Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications
Abstract
1. Introduction
2. General Theory of Memristors
3. Capacitive Memristor Theory
4. Mechanisms in Ga2O3 Memristors
4.1. Conductive Filament Theory
4.2. Ionic–Electronic Conduction Theory
4.3. Electrode Selection
5. Review of Current Ga2O3-Based Memristor Devices
6. Future Prospects
7. Challenges
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Lee, E.; Son, J.Y. Resistive Switching Characteristics of NiO Thin Films Influenced by Changes in the Diameter of Nanometer-Scale Top Electrodes. J. Phys. Chem. Lett. 2024, 15, 10927–10930. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Xue, J.; Yang, D.; Zhang, Y.; Lei, X.; Wang, S.; Yan, J.; Zhao, W. Coexistence of multifunctional reversible switching in Ti-doped ZnO RRAM. Chin. J. Phys. 2025, 96, 654–663. [Google Scholar] [CrossRef]
- Siddiqui, G.U.; Rehman, M.M.; Choi, K.H. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer 2016, 100, 102–110. [Google Scholar] [CrossRef]
- Tian, S.; Wang, C.; Wang, Y.; Wang, H.; Gao, C.; Hu, W.; Wei, J.; Chen, F.; Sun, D.; Zheng, X.; et al. Freely Selective Analog and Digital Resistive Switching Behavior of In2Se3 Devices for Storage and Neuromorphic Applications. Adv. Electron. Mater. 2025, 11, 2400734. [Google Scholar] [CrossRef]
- Rehman, M.M.; Yang, B.S.; Yang, Y.J.; Karimov, K.S.; Choi, K.H. Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology. Curr. Appl. Phys. 2017, 17, 533–540. [Google Scholar] [CrossRef]
- Yang, Y.J.; Rehman, M.M.; Siddiqui, G.U.; Na, K.H.; Choi, K.H. Effect of adding a polymer and varying device size on the resistive switching characteristics of perovskite nanocubes heterojunction. Curr. Appl. Phys. 2017, 17, 1733–1741. [Google Scholar] [CrossRef]
- Kwon, O.; Shin, J.; Chung, D.; Kim, S. Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system. Ceram. Int. 2022, 48, 30482–30489. [Google Scholar] [CrossRef]
- Rehman, M.M.; Siddiqui, G.U.; ur Rehman, M.M.; Kim, H.B.; Doh, Y.H.; Choi, K.H. 2D nanocomposite of hexagonal boron nitride nanoflakes and molybdenum disulfide quantum dots applied as the functional layer of all-printed flexible memory device. Mater. Res. Bull. 2018, 105, 28–35. [Google Scholar] [CrossRef]
- Moore, A.; Rafique, S.; Llewelyn, C.; Lamb, D.; Li, L. A Review of Ga2O3 Heterojunctions for Deep-UV Photodetection: Current Progress, Methodologies, and Challenges. Adv. Electron. Mater. 2025, 11, 2400898. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Jessen, G.H. Guest Editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.H.; Kim, H.J.; Lee, S.N. Improvements in Resistive and Capacitive Switching Behaviors in Ga2O3 Memristors via High-Temperature Annealing Process. Materials 2024, 17, 2727. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.O.; Sung Mo, K. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Liu, S.Q.; Wu, N.J.; Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 2000, 76, 2749–2751. [Google Scholar] [CrossRef]
- Tsui, S.; Baikalov, A.; Cmaidalka, J.; Sun, Y.Y.; Wang, Y.Q.; Xue, Y.Y.; Chu, C.W.; Chen, L.; Jacobson, A.J. Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 2004, 85, 317–319. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Chew, Z.J.; Li, L. A discrete memristor made of ZnO nanowires synthesized on printed circuit board. Mater. Lett. 2013, 91, 298–300. [Google Scholar] [CrossRef]
- Chew, Z.; Li, L. Printed circuit board based memristor in adaptive lowpass filter. Electron. Lett. 2012, 48, 1610–1611. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Chew, Z. A Cu/ZnO Nanowire/Cu Resistive Switching Device. Nano-Micro Lett. 2013, 5, 159–162. [Google Scholar] [CrossRef]
- Li, L. Electromechanically tuned resistive switching device. Appl. Phys. Lett. 2013, 103, 233512. [Google Scholar] [CrossRef]
- Li, L. Electromechanical resistive switching via back-to-back Schottky junctions. AIP Adv. 2015, 5, 097138. [Google Scholar] [CrossRef]
- Pershin, Y.; Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 2010, 60, 145–227. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, X.; Zhou, G.; Chen, Y.; Ke, C.; Zhou, W.; Sun, B.; Zhao, Y. Mechanism and Application of Capacitive-Coupled Memristive Behavior Based on a Biomaterial Developed Memristive Device. ACS Appl. Electron. Mater. 2021, 3, 5537–5547. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, J.H.; Choi, J.; Kim, Y.S.; Lee, S.N. Correlation between oxygen flow-controlled resistive switching and capacitance behavior in gallium oxide memristors grown via RF sputtering. Heliyon 2023, 9, e23157. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Kim, H.; Choi, J.; Oh, J.; Choi, D.; Byun, J.; Ahn, S.E.; Lee, S.N. Oxide Semiconductor Memristor-Based Optoelectronic Synaptic Devices With Quaternary Memory Storage. Adv. Electron. Mater. 2024, 10, 2300863. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, Q.; Sun, J.; Dai, J.; Cheng, C.; Huang, H. Synaptic properties of GaOx-based memristor with amorphous GaOx deposited by RF magnetic sputtering. J. Appl. Phys. 2024, 135, 184502. [Google Scholar] [CrossRef]
- Sato, K.; Hayashi, Y.; Masaoka, N.; Tohei, T.; Sakai, A. High-temperature operation of gallium oxide memristors up to 600 K. Sci. Rep. 2023, 13, 1261. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Lin, Z.; Bai, H.; Cui, D.; Su, J.; Zhang, J.; Hao, Y.; Chang, J. Photo-synaptic Memristor Devices from Solution-processed Ga2O3 Thin Films. Adv. Electron. Mater. 2025, 11, 2400512. [Google Scholar] [CrossRef]
- Wang, L.W.; Huang, C.W.; Lee, K.J.; Chu, S.Y.; Wang, Y.H. Multi-Level Resistive Al/Ga2O3/ITO Switching Devices with Interlayers of Graphene Oxide for Neuromorphic Computing. Nanomaterials 2023, 13, 1851. [Google Scholar] [CrossRef]
- Aoki, Y.; Wiemann, C.; Feyer, V.; Kim, H.S.; Schneider, C.M.; Ill-Yoo, H.; Martin, M. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 2014, 5, 3473. [Google Scholar] [CrossRef]
- Almadhoun, M.N.; Speckbacher, M.; Olsen, B.C.; Luber, E.J.; Sayed, S.Y.; Tornow, M.; Buriak, J.M. Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon. Nano Lett. 2021, 21, 2666–2674. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Jamir, A.; Longkumer, B.; Souayeh, B.; Sadaf, S.; Moirangthem, B. Bipolar resistive switching behavior of bilayer β-Ga2O3/WO3 thin film memristor device. J. Alloys Compd. 2025, 1010, 177032. [Google Scholar] [CrossRef]
- Kim, H.; Sohn, A.; Kim, D.W. Silver Schottky contacts to Zn-polar and O-polar bulk ZnO grown by pressurized melt-growth method. Semicond. Sci. Technol. 2012, 27, 035010. [Google Scholar] [CrossRef]
- Uddin Jewel, M.; Hasan, S.; Ahmad, I. A comprehensive study of defects in gallium oxide by density functional theory. Comput. Mater. Sci. 2023, 218, 111950. [Google Scholar] [CrossRef]
- Hota, M.K.; Pazos, S.; Lanza, M.; Alshareef, H.N. A review of MXene memristors and their applications. Mater. Sci. Eng. R Rep. 2025, 164, 100983. [Google Scholar] [CrossRef]
- Fernandez, E.; Marquez, A.; Gallego, S.; Fuentes, R.; Garcia, C.; Pascual, I. Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage. J. Light. Technol. 2010, 28, 776–783. [Google Scholar] [CrossRef]
- Khan, A.I.; Yeung, C.W.; Hu, C.; Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 11.3.1–11.3.4. [Google Scholar] [CrossRef]
- Robinson, T.M.; Hutmacher, D.W.; Dalton, P.D. The Next Frontier in Melt Electrospinning: Taming the Jet. Adv. Funct. Mater. 2019, 29, 1904664. [Google Scholar] [CrossRef]
- Kuzum, D.; Yu, S.; Philip Wong, H.S. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef]
- Barraj, I.; Mestiri, H.; Masmoudi, M. Overview of Memristor-Based Design for Analog Applications. Micromachines 2024, 15, 505. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef]
- Cui, D.; Pei, M.; Lin, Z.; Wang, Y.; Zhang, H.; Gao, X.; Yuan, H.; Li, Y.; Zhang, J.; Hao, Y.; et al. Coexistence of unipolar and bipolar resistive switching in optical synaptic memristors and neuromorphic computing. Chip 2025, 4, 100122. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Liu, L.; An, Y.; Gao, Z.; Guo, P. Bipolar resistive switching of Pt/Ga2O3-x/SiC/Pt thin film with ultrahigh OFF/ON resistance ratios. Nanotechnology 2020, 31, 225206. [Google Scholar] [CrossRef]
- Sivakumar, C.; Tsai, G.H.; Chung, P.F.; Balraj, B.; Lin, Y.F.; Ho, M.S. High-Quality Single-Crystalline ?-Ga2O3 Nanowires: Synthesis to Nonvolatile Memory Applications. Nanomaterials 2021, 11, 2013. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.H.; Lee, S.H.; Noh, T.; Ahn, S.E.; Lee, S.N. Ultraviolet to red wavelength-dependent gallium oxide memristor-based multi-level optoelectronic synapse device. J. Alloys Compd. 2025, 1017, 179053. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.H.; Lee, S.H.; Lee, S.N. Ga2O3-Based Optoelectronic Memristor and Memcapacitor Synapse for In-Memory Sensing and Computing Applications. Nanomaterials 2024, 14, 1972. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Xu, R.; Wang, Y.; Wang, J.; Wang, T.; Zhao, Y. A Self-Driven Ga2O3 Memristor Synapse for Humanoid Robot Learning. Small Methods 2025, 9, 2400989. [Google Scholar] [CrossRef] [PubMed]
- Masaoka, N.; Hayashi, Y.; Tohei, T.; Sakai, A. Interface engineering of amorphous gallium oxide crossbar array memristors for neuromorphic computing. Jpn. J. Appl. Phys. 2023, 62, SC1035. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Li, P.; Chen, Y.; Yan, Y.; Zhu, B.; Hwang, C.S.; Mi, W.; Zhao, J.; Zhang, K.; et al. Resistive random access memory based on gallium oxide thin films for self-powered pressure sensor systems. Ceram. Int. 2020, 46, 21141–21148. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, T.; Li, W.; Hu, Y.; Dang, X.; Chang, Y.; Lu, H.; Pan, C.; Dong, X.; Zhang, B. DUV optoelectronic bionic synapse based on the MOCVD-deposited amorphous gallium oxide film. Mater. Lett. 2024, 363, 136304. [Google Scholar] [CrossRef]
- Moore, A.; Li, L.; Shao, H.; Tang, X.; Liang, H.; Mei, Z.; Hou, Y. A capacitance-coupled Ga2O3 memristor. AIP Adv. 2025, 15, 045309. [Google Scholar] [CrossRef]
- Almutairi, A.; Xhameni, A.; Guo, X.; Chircă, I.; Nicolosi, V.; Hofmann, S.; Lombardo, A. Controlled Fabrication of Native Ultra-Thin Amorphous Gallium Oxide From 2D Gallium Sulfide for Emerging Electronic Applications. Adv. Mater. Interfaces 2024, 12, 2400481. [Google Scholar] [CrossRef]
- Li, Z.; Tang, W.; Zhang, B.; Yang, R.; Miao, X. Emerging memristive neurons for neuromorphic computing and sensing. Sci. Technol. Adv. Mater. 2023, 24, 2188878. [Google Scholar] [CrossRef]
- Nirmal, K.A.; Kumbhar, D.D.; Kesavan, A.V.; Dongale, T.D.; Kim, T.G. Advancements in 2D layered material memristors: Unleashing their potential beyond memory. Npj 2D Mater. Appl. 2024, 8, 83. [Google Scholar] [CrossRef]
- Qin, S.; Tao, Y.; Hu, T.; Zhang, S.; Feng, C.; Lv, L.; Ma, G.; Rao, Y.; Shen, L.; Wan, H.; et al. Advances in two-dimensional heterojunction for sophisticated memristors. Mater. Today Phys. 2024, 41, 101336. [Google Scholar] [CrossRef]
- Zhao, X.; Menzel, S.; Polian, I.; Schmidt, H.; Du, N. Review on Resistive Switching Devices Based on Multiferroic BiFeO3. Nanomaterials 2023, 13, 1325. [Google Scholar] [CrossRef]
- Shivani; Kaur, D.; Ghosh, A.; Kumar, M. A strategic review on gallium oxide based power electronics: Recent progress and future prospects. Mater. Today Commun. 2022, 33, 104244. [Google Scholar] [CrossRef]
- Guseinov, D.V.; Matyushkin, I.V.; Chernyaev, N.V.; Mikhaylov, A.N.; Pershin, Y.V. Capacitive effects can make memristors chaotic. Chaos Solitons Fractals 2021, 144, 110699. [Google Scholar] [CrossRef]
Electrode Material | Ga2O3 Thickness (nm) | Deposition Method | On/Off Ratio | Endurance (Cycles) | Retention (s) | Ref |
---|---|---|---|---|---|---|
Pt/Ga2O3/ITO | - | PLD | 10 | 100 | - | [31] |
Pt/Ga2O3/SiC/Pt | - | PLD | 103 | 80 | 104 | [47] |
Au/Ga2O3/Au | - | VLS | 10 | 200 | 103 | [48] |
Pt/Ga2O3/ITO | 90 | PLD | 102 | 30 | - | [34] |
Pt/Ga2O3/Pt | 100 | RF sputtering | - | 100 | - | [49] |
Pt/Ga2O3/Pt | 100 | RF sputtering | - | 100 | - | [50] |
Pt/Ga2O3/Pt | 100 | RF sputtering | 103 | 100 | 104 | [29] |
Ag/Ga2O3/Pt | 100 | RF sputtering | 108 | 30 | - | [14] |
W/Ga2O3/ITO | 7 | RF sputtering | - | - | - | [51] |
ITO/Ga2O3/Pt/Ti | 70 | PLD | 10 | - | 104 | [52] |
Au/Ga2O3/WO3/Ag | 80 | E-beam evaporation | 182 | 300 | 103 | [36] |
Ta/Ga2O3/Pt | 20 | RF sputtering | 50 | 3 × 106 | 104 | [53] |
Au/Ti/Ga2O3/Ti/Au | - | MOCVD | - | - | - | [54] |
Al/GO/Ga2O3/ITO | 15 | RF sputtering | 103 | 100 | 104 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, A.; Hou, Y.; Li, L. Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications. Nanomaterials 2025, 15, 1365. https://doi.org/10.3390/nano15171365
Moore A, Hou Y, Li L. Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications. Nanomaterials. 2025; 15(17):1365. https://doi.org/10.3390/nano15171365
Chicago/Turabian StyleMoore, Alfred, Yaonan Hou, and Lijie Li. 2025. "Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications" Nanomaterials 15, no. 17: 1365. https://doi.org/10.3390/nano15171365
APA StyleMoore, A., Hou, Y., & Li, L. (2025). Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications. Nanomaterials, 15(17), 1365. https://doi.org/10.3390/nano15171365