).
- Xia, M.-Y.; Xie, Y.; Yu, C.-H.; Chen, G.-Y.; Li, Y.-H.; Zhang, T.; Peng, Q. Graphene-Based Nanomaterials: The Promising Active Agents for Antibiotics-Independent Antibacterial Applications. J. Control. Release 2019, 307, 16–31. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.; Ng, P.H.; Jahangiri, L.; Huang, Q.; Huang, L.; MacKinnon, B.; Yang, Y.; Nekouei, O.; Yang, Y.; et al. Rapid and Safe Electrochemical Disinfection of Salt Water Using Laser-Induced Graphene Electrodes. Aquaculture 2023, 571, 739479. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, C.P.; Thamaraiselvan, C.; Pisharody, L.; Powell, C.D.; Arnusch, C.J. Low-Voltage Bacterial and Viral Killing Using Laser-Induced Graphene-Coated Non-Woven Air Filters. ACS Appl. Mater. Interfaces 2021, 13, 59373–59380. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.P.; Arnusch, C.J. Laser-Induced Graphene Composite Adhesive Tape with Electro-Photo-Thermal Heating and Antimicrobial Capabilities. Carbon 2022, 196, 102–109. [Google Scholar] [CrossRef]
- Giwa, A. Chapter 7—Electrothermal Membrane Process (Joule Heating). In Electrochemical Membrane Technology; Giwa, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 233–251. ISBN 978-0-443-14005-1. [Google Scholar]
Material | Analyte | LOD (μg L−1) | Range of Detection (μg L−1) | Interferences | Concentration or Ratio | Maximum RSD of the Peak Current by Interference Species (%) | Ref. |
---|---|---|---|---|---|---|---|
PI, LIG | Pb2+ | 0.5 (S/N = 3) | 1–100 | Cl−, CO32−, H2PO4−, SO42−, K+, Na+ or Zn2+ | 10 mg L−1 (all species) | 8.23 | [49] |
PI, LIG/CuNP | Hg2+ | 2.41 | 2–30 | Pb2+, Cd2+, Zn2+, Ni2+, Fe2+, Mn2+, and As3+ | 3.3, 23.6, 18.9, 12.9, 241.8, 25.2, 3.89 mg L−1, respectively | <5 | [50] |
PI, LIG/AuNP | As3+ | 0.18 | 0.2–1.0 | Cu2+, Mg2+, Cd2+, Pb2+, Zn2+, Cr2+, Fe2+, Mn2+ and Ca2+ | 3 mg L−1 (all species) | <7 | [37] |
PI, LIG | Cd2+ | 0.01 | 0.1–160 | Na+, Mg2+, Zn2+, Ca2+, SO42−, NO3−, Cl− and Pb2+ | 20 times higher | <2 | [46] |
PI, LIG | Pb2+ and Cd2+ | 0.4 (both) (S/N = 3) | 0.5–20 | - | - | - | [14] |
PI, LIG/AgNP | Cd2+, Pb2+ and Cu2+ | 0.1 (S/N = 3) | 20–120 | Zn2+, Hg2+ | 400 (both ions) | 0 (both ions) | [9] |
Material | Immobilized Species | Maximum Adsorption Capacity mg g−1 | Cyclic Performance of the Electrodes (Adsorption–Desorption Cycles) | Ref. |
---|---|---|---|---|
PI, LIG | Cd2+, Co2+ and Ni2+ | 3479.80, 1381.50, and 1448.70, respectively. | 4 (all species) | [16] |
PI, LIG/Co4S3) | U (VI) (UO22+) | 2702.79 | 6 | [43] |
PI, LIG/HTO | U (VI) (UO22+) | 1780.89 | - | [17] |
PI, LIG | La, Nd, and Ce | 2510.50, 2349.25, and 2150.75, respectively. | 5 (all species) | [74] |
Membrane | Removal or Treatment of the Target | Applied Performance Enhancement Technologies | Ref. |
---|---|---|---|
PES, LIG/CaCl2 | Desalination | RF | [18] |
PES, LIG/ACF/Phenol–formaldehyde | Water–oil separation | - | [19] |
PES, LIG | Methylene blue dye and salt | IE, JH and solar drive | [26] |
PES, LIG/glycerol | BSA | - | [20] |
PES, LIG Janus/PDMS | Distillation | JH | [85] |
PES, LIG | Iohexol and Cr (VI) | Electrochemical-based treatment | [80] |
PES, LIG/PVA/GA | Wastewater (sludge, bioreactor feedwater) | - | [13] |
PES, LIG/GO/GA | BSA | Electrochemical-based treatment | [23] |
PES, LIG/PVA | BSA | - | [84] |
PES, LIG | Wastewater | - | [27] |
Material | Capacity | Active Material Loading (mg cm−2) | Thickness (µm) | CE (%) | Cycles | Current Density | Battery Type | Ref. |
---|---|---|---|---|---|---|---|---|
PI, LIG | 280 μAh cm−2 | 0.1 | 40–60 | 99 | 100 | 0.100 mA cm−2 | LIBs | [92] |
PI, LIG | ~160 mAh g−1 | ~15 | - | 99 | 250 | ~0.150 A g−1 | LMBs | [96] |
PI, LIG/NMnOMn3O4 | 992 mAh g−1 | ~0.8 | - | 67.3 | 35 | 0.200 A g−1 | LIBs | [97] |
PI, LIG/Al | 115.7 mAh g−1 | - | 37 | 98.5 | 500 | 0.115 A g−1 | LIBs | [98] |
PI, LIG/SnS2 | 597 mAh g−1 | 1.0 | 34 | ~100 | 200 | 0.200 A g−1 | SIBs | [99] |
PI, LIG/MnOx | 20 mAh cm−2 | ~7 | - | 100 | 3000 | 40.0 mA cm−2 | LMBs | [100] |
PI LIG/Ge | 860 mAh g−1 | 0.25 | ~34 | ~60 | 2000 | 2.00 A g−1 | LIBs | [93] |
Material | Areal Capacitance (mF cm−2) | Capacitance Retention % (Cycles) | Current Density (mA cm−2) | Equivalent Series Resistance (Ω) | Electrolyte | Ref. |
---|---|---|---|---|---|---|
PI/Co-MOF (ZIF-67), LIG | 1.36 | >99 (200,000) | 1.0 | 430 | PVA/H2SO4 | [38] |
PI, LIG/MoS2/MnS/Graphene | 50.2 | 95.6 (10,000) | 1.0 | 6.00 | PVA/Na2SO4 | [103] |
PI, LIG/N | 19.8 | 87.6 (10,000) | 2.0 | - | PVA/H2SO4 | [104] |
PI/H3BO3, LIG | 65.7 | ~100 (50,000) | 0.05 | 30.0 | PVA/H2SO4 | [105] |
PI, LIG/Co3O4 | 10.9 | 97.8 (10,000) | 0.08 | 150 | PVA/H2SO4 | [106] |
PI, LIG/Fe3O4 | 644 | 74.0 (900) | 1.0 | - | PVA/H2SO4 | [107] |
PI, LIG (KOH activated) | 32.0 | 95.73 (6000) | 0.20 | - | PVA/H3PO4 | [108] |
Poly (Ph-ddm), LIG | 22.2 | 92.0 (10,000) | 0.20 | - | BMIM-BF4 | [28] |
PET, LIG/MoS2 | 35.3 | 88.7 (5000) | 0.50 | 55.0 | PVA/NaOH | [29] |
PI, LIG/Co3O4−N | 17.9 | ~70 (5000) | 0.10 | 18.0 | PVA/KOH | [109] |
Carbon cloth -Gelatin ink, LIG/MoO2 | 81.8 | 85.1 (10,000) | 1.0 | 64.9 | PVA/H3PO4 | [30] |
PI, LIG/N/P | 69.7 | 84.0 (10,000) | 0.05 | 5.10 | PVA/H2SO4 | [110] |
PI, LIG (Joule heating activated) | 12.6 | 95.94 (10,000) | 1.0 | - | PVA/H3PO4 | [111] |
PI, LIG (KOH activated) | 128 | 82.3 (5000) | 0.2 | 94.6 | PVA/H2SO4 | [112] |
Aramid paper, LIG | 23.8 | 97.0 (10,000) | 0.2 | ~27 | PVA/H2SO4 | [31] |
PBO paper, LIG | 46.3 | 87.0 (6000) | 1.0 | 31.0 | PVA/H2SO4 | [113] |
Parylene-C, LIG | 1.66 | 96.0 (10,000) | 0.50 | - | PVA/H2SO4 | [114] |
Kevlar textile, LIG/P | 125.3 | 88.0 (10,000) | 0.10 | 18.9 | PVA/H2SO4 | [32] |
Poly(furfuryl alcohol) (PFA)/Na2SO4, LIG/Na2SO4 | 9.7 | 103 (12,000) | 0. 50 | ∼26 | PVA/H3PO4 | [115] |
PI, LIG/Ag | 1.20 | 88.0 (1500) | 0.02 | 171 | PVA/KOH | [116] |
PI/FeCl3, LIG/Fe3O4 | 12.0 | 130 (4700) | 1.0 | 129 | PVA/H2SO4 | [117] |
Lignin/Na2SO4/SC(NH2)2, LIG/N/S | 29.9 | 80.0 (5000) | 1.0 | 69.8 | PVA/LiClO4 | [33] |
PI/MoS2, LIG/MoS2 | 14.1 | ~90 (1000) | 0.5 | 209 | PVA/H2SO4 | [118] |
PI, LIG/Nickel ferrite (NFO) | 198 | 97.0 (10,000) | 1.5 | 10.4 | PVA/KOH | [119] |
PI, LIG/Ni | 24.0 | 92.43 (5000) | 0.30 | 39.9 | PVA/KOH | [102] |
Material | Open Circuit Voltage VOC (kV) | Peak Power Density (W m−2) | Peak Power (mW) | Load Resistance (MΩ) | Excitation Frequency (Hz) | Contact Area (cm2) | Ref. |
---|---|---|---|---|---|---|---|
PI, LIG, Aluminum | ~3.50 | 2.40 | ~8.5 | 70.0 | - | 36.0 | [131] |
FEP/PI, LIG | ~0.20 | 47.5 | 15.2 | 0.36 | - | 3.2 | [34] |
PI, LIG | 0.43 | - | 5.0 | 7.0 | 5.0 | 36.0 | [132] |
PI, LIG | 0.19 | 0.202 | - | 40.0 | 7.0 | 15.0 | [133] |
PI, LIG | - | 512 | - | 5.0 | 1.0 | 1.0 | [130] |
Material | Power Conversion Efficiency (PCE) (%) | Ref. |
---|---|---|
PI, LIG | 4.96 | [143] |
PI, LIG/WS2/BFCrO/NiO/Ag | 5.20 | [140] |
Thermoplastic polyimide (TPI)/H3BO3, LIG/BN | 4.99 | [141] |
TPI, LIG/N | 4.59 | [141] |
PI, LIG | 3.80 | [144] |
PI, LIG | 12.5 | [145] |
Polybenzimidazole (PBI) and Ni(acac)2, LIG/NiOX | 14.5 | [142] |
Material | Antimicrobial Mechanisms | Surface Modification | Effective Voltage | Microbe | Antimicrobial Effect | Ref. |
---|---|---|---|---|---|---|
LIG/Tri-MOF | Capture killing. | Trimetallic Metal–Organic Framework (Tri-MOF) | - | P. aeruginosa | ≥95% | [158] |
LIGP | Combined membrane stress and (ROS). | Oxygen Plasma | - | E. coli S. aureus | 92.8% 95.2% | [152] |
LIGC (LIG Composite) | Electrical effects (Joule heating); surface biofilm resistance. | Electrically Enhanced + Textured | 2.5 V | Mixed bacteria | ~6-log reduction at 2.5 V | [81] |
LIG, P-LIG-B, P-LIG-S, P-LIG-SO. | Physical and electrical contact of the bacterial cells with the surfaces. | Electrically Enhanced. | 1.1–2.5V | P. aeruginosa E. coli | 99.9% | [151] |
LIG | Delayed LIG exposure time after applied voltage disconnection (capacitive killing). | Electrically Enhanced | - | P. aeruginosa | ∼ 97% | [153] |
LIG | Temperature-dependent killing. | Joule Heating | - | Airborne Bacteria | 100% | [159] |
LIG | Physical disruption and photothermal heating. | - | - | E. coli S. epidermidis | 99.998% | [160] |
LIG LIG + ZnO LIG + ZnOAg | Zn2+ release and electrostatic interactions, synergistic anti-bactericidal effect between Ag and ZnO. | ZnO and Ag-Doped ZnO Nanocrystals | - | E. coli S. aureus | ∼100% 84% | [161] |
LIG | Electroporation via stored charge discharge. Capacitance-driven charge transfer. | - | 1 to 2 V | E. coli S. aureus | 100% (at 2V) | [162] |
MoOx/Sulfur-Doped Laser-Induced Graphene (MSLIG) | ROS generation. Photothermal effect. Electrostatic repulsion. Physical damage from sharp edges. | Sulfur Doping and MoOx Nanoparticle Deposition. | - | E. coli S. aureus | ~87% reduction in viability after 4 h. | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejo Pat, M.A.; Ezekiel-Hart, H.; Powell, C.D. Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene. Nanomaterials 2025, 15, 1377. https://doi.org/10.3390/nano15171377
Vallejo Pat MA, Ezekiel-Hart H, Powell CD. Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene. Nanomaterials. 2025; 15(17):1377. https://doi.org/10.3390/nano15171377
Chicago/Turabian StyleVallejo Pat, Mario Alejandro, Harriet Ezekiel-Hart, and Camilah D. Powell. 2025. "Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene" Nanomaterials 15, no. 17: 1377. https://doi.org/10.3390/nano15171377
APA StyleVallejo Pat, M. A., Ezekiel-Hart, H., & Powell, C. D. (2025). Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene. Nanomaterials, 15(17), 1377. https://doi.org/10.3390/nano15171377