Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide
Abstract
1. Introduction
2. Materials and Methods
2.1. Single-Wavelength Inverse Design
2.2. Multi-Wavelength Inverse Design
2.3. Monochromatic Design
2.4. Segmented Design
2.5. Simulation Details
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile Multifunctional Photonic Components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef]
- Wang, Q.S.; Fang, Y.; Meng, Y.; Hao, H.; Li, X.; Pu, M.; Ma, X.; Luo, X. Vortex-Field Enhancement through High-Threshold Geometric Metasurface. Opto-Electron. Adv. 2024, 7, 240112. [Google Scholar] [CrossRef]
- Zhang, J.C.; Chen, M.K.; Fan, Y.; Chen, Q.; Chen, S.; Yao, J.; Liu, X.; Xiao, S.; Tsai, D.P. Miniature Tunable Airy Beam Optical Meta-Device. Opto-Electron. Adv. 2024, 7, 230171. [Google Scholar] [CrossRef]
- Jo, Y.; Park, H.; Yoon, H.; Kim, I. Advanced Biological Imaging Techniques Based on Metasurfaces. Opto-Electron. Adv. 2024, 7, 240122. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Liu, H.; Wu, R.; Jiang, X.; Fu, Q.; Zhao, Z.; Zhao, Y.; Gao, Y.; Yu, B.; et al. Miniature Two-Photon Microscopic Imaging Using Dielectric Metalens. Nano Lett. 2023, 23, 8256–8263. [Google Scholar] [CrossRef]
- Arbabi, E.; Li, J.; Hutchins, R.J.; Kamali, S.M.; Arbabi, A.; Horie, Y.; Van Dorpe, P.; Gradinaru, V.; Wagenaar, D.A.; Faraon, A. Two-Photon Microscopy with a Double-Wavelength Metasurface Objective Lens. Nano Lett. 2018, 18, 4943–4948. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, M.; Liu, S.; Sun, D.; Xu, Y.; Cheng, J.; Zhou, A.; Ju, D.; Ma, Z. Polarization-Insensitive Micro-Metalens for High-Resolution and Miniaturized All-Fiber Two-Photon Microendoscopic Fluorescence Imaging. Opt. Commun. 2019, 445, 76–83. [Google Scholar] [CrossRef]
- Barulin, A.; Kim, Y.; Oh, D.K.; Jang, J.; Park, H.; Rho, J.; Kim, I. Dual-Wavelength Metalens Enables Epi-Fluorescence Detection from Single Molecules. Nat. Commun. 2024, 15, 26. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Q.; Zhang, N.; Dong, X.; Ullah, N.; Wang, Y.; Li, X.; Huang, L. Raman Spectroscopy Fiber Probe Based on Metalens and Multimode Fiber for Malachite Green Determination. IEEE Sens. J. 2023, 23, 16866–16872. [Google Scholar] [CrossRef]
- Lin, P.; Chen, W.T.; Yousef, K.; Marchioni, J.; Zhu, A.; Capasso, F.; Cheng, J.-X. Coherent Raman Scattering Imaging with a Near-Infrared Achromatic Metalens. APL Photonics 2021, 6, 96107. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Badloe, T.; Kim, Y.; Kim, J.; Park, H.; Barulin, A.; Diep, Y.N.; Cho, H.; Kim, W.-S.; Kim, Y.-K.; Kim, I.; et al. Bright-Field and Edge-Enhanced Imaging Using an Electrically Tunable Dual-Mode Metalens. ACS Nano 2023, 17, 14678–14685. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Chen, W.T.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Rousso, D.; Capasso, F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595–4600. [Google Scholar] [CrossRef]
- Song, W.; Guo, C.; Zhao, Y.; Wang, Y.; Zhu, S.; Min, C.; Yuan, X. Ultraviolet Metasurface-Assisted Photoacoustic Microscopy with Great Enhancement in DOF for Fast Histology Imaging. Photoacoustics 2023, 32, 100525. [Google Scholar] [CrossRef]
- Barulin, A.; Barulina, E.; Oh, D.K.; Jo, Y.; Park, H.; Park, S.; Kye, H.; Kim, J.; Yoo, J.; Kim, J.; et al. Axially Multifocal Metalens for 3D Volumetric Photoacoustic Imaging of Neuromelanin in Live Brain Organoid. Sci. Adv. 2025, 11, eadr0654. [Google Scholar] [CrossRef]
- Deng, M.; Kanwal, S.; Wang, Z.; Cai, C.; Cheng, Y.; Guan, J.; Hu, G.; Wang, J.; Wen, J.; Chen, L. Dielectric Metasurfaces for Broadband Phase-Contrast Relief-Like Imaging. Nano Lett. 2024, 24, 14641–14647. [Google Scholar] [CrossRef]
- Pahlevaninezhad, H.; Khorasaninejad, M.; Huang, Y.-W.; Shi, Z.; Hariri, L.P.; Adams, D.C.; Ding, V.; Zhu, A.; Qiu, C.-W.; Capasso, F. Nano-Optic Endoscope for High-Resolution Optical Coherence Tomography in Vivo. Nat. Photonics 2018, 12, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Gui, X.; Zhou, P.; Hong, Z. Physical Explanation of Fabry–Pérot Cavity for Broadband Bilayer Metamaterials Polarization Converter. J. Light. Technol. 2018, 36, 2322–2327. [Google Scholar] [CrossRef]
- Nan, T.; Zhao, H.; Guo, J.; Wang, X.; Tian, H.; Zhang, Y. Generation of Structured Light Beams with Polarization Variation along Arbitrary Spatial Trajectories Using Tri-Layer Metasurfaces. Opto-Electron. Sci. 2024, 3, 230052. [Google Scholar] [CrossRef]
- Dey, S.; Dolci, M.; Zijlstra, P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef]
- Chen, B.; Nolan, J.; Zhang, X. MetaBioLiq: A Wearable Passive Metasurface Aided mmWave Sensing Platform for BioFluids. In Proceedings of the 30th Annual International Conference on Mobile Computing and Networking, Washington, DC, USA, 18–22 November 2024; ACM: Washington, DC, USA, 2024; pp. 1192–1206. [Google Scholar]
- Du Nguyen, D.; Shuklin, F.; Barulina, E.; Albitskaya, H.; Novikov, S.; Chernov, A.I.; Kim, I.; Barulin, A. Recent Advances in Dynamic Single-Molecule Analysis Platforms for Diagnostics: Advantages over Bulk Assays and Miniaturization Approaches. Biosens. Bioelectron. 2025, 278, 117361. [Google Scholar] [CrossRef] [PubMed]
- Yaadav, R.; Trofymchuk, K.; Dass, M.; Behrendt, V.; Hauer, B.; Schütz, J.; Close, C.; Scheckenbach, M.; Ferrari, G.; Maeurer, L.; et al. Bringing Attomolar Detection to the Point-of-Care with Nanopatterned DNA Origami Nanoantennas. Adv. Mater. 2025, e07407. [Google Scholar] [CrossRef]
- Kayyil Veedu, M.; Wenger, J. Breaking the Low Concentration Barrier of Single-Molecule Fluorescence Quantification to the Sub-Picomolar Range. Small Methods 2025, 2401695. [Google Scholar] [CrossRef]
- Sanaee, M.; Sandberg, E.; Ronquist, K.G.; Morrell, J.M.; Widengren, J.; Gallo, K. Coincident Fluorescence-Burst Analysis of the Loading Yields of Exosome-Mimetic Nanovesicles with Fluorescently-Labeled Cargo Molecules. Small 2022, 18, 2106241. [Google Scholar] [CrossRef]
- Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D’Auria, S. Fluorescence-Based Biosensors. In Spectroscopic Methods of Analysis: Methods and Protocols; Bujalowski, W.M., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 193–216. ISBN 978-1-61779-806-1. [Google Scholar]
- Li, Z.; Liu, Y.; Zhang, C.; Qiao, Y.; Deng, R.; Shi, Y.; Li, Z. On-Chip Direction-Multiplexed Meta-Optics for High-Capacity 3D Holography. Adv. Funct. Mater. 2024, 34, 2312705. [Google Scholar] [CrossRef]
- Deng, L.; Cai, Z.; Liu, Y. Functionality Expansion of Guided Mode Radiation via On-Chip Metasurfaces. Nano Lett. 2024, 24, 9042–9049. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, X.; Duan, Y.; Huang, H.; Zhang, L.; Chang, S.; Guo, X.; Ni, X. Metasurface-Dressed Two-Dimensional on-Chip Waveguide for Free-Space Light Field Manipulation. ACS Photonics 2022, 9, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Wang, Z.; Gao, S.; Zhu, S.; Li, T. Manipulating Guided Wave Radiation with Integrated Geometric Metasurface. Nanophotonics 2022, 11, 1923–1930. [Google Scholar] [CrossRef]
- Yang, R.; Wan, S.; Shi, Y.; Wang, Z.; Tang, J.; Li, Z. Immersive Tuning the Guided Waves for Multifunctional On-Chip Metaoptics. Laser Photonics Rev. 2022, 16, 2200127. [Google Scholar] [CrossRef]
- Rane, S.; Prabhu, S.; Chowdhury, D.R. Physics and Applications of Terahertz Metagratings. Opto-Electron. Sci. 2024, 3, 230049. [Google Scholar] [CrossRef]
- Ruixing, X.; Dong, Z.; Ziqin, L.; Kun, H. Metasurface Beamsplitter with Large Field of View and Equal Diffraction Angle Interval. Opto-Electron. Eng. 2024, 51, 240141. [Google Scholar]
- Sun, Z.; Yan, S.; Chen, K.; Lin, Z.; Ye, Y.; Xu, S.; Sun, J.; Yan, Q.; Guo, T.; Chen, E. Single-Layer Waveguide with Compound Metasurfaces for Highly Efficient and Chromatic-Aberration-Free Augmented Reality near-Eye Displays. Opt. Lasers Eng. 2024, 178, 108157. [Google Scholar] [CrossRef]
- Moon, S.; Kim, S.; Kim, J.; Lee, C.-K.; Rho, J. Single-Layer Waveguide Displays Using Achromatic Metagratings for Full-Colour Augmented Reality. Nat. Nanotechnol. 2025, 20, 747–754. [Google Scholar] [CrossRef]
- Ramachandra, R.A.O. Fluorescence Correlation Spectroscopy: Simulations and Bio-Chemical Applications Based on Solid Immersion Lens Concept. Ph.D. Thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2006. [Google Scholar]
- Jerome, W.G.; Price, R.L. (Eds.) Fluorescence Microscopy. In Basic Confocal Microscopy; Springer: New York, NY, USA, 2011; pp. 29–59. ISBN 978-0-387-78175-4. [Google Scholar]
- Balli, F.; Sultan, M.; Lami, S.K.; Hastings, J.T. A Hybrid Achromatic Metalens. Nat. Commun. 2020, 11, 3892. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J.; Wu, Q.; Martins, A.; Sun, Q.; Liu, Z.; Long, Y.; Martins, E.R.; Li, J.; Liang, H. RGB Achromatic Metalens Doublet for Digital Imaging. Nano Lett. 2022, 22, 3969–3975. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Sriram, S.; Withayachumnankul, W. 3D Terahertz Confocal Imaging with Chromatic Metasurface. Laser Photonics Rev. 2025, 19, 2401011. [Google Scholar] [CrossRef]
- Shuklin, F.A.; Barulina, E.Y.; Novikov, S.M.; Chernov, A.I.; Barulin, A.V. Concept of a Convex On-Chip Metalens as a Miniature Sensor of Fluorescence of Single Molecules. Jetp Lett. 2024, 120, 687–694. [Google Scholar] [CrossRef]
- Hsieh, P.-Y.; Fang, S.-L.; Lin, Y.-S.; Huang, W.-H.; Shieh, J.-M.; Yu, P.; Chang, Y.-C. Metasurfaces on Silicon Photonic Waveguides for Simultaneous Emission Phase and Amplitude Control. Opt. Express 2023, 31, 12487–12496. [Google Scholar] [CrossRef]
- Hsieh, P.-Y.; Fang, S.-L.; Lin, Y.-S.; Huang, W.-H.; Shieh, J.-M.; Yu, P.; Chang, Y.-C. Integrated Metasurfaces on Silicon Photonics for Emission Shaping and Holographic Projection. Nanophotonics 2022, 11, 4687–4695. [Google Scholar] [CrossRef] [PubMed]
- Barulina, E.; Nguyen, D.D.; Shuklin, F.; Podobrii, M.; Novikov, S.; Chernov, A.; Kim, I.; Barulin, A. Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing. Sensors 2024, 24, 7781. [Google Scholar] [CrossRef]
- Zu, X.; Sun, X.; Yan, W.; Sha, W.E.I.; Qiu, M. Fast and Efficient Inverse Design Framework for Multifunctional Metalenses. Laser Photonics Rev. 2025, 19, 2400886. [Google Scholar] [CrossRef]
- Lin, Z.; Roques-Carmes, C.; Christiansen, R.E.; Soljačić, M.; Johnson, S.G. Computational Inverse Design for Ultra-Compact Single-Piece Metalenses Free of Chromatic and Angular Aberration. Appl. Phys. Lett. 2021, 118, 41104. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, J.; Li, J.; Jing, X.; Li, X.; Huang, L.; Wang, Y. Multiwavelength Achromatic Metalens in Visible by Inverse Design. Adv. Opt. Mater. 2023, 11, 2300077. [Google Scholar] [CrossRef]
- Li, Z.; Pestourie, R.; Lin, Z.; Johnson, S.G.; Capasso, F. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9, 2178–2192. [Google Scholar] [CrossRef]
- Chung, H.; Miller, O.D. High-NA Achromatic Metalenses by Inverse Design. Opt. Express 2020, 28, 6945–6965. [Google Scholar] [CrossRef]
- Li, Z.; Pestourie, R.; Park, J.-S.; Huang, Y.-W.; Johnson, S.G.; Capasso, F. Inverse Design Enables Large-Scale High-Performance Meta-Optics Reshaping Virtual Reality. Nat. Commun. 2022, 13, 2409. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Tian, Y.; Li, C.; Huang, W.; Liu, Y.; Jin, Y.; Fang, B.; Hong, Z.; Jing, X. Focus Control of Wide-Angle Metalens Based on Digitally Encoded Metasurface. Opto-Electron. Adv. 2024, 7, 240095-1. [Google Scholar] [CrossRef]
- Yu, Z.; Li, M.; Xing, Z.; Gao, H.; Liu, Z.; Pu, S.; Mao, H.; Cai, H.; Ma, Q.; Ren, W.; et al. Genetic Algorithm Assisted Meta-Atom Design for High-Performance Metasurface Optics. Opto-Electron. Sci. 2024, 3, 240016-1. [Google Scholar] [CrossRef]
- Mansouree, M.; McClung, A.; Samudrala, S.; Arbabi, A. Large-Scale Parametrized Metasurface Design Using Adjoint Optimization. ACS Photonics 2021, 8, 455–463. [Google Scholar] [CrossRef]
- Dainese, P.; Marra, L.; Cassara, D.; Portes, A.; Oh, J.; Yang, J.; Palmieri, A.; Rodrigues, J.R.; Dorrah, A.H.; Capasso, F. Shape Optimization for High Efficiency Metasurfaces: Theory and Implementation. Light Sci. Appl. 2024, 13, 300. [Google Scholar] [CrossRef]
- Zhang, C.; Divitt, S.; Fan, Q.; Zhu, W.; Agrawal, A.; Lu, Y.; Xu, T.; Lezec, H.J. Low-Loss Metasurface Optics down to the Deep Ultraviolet Region. Light. Sci. Appl. 2020, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Eggeling, C.; Widengren, J.; Brand, L.; Schaffer, J.; Felekyan, S.; Seidel, C.A.M. Analysis of Photobleaching in Single-Molecule Multicolor Excitation and Förster Resonance Energy Transfer Measurements. J. Phys. Chem. A 2006, 110, 2979–2995. [Google Scholar] [CrossRef]
- Barulin, A.; Kim, I. Hyperlens for Capturing Sub-Diffraction Nanoscale Single Molecule Dynamics. Opt. Express 2023, 31, 12162–12174. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.W.; Minkov, M.; Liu, V.; Yu, Z.; Fan, S. A Perspective on the Pathway toward Full Wave Simulation of Large Area Metalenses. Appl. Phys. Lett. 2021, 119, 150502. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S. Integrated Compact Optical Vortex Beam Emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Chen, X.; Duan, Y.; Ni, X. Molding Free-Space Light with Guided Wave–Driven Metasurfaces. Sci. Adv. 2020, 6, eabb4142. [Google Scholar] [CrossRef]
- Kang, C.; Park, C.; Lee, M.; Kang, J.; Jang, M.S.; Chung, H. Large-Scale Photonic Inverse Design: Computational Challenges and Breakthroughs. Nanophotonics 2024, 13, 3765–3792. [Google Scholar] [CrossRef] [PubMed]
- Pestourie, R.; Pérez-Arancibia, C.; Lin, Z.; Shin, W.; Capasso, F.; Johnson, S.G. Inverse Design of Large-Area Metasurfaces. Opt. Express 2018, 26, 33732–33747. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, C.; Liu, F.; Chen, X.; Liang, G.; Ren, F.; Liang, S.; Song, C.; Shi, J.; Qiu, W.; et al. On-Chip Multicolor Photoacoustic Imaging Flow Cytometry. Anal. Chem. 2021, 93, 8134–8142. [Google Scholar] [CrossRef]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Springer US: Boston, MA, USA, 1984; ISBN 978-0-412-24250-2. [Google Scholar]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; IEEE Press Series on Electromagnetic Wave Theory; IEEE Press: Piscataway, NJ, USA; Wiley-Interscience: Chichester, NY, USA, 2001; ISBN 978-0-471-20806-8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podobrii, M.; Barulina, E.; Barulin, A. Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide. Nanomaterials 2025, 15, 1337. https://doi.org/10.3390/nano15171337
Podobrii M, Barulina E, Barulin A. Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide. Nanomaterials. 2025; 15(17):1337. https://doi.org/10.3390/nano15171337
Chicago/Turabian StylePodobrii, Mikhail, Elena Barulina, and Aleksandr Barulin. 2025. "Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide" Nanomaterials 15, no. 17: 1337. https://doi.org/10.3390/nano15171337
APA StylePodobrii, M., Barulina, E., & Barulin, A. (2025). Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide. Nanomaterials, 15(17), 1337. https://doi.org/10.3390/nano15171337