Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies
Abstract
1. Introduction
2. Fundamental Concepts in Dielectric and Ferroelectric Ceramic Nanocomposites
2.1. Dielectric Behavior in Ceramic Nanocomposites
2.2. Ferroelectric Behavior and Domain Switching Dynamics
2.3. Interfacial Polarization and Maxwell–Wagner Effects
2.4. Grain Size Effects, Doping Strategies, and Sintering Behavior
2.5. Relaxor Ferroelectrics: Structure and Energy Storage Potential
3. Techniques and Microstructural Control in Nanocomposites
3.1. Solid-State Sintering
3.2. Sol–Gel Processing
3.3. Spark Plasma Sintering (SPS)
3.4. Cold Sintering Process (CSP)
3.5. Hydrothermal Synthesis
4. Interfacial Engineering and Polarization Mechanisms in Ceramic Nanocomposites
4.1. Role of Interfaces in Dielectric Enhancement
4.2. Polarization Mechanisms and Frequency Response
4.3. Influence of Interface Type (Core–Shell vs. Heterojunctions)
4.4. Dielectric Relaxation and Energy Storage Behavior
4.5. Temperature and Frequency Dependence of Dielectric Performance
4.5.1. Temperature Dependence
4.5.2. Frequency Dependence
5. Emerging Applications of Dielectric and Ferroelectric Ceramic
5.1. Energy Storage Devices: Capacitors and Hybrid Supercapacitors
5.2. Flexible and Wearable Electronics
5.3. Neuromorphic Systems and Smart Memory Devices
5.4. High-Frequency Communication and RF Devices
5.5. Sustainable and Environmentally Friendly Technologies
6. Future Approaches for Next-Generation Ceramic
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, G.; Jiang, F.; Jiang, W.; Liu, J.; Zhang, Q.; Wu, Q.; HU, Q.; Miao, L.; Liang, J. Low-temperature preparation of novel stabilized aluminum titanate ceramic fibers via nonhydrolytic sol-gel method through linear self-assembly of precursors. Ceram. Int. 2019, 45, 18704–18709. [Google Scholar] [CrossRef]
- Nassar, K.I.; Teixeira, S.S.; Graça, M.P. Sol–Gel-Synthesized Metal Oxide Nanostructures: Advancements and Prospects for Spintronic Applications—A Comprehensive Review. Gels 2025, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Gong, L.F.; Liu, X.Z.; Xu, Y.X.; Cheng, G.S.; Liu, Y.; Shi, G.M.; Zheng, C.; Han, Y.J. Design of low-SAR and high on-body efficiency tri-band smartwatch antenna utilizing the theory of characteristic modes of composite PEC-lossy dielectric structures. IEEE Trans. Antennas Propag. 2022, 71, 1913–1918. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, X.Z.; Cheng, G.S.; Liu, Y.; Shi, G.M.; Li, K. Low-SAR four-antenna MIMO array for 5G mobile phones based on the theory of characteristic modes of composite PEC-lossy dielectric structures. IEEE Trans. Antennas Propag. 2021, 70, 1623–1631. [Google Scholar] [CrossRef]
- Fang, Q.; Sun, Q.; Ge, J.; Wang, H.; Qi, J. Multidimensional Engineering of Nanoconfined Catalysis: Frontiers in Carbon-Based Energy Conversion and Utilization. Catalysts 2025, 15, 477. [Google Scholar] [CrossRef]
- Zhang, H.H.; Wang, L.; Xu, Y.; Chen, X. 5G base station antenna array with heatsink radome. IEEE Trans. Antennas Propag. 2024, 72, 2270–2278. [Google Scholar] [CrossRef]
- Du, J.; Wang, X.; Liu, P.; Zhang, Y. Solidification microstructure reconstruction and its effects on phase transformation, grain boundary transformation mechanism, and mechanical properties of TC4 alloy welded joint. Metall. Mater. Trans. A 2024, 55, 1193–1206. [Google Scholar] [CrossRef]
- Zhao, L.-C.; Huang, Y.; Liu, Q.; Zhang, Y. Fast and Sensitive LC-DAD-ESI/MS Method for Analysis of Saikosaponins c, a, and d from the Roots of Bupleurum falcatum (Sandaochaihu). Molecules 2011, 16, 1533–1543. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Zhao, K.; Zhang, J. Types and space distribution characteristics of debris flow disasters along China-Pakistan Highway. Electron. J. Geotech. Eng. 2016, 21, 191–200. [Google Scholar]
- Yang, Z.; Liu, Y.; Wang, T.; Zhang, Q. Prediction model on maximum potential pollution range of debris flows generated in tailings dam break. Electron. J. Geotech. Eng. 2015, 20, 4363–4369. [Google Scholar]
- Gao, J. Friction coefficient estimation of the clutch in automatic transmission based on improved persistent excitation condition. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Wu, Z.; Zhang, L.; Wang, Y.; Chen, J. Preliminary studies on diagnostic cast of peptic ulcer based on saliva proteome and bioinformatics. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 3, pp. 1720–1724. [Google Scholar]
- Wu, Z.; Zhang, M.; Li, X.; Huang, A. Preliminary study on saliva proteomics of different furs in digestive system diseases. In Proceedings of the 2009 IEEE International Symposium on IT in Medicine & Education, Jinan, China, 14–16 August 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 1, pp. 238–242. [Google Scholar]
- Wang, C.; Zhang, H.; Li, F.; Yan, Y. On-demand airport slot management: Tree-structured capacity profile and coadapted fire-break setting and slot allocation. Transp. A Transp. Sci. 2024, 1, 1–35. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, X.; He, N.; Song, F.; Wang, X. Investigation on novel deep eutectic solvents with high carbon dioxide adsorption performance. J. Environ. Chem. Eng. 2025, 13, 117870. [Google Scholar] [CrossRef]
- Ye, D.; Huang, Y.; Zong, Y.; Gao, H. PO-SRPP: A decentralized pivoting path planning method for self-reconfigurable satellites. IEEE Trans. Ind. Electron. 2024, 71, 14318–14327. [Google Scholar] [CrossRef]
- Lv, S.; Li, T.; Yang, J.; Zhang, M. Effect of axial misalignment on the microstructure, mechanical, and corrosion properties of magnetically impelled arc butt welding joint. Mater. Today Commun. 2024, 40, 109866. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, X.; Zhao, J.; Chen, L. Assortative mating on blood type: Evidence from one million Chinese pregnancies. Proc. Natl. Acad. Sci. USA 2022, 119, e2209643119. [Google Scholar] [CrossRef]
- Zheng, D.; Cao, X. Provably efficient service function chain embedding and protection in edge networks. IEEE/ACM Trans. Netw. 2024, 33, 178–193. [Google Scholar] [CrossRef]
- Yi, X.; Zhao, R.; Lin, Y. The impact of nighttime car body lighting on pedestrians’ distraction: A virtual reality simulation based on bottom-up attention mechanism. Saf. Sci. 2024, 180, 106633. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, R.; Wang, Q.; Sun, M. Ropinirole suppresses LPS-induced periodontal inflammation by inhibiting the NAT10 in an ac4C-dependent manner. BMC Oral Health 2024, 24, 510. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Chen, F.; Wang, J. An AUV-enabled dockable platform for long-term dynamic and static monitoring of marine pastures. IEEE J. Ocean. Eng. 2024, 50, 276–293. [Google Scholar] [CrossRef]
- Zhao, L.-C.; Liu, H.; Chen, Y.; Li, X. Preparation of Cyclocarya paliurus sugar-free jelly. Sci. Technol. Food Ind. 2020, 41, 234–239. [Google Scholar]
- Xiao, Y.; Zhang, L.; Guo, Q.; Zhao, S. Quantitative precision second-order temporal transformation based pose control for spacecraft proximity operations. IEEE Trans. Aerosp. Electron. Syst. 2024, 61, 1931–1941. [Google Scholar] [CrossRef]
- Huang, X.; Feng, G.; Mu, J.; Li, Y.; Xie, W.; Wu, F.; Guo, Z.; Xu, Y.; Wang, Z.; Jiang, F. Effects of sodium sources on nonaqueous precipitation synthesis of β″-Al2O3 and formation mechanism of uniform ionic channels. Langmuir 2025, 41, 2044–2052. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, M.; Huang, A. Effect of Natural Brain-Kenetine on variance of Gene expression profiles in MSC and hippocampus of AD rats analyzed by Gene chips and bioinformatics techniques. In Proceedings of the 2008 IEEE International Symposium on IT in Medicine and Education, Xiamen, China, 12–14 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 112–116. [Google Scholar]
- Huang, A.C.J. Natural cerebrolysin induces neuronal differentiation in bone marrow mesenchymal stem cells. Neural Regen. Res. 2009, 3, 178–185. [Google Scholar]
- Wu, Z.; Zhang, M.; Li, X.; Huang, A. Endoplasmic reticulum stress induced by tunicamycin and antagonistic effect of Tiantai No. 1 on mesenchymal stem cells. Chin. J. Integr. Med. 2010, 16, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, L.; Wang, Y.; Chen, J. Study on relationship between the thickness of tongue fur and the expressions of apoptosis-related genes of the tongue epithelial cells in patients with diseases of the digestive system. J. Tradit. Chin. Med. 2007, 27, 148–152. [Google Scholar]
- Wu, Z.; Zhang, M.; Liu, H.; Huang, A. Quantitative study of Tiantai I on superoxidative dismutase and lipofuscin in relevant cerebral areas of spontaneous Alzheimer disease in mice. Chin. J. Tissue Eng. Res. 2005, 9, 178–181. [Google Scholar]
- Wang, H.; Dong, F.; Wang, H.; Zhao, B.; Wang, Y.; Tan, W. Magnetic properties, critical behavior, and magnetocaloric effect of Nd1− xSrxMnO3 (0.2 ≤ x ≤ 0.5): The role of Sr doping concentration. J. Appl. Phys. 2024, 136, 093902. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Li, X.; Chen, Y. Influence of Tiantai No. 1 Recipe on learning and memory function of spontaneous Alzheimer disease models. Chin. J. Tissue Eng. Res. 2005, 9, 180–181. [Google Scholar]
- Huang, A.C.; Jia, X.; Li, Y.; Chen, M. Effects of serum containing natural cerebrolysin on glucose-regulated protein 78 and CCAAT enhancer-binding protein homologous protein expression in neuronal PC12 cells following tunicamycin-induced endoplasmic reticulum stress. Neural Regen. Res. 2009, 4, 92–97. [Google Scholar]
- Wu, Z.; Zhang, L.; Li, X.; Huang, A. Effect of Tiantai No. 1 on β-amyloid-induced neurotoxicity and NF-κB and cAMP responsive element-binding protein. Neural Regen. Res. 2008, 3, 286–292. [Google Scholar]
- Wu, Z.; Zhang, M.; Chen, J.; Li, X. Study on saliva proteome and bioinformatics in patients with chronic gastritis. In Proceedings of the 2011 IEEE International Symposium on IT in Medicine and Education, Cuangzhou, China, 30 August–2 September 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 1, pp. 285–289. [Google Scholar]
- Huang, F.-J.; Wu, Z.-Z. From “unusual sequences” to human diseases. In Medicine Sciences and Bioengineering; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wu, Z. Effects of Tiantai No. 1 on relative neuropeptides of spontaneous aged dementia mice. Chin. J. Neurosci. 2004, 20, 167–170. [Google Scholar]
- Wu, Z.; Zhang, M.; Chen, Y.; Li, X. Effects of Tiantai I on the activity of central cholinergic system in mice with spontaneous Alzheimer disease. Chin. J. Tissue Eng. Res. 2006, 10, 163–165. [Google Scholar]
- Wu, Z.; Zhang, L.; Wang, Y.; Huang, A. Changes of neuronal nitric oxide synthase in relevant cerebral regions in spontaneous senile dementia model and regulation of Tiantai I. Chin. J. Tissue Eng. Res. 2005, 9, 244–247. [Google Scholar]
- Tian, G.; Zhang, Y.; Wang, H.; Li, J. Leg-bathing in decoction in treating rheumatism, experimented on rats and demonstrated by visualization of knee joint synovium. Acta Med. Mediterr. 2016, 32, 1873–1879. [Google Scholar]
- Guihua, T.; Wang, Y.; Chen, L.; Zhou, H. Evidence-based traditional Chinese medicine research: Two decades of development, its impact, and breakthrough. J. Evid.-Based Med. 2021, 14, 65–74. [Google Scholar]
- Qian, G.; Li, X.; Sun, M.; Jiang, H.; Qiu, W.; Schuller, B.W. Can a holistic view facilitate the development of intelligent traditional Chinese medicine? A survey. IEEE Trans. Comput. Soc. Syst. 2023, 10, 700–713. [Google Scholar] [CrossRef]
- Yang, J.J. Analysis of clinical medication characteristics of zedoary turmeric oil injection based on real world data. Chin. J. New Drugs 2023, 32, 547–552. [Google Scholar]
- Li, X.; Zhao, T.; Chen, W.; Sun, Y. The analgesic mechanism of Xi Shao Formula research on neuropathic pain based on metabolomics. J. Tradit. Chin. Med. Sci. 2023, 10, 448–460. [Google Scholar] [CrossRef]
- Li, X.-Y.; Wang, M.; Guo, J.; Zhang, Y. Medication rules of traditional Chinese medicine compounds for pain. Zhongguo Zhong Yao Za Zhi 2023, 48, 3386–3393. [Google Scholar]
- Dai, Q.-Q.; Liu, X.; Zhao, R.; Yang, M. Research progress on animal models of chronic pain and its application in traditional Chinese medicine research. Zhongguo Zhong Yao Za Zhi 2020, 45, 5866–5876. [Google Scholar] [PubMed]
- Yang, Z.Q.; Hou, K.P.; Cheng, Y.; Yang, B. Study of column-hemispherical penetration grouting mechanism based on power-law fluid. Chin. J. Rock Mech. Eng. 2014, 33, 3840–3846. [Google Scholar]
- Xiang, D.; Zhang, H.; Liu, K.; Chen, X. HCMPE-Net: An unsupervised network for underwater image restoration with multi-parameter estimation based on homology constraint. Opt. Laser Technol. 2025, 186, 112616. [Google Scholar] [CrossRef]
- Yan, H.; Yang, B.; Zhou, X.; Qiu, X.; Zhu, D.; Wu, H.; Li, M.; Long, Q.; Xia, Y.; Chen, J.; et al. Adsorption mechanism of hydrated Lu (OH)2+ and Al (OH)2+ ions on the surface of kaolinite. Powder Technol. 2022, 407, 117611. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Q.; Liu, J.; Wang, Y. CrowdFPN: Crowd counting via scale-enhanced and location-aware feature pyramid network. Appl. Intell. 2025, 55, 359. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, Z.; Zhou, W. Reconstruction in off-axis digital holography based on hybrid clustering and the fractional Fourier transform. Opt. Laser Technol. 2025, 186, 112622. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Zhao, Y.; Lin, F.; Wu, L. Technical performance, surgical workload and patient outcomes of robotic and laparoscopic surgery for pediatric choledochal cyst: A multicenter retrospective cohort and propensity score-matched study. Hepatobiliary Surg. Nutr. 2025. [Google Scholar] [CrossRef]
- Yang, T.; Liu, Y.; Zhang, F.; Xu, Q. Causal association between circulating inflammatory markers and sciatica development: A Mendelian randomization study. Front. Neurol. 2024, 15, 1380719. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Wang, L.; Xu, J.; Zhang, R. Effect of Siegesbeckiae Herba in treating chronic pain. Zhongguo Zhong Yao Za Zhi 2020, 45, 1851–1858. [Google Scholar]
- Lin, Y.; Liu, M.; Zhao, H.; Cheng, J. Acupuncture combined with Chinese herbal medicine for discogenic low back pain: Protocol for a multicentre, randomised controlled trial. BMJ Open 2024, 14, e088898. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Hou, K.P.; Guo, T.T. Research on time-varying behavior of cement grouts of different water-cement ratios. Appl. Mech. Mater. 2011, 71, 4398–4401. [Google Scholar]
- Ding, L.-N.; Zhang, Y.; Qiao, Z.; Wang, Q. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. Plant Physiol. 2024, 196, 2973–2988. [Google Scholar] [CrossRef]
- Wu, Y.-Z.; Liu, R.; Zhang, M.; Hu, J. Antimicrobial peptides: Classification, mechanism, and application in plant disease resistance. Probiotics Antimicrob. Proteins 2025, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, B.; Wang, Q.; Xu, H. Creep behaviour between resilient wheels and rails in a metro system. Veh. Syst. Dyn. 2025, 22, 1–21. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, W.; Liu, J.; Li, C.; Zhang, Q.; Miao, L.; Wu, Q. Synthesis and luminescence properties of Al2O3@ YAG: Ce core–shell yellow phosphor for white LED application. Ceram. Int. 2018, 44, 8435–8439. [Google Scholar] [CrossRef]
- Su, H.; Liu, X. The impact of green technological innovation on industrial structural optimization under dual-carbon targets: The role of the moderating effect of carbon emission efficiency. Sustainability 2025, 17, 6313. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, W.; Liu, J.; Li, C.; Zhang, Q. Luminescent properties of novel red-emitting M7Sn (PO4)6: Eu3+ (M = Sr, Ba) for light-emitting diodes. Luminescence 2018, 33, 455–460. [Google Scholar] [CrossRef]
- Mengxin, Z.; Li, Q.; Zhang, X.; Wu, J. Robotic-assisted proctosigmoidectomy versus laparoscopic-assisted Soave pull-through for Hirschsprung disease: Medium-term outcomes from a prospective multicenter study. Ann. Surg. 2025, 281, 689–697. [Google Scholar]
- Huang, Y.; Wang, R.; Liu, Y.; Zhang, H. Travel and regional development: A quantitative analysis of China. J. Reg. Sci. 2025. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, B.; Wang, L.; Liu, H. A generalized Faustmann model with multiple carbon pools. For. Policy Econ. 2024, 169, 103363. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Y.; Zhang, C.; Liu, F. Flavor profile of 4-isothiocyanato-1-butene in microwave rapeseed oil and its anti-inflammatory properties in vitro. J. Agric. Food Chem. 2025, 73, 10520–10530. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, T.; Liu, D.; Zhang, X. Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences. For. Policy Econ. 2023, 151, 102957. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, Q.; Yang, X. Spatiotemporal assessment of recreation ecosystem service flow from green spaces in Zhengzhou’s main urban area. Humanit. Soc. Sci. Commun. 2025, 12, 1–14. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T.; Chen, R.; Wang, Y. Environmental governance, green finance, and mitigation technologies: Pathways to carbon neutrality in European industrial economies. Int. J. Environ. Sci. Technol. 2025, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Li, M.; Zhang, F. E-governance and policy efforts advancing carbon neutrality and sustainability in European countries. Public Money Manag. 2025, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, R.; Xiao, N.; Wang, Z.; Chen, L.; Wen, Y.; Li, P. Wireless Multiferroic Memristor with Coupled Giant Impedance and Artificial Synapse Application. Adv. Electron. Mater. 2022, 8, 2200370. [Google Scholar] [CrossRef]
- Xiao, Y.; Cheng, D.; Li, G.; Yin, R.; Li, P.; Gao, Z. Preparation of MgO ceramics by low temperature sintering with MgF2 and Al2O3 as sintering additives. J. Electroceram. 2025, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Hartmann, D.M.F.; Yang, W.; Lin, X.; Zhao, W.; Lavrijsen, R. Modulation of the Dzyaloshinskii–Moriya interaction in Pt/Co/Pt with electric field induced strain. Appl. Phys. Lett. 2025, 126, 162401. [Google Scholar] [CrossRef]
- Yu, W.; Zheng, W.; Hua, S.; Zhang, Q.; Zhang, Z.; Zhao, J.; Guo, S. A prestretch-free dielectric elastomer with record-high energy and power density via synergistic polarization enhancement and strain stiffening. Adv. Funct. Mater. 2025, 27, 2425099. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Y.; Xie, B.; Wu, H.; Cheng, L.; Guo, Y.; Chen, X. Microdynamic behaviors of Au/Ni-assisted chemical etching in fabricating silicon nanostructures. Appl. Surf. Sci. 2025, 696, 162915. [Google Scholar] [CrossRef]
- Yang, D.; Lin, Y.; Meng, W.; Wang, Z.; Li, H.; Li, C.; Sun, L. Relaxor antiferroelectric dynamics for neuromorphic computing. Adv. Mater. 2025, 24, 2419204. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Zhang, Z.; Wu, X.; Yu, T.; Bie, R.; Sun, L. Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 2024, 24, 15025–15034. [Google Scholar] [CrossRef]
- Zhao, Y.; Jing, J.; Chen, L.; Xu, F.; Hou, H. Current research status of interface of ceramic-metal laminated composite material for armor protection. Acta Metall. Sin. 2021, 57, 1107–1125. [Google Scholar]
- Palneedi, H.; Peddigari, M.; Hwang, G.T.; Jeong, D.Y.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Vignesh, D.; Rout, E. Multipurpose polymer dielectric materials and composites for advanced energy applications. In Metal Oxide-Based High-K Dielectrics; CRC Press: Boca Raton, FL, USA, 2025; pp. 289–332. [Google Scholar]
- Thakur, O.P.; Prakash, C.; James, A.R. Enhanced dielectric properties in modified barium titanate ceramics through improved processing. J. Alloys Compd. 2009, 470, 548–551. [Google Scholar] [CrossRef]
- Hanani, Z. Design of Flexible Lead-Free Ceramic/Biopolymer Composite for Energy Storage and Energy Harvesting Applications. Ph.D. Dissertation, Université Cadi Ayyad, Marrakech, Maroc, 2020. [Google Scholar]
- Thapliyal, D.; Tewari, K.; Verma, S.; Bhargava, C.K.; Sen, P.; Mehra, A.; Rana, S.; Verros, G.D.; Arya, R.K. Introduction: The evolution of functional coatings from protection to innovation. In Functional Coatings for Biomedical, Energy, and Environmental Applications; Wiley: Hoboken, NJ, USA, 2024; pp. 1–30. [Google Scholar] [CrossRef]
- Prasad, G.; Chakraborty, U.; Matete, E.S.; Marwaha, K.S.; Vero, R. Innovation of bio-inspired materials for next-generation defense applications. In Innovative Materials for Next-Generation Defense Applications: Cost, Performance, and Mass Production; IGI Global: Hershey, PA, USA, 2025; pp. 145–180. [Google Scholar]
- Jamwal, U.; Kumar, S.; Keneria, D. Polarization and ferromagnetism in microwave-absorbing materials. In Ferroic Materials-Understanding, Development, and Utilization: Understanding, Development, and Utilization; IntechOpen: Rijeka, Croatia, 2025; p. 71. [Google Scholar]
- Wei, Z.; Li, Z.; Chen, D.; Liang, J.; Kong, J. Recent progress of advanced composites for broadband electromagnetic wave absorption. Small Struct. 2025, 6, 2400615. [Google Scholar] [CrossRef]
- Galassi, C. Overview: Electroceramics and ceramics and glasses in energy generation and storage. Encycl. Mater. Tech. Ceram. Glas 2021, 3, 1–4. [Google Scholar]
- Li, D. Investigation of the General Properties and Field-Induced Electromechanical Response of Polymer Nanocomposites with Surface-Functionalised Dielectric Nanoparticles. Ph.D. Dissertation, Cranfield University, Wharley End, UK, 2022. [Google Scholar]
- Uguen, N. Dispersion State, Interfacial Phenomena and Dielectric Properties in High-Permittivity Polymer-Based Nanocomposites. Ph.D. Dissertation, Université de Lyon, Lyon, France, 2022. [Google Scholar]
- Halim, N.A.B. Ferroelectric, Piezoelectric and Pyroelectric Properties of Sol-Gel Derived Sodium Bismuth Titanate and Ceramic Powder-Polymer Composite. Ph.D. Dissertation, University Malaya, Kuala Lumpur, Malaysia, 2018. [Google Scholar]
- Nayak, D.; Choudhary, R.B.; Kumar, S.; Bauri, J.; Ansari, S. Effect of nanofillers-reinforced polymer blends for dielectric applications. In Emerging Nanodielectric Materials for Energy Storage; Springer: Berlin/Heidelberg, Germany, 2023; pp. 151–187. [Google Scholar]
- Patsidis, A.C.; Psarras, G.C. Basic principles of dielectrics. In High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment; Wiley: Hoboken, NJ, USA, 2024; pp. 21–55. [Google Scholar]
- Tan, D.Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49379. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Z.; Liang, J.; Hu, J.; Jiang, N.; He, J.; Li, Q. Polymer nanocomposite dielectrics: Understanding the matrix/particle interface. ACS Nano 2022, 16, 13612–13656. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Kerur, S.S.; Dhanalakshmi, S. Electrical and dielectric properties of polymer-metal hybrid nanocomposites—A short review. Diffus. Found. Mater. Appl. 2024, 35, 1–13. [Google Scholar] [CrossRef]
- Sahu, G.; Das, M.; Yadav, M.; Sahoo, B.P.; Tripathy, J. Dielectric relaxation behavior of silver nanoparticles and graphene oxide embedded poly(vinyl alcohol) nanocomposite film: Effect of ionic liquid and temperature. Polymers 2020, 12, 374. [Google Scholar] [CrossRef]
- Tayari, F.; Dhahri, R.; Elkenany, E.B.; Teixeira, S.S.; Graça, M.P.F.; Al-Syadi, A.M.; Essid, M.; Iben Nassar, K. Crystal structural characteristics and electrical properties of novel sol-gel synthesis of ceramic Bi0.75Ba0.25(FeMn)0.5O3. Materials 2024, 17, 3797. [Google Scholar] [CrossRef]
- Tayari, F.; Benamara, M.; Lal, M.; Essid, M.; Thakur, P.; Kumar, D.; Teixeira, S.S.; Graça, M.P.F.; Nassar, K.I. Exploring enhanced structural and dielectric properties in Ag-Doped Sr(NiNb)0.5O3 perovskite ceramic for advanced energy storage. Ceramics 2024, 7, 958–974. [Google Scholar] [CrossRef]
- Tayari, F.; Nassar, K.I.; Algessair, S.; Hjiri, M.; Benamara, M. Investigating Fe-doped Ba0.67Ni0.33Mn1−xFexO3 (x = 0, 0.2) ceramics: Insights into electrical and dielectric behaviors. RSC Adv. 2024, 14, 12561–12573. [Google Scholar] [CrossRef]
- Borah, M. Doping in barium titanate (BaTiO3): A historical perspective and future directions. J. Adv. Chem. Sci. 2025, 11, 838–841. [Google Scholar] [CrossRef]
- Mo, S.; Hu, S.; Wang, N.; Zhang, H.; Zhu, P.; Wen, X.; Dai, S.; Zhang, F.; Li, T.; Liu, J.; et al. Temperature-stable dielectric properties of Nb2O5-doped BaTiO3 based ceramics with fine grain via controlling grain growth. Ceram. Int. 2025, 51, 26791–26798. [Google Scholar] [CrossRef]
- O’Reilly, T.; Holsgrove, K.; Gholinia, A.; Woodruff, D.; Bell, A.; Huber, J.; Arredondo, M. Exploring domain continuity across BaTiO3 grain boundaries: Theory meets experiment. Acta Mater. 2022, 235, 118096. [Google Scholar] [CrossRef]
- Rana, S.; Karimunnesa, S.; Alam, F.; Das, B.C.; Khan, F.A. Strain induced structural phase transition and compositional dependent magnetic phase transition in Ti doped Bi0.80Ba0.20FeO3 ceramics. Heliyon 2022, 8, e12530. [Google Scholar] [CrossRef]
- Reddy, T.; Akepati, S.R.; Nagalakshmi, V.; Rao, D.J.; Madaka, R. Effect of rare earth (Sm3+) substitution in mixed Ni-Zn-Co ferrites: Structural, magnetic, and DC electrical resistivity studies. In. Chem. Com. 2024, 165, 112480. [Google Scholar] [CrossRef]
- Alikin, D.; Turygin, A.; Ushakov, A.; Kosobokov, M.; Alikin, Y.; Hu, Q.; Liu, X.; Xu, Z.; Wei, X.; Shur, V. Competition between ferroelectric and ferroelastic domain wall dynamics during local switching in rhombohedral PMN-PT single crystals. Nanomaterials 2022, 12, 3912. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, Y.; Liu, X.; Wang, H. Advances in polymer dielectrics with high energy storage performance by designing electric charge trap structures. Adv. Mater. 2024, 36, 2310272. [Google Scholar] [CrossRef]
- Anaele Opara, F.; Ibekwe, S.; Okoye, R.; Uzoegwu, D.; Madueke, I. Progress in polymer-based composites as efficient materials for electromagnetic interference shielding applications: A review. Curr. Mater. Sci. 2023, 16, 235–261. [Google Scholar] [CrossRef]
- González, J.; Singh, E.; Salas, C.; Kumar, R.; Bhatia, R. Advanced cellulose–nanocarbon composite films for high-performance triboelectric and piezoelectric nanogenerators. Nanomaterials 2023, 13, 1206. [Google Scholar] [CrossRef]
- You, L.; Chen, Z.; Wang, Y.; Zhao, J.; Zhang, D. Energy storage performance of polymer-based dielectric composites with two-dimensional fillers. Nanomaterials 2023, 13, 2842. [Google Scholar] [CrossRef]
- Mishra, R.K. A Study of Control Mechanisms in Micro and Nano System-Enhanced Polymer Nanocomposites Under Mechanical and Electrical Stimuli: An Experimental and Computational Investigation. Ph.D. Thesis, Cranfield University, Bedford, UK, 2023. [Google Scholar]
- Ghule, B.; Laad, M. Polymer composites with improved dielectric properties: A review. Ukr. J. Phys. 2021, 66, 166. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, W.; Chen, X.; Kong, F.; Zhao, J.; Li, W.; Zhang, Y.; Wang, F.; Yuan, M. Synergistic regulation of intra-particle and inter-particle polarizations in BaTiO3@ Al2O3/PVDF nanocomposites towards boosted overall dielectric properties. Mat. Today Chem. 2025, 43, 102492. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Chen, P.; Bo, M.; Xie, J.; Deng, Q. Enhancing surface polarization and reducing bandgap of BaTiO3 nanofiller for preparing dielectric traits-improved composites via its hybridization with layered g-C3N4. Sur. Int. 2022, 31, 102060. [Google Scholar] [CrossRef]
- Pan, D. Lead zirconate titanate (PZT) piezoelectric ceramics: Applications and prospects in human motion monitoring. Ceram.-Silik. 2024, 68, 444–458. [Google Scholar] [CrossRef]
- Song, S.; Zhang, Y.; Li, J.; Chen, R. Research advances in rare-earth-based solid electrolytes for all-solid-state batteries. Small 2025, 21, 2502008. [Google Scholar] [CrossRef]
- Hernández Lara, J.P.; Estrada, W.; Reyes-López, J.C.; Ramírez-Bon, R. Structural evolution and electrical properties of BaTiO3 doped with Gd3+. Mater. Res. 2017, 20, 538–542. [Google Scholar] [CrossRef]
- Ianculescu, A.C.; Tiseanu, C.; Voicu, F.; Preda, S.; Gartner, M.; Ianculescu, M. Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 2015, 106, 195–207. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Liu, Y.; Wang, F.; Zhang, Y. Cold-Sintered ZnO Ceramic Composites Co-Doped with Polytetrafluoroethylene and Oxides. Molecules 2023, 29, 129. [Google Scholar] [CrossRef]
- Yang, L.; Ditta, A.; Feng, B.; Zhang, Y.; Xie, Z. Study of the comparative effect of sintering methods and sintering additives on the microstructure and performance of Si3N4 ceramic. Materials 2019, 12, 2142. [Google Scholar] [CrossRef]
- Chinelatto, A.S.A.; Santos, C.M.A.; Zaghete, M.A.; Gimenes, R.; Longo, E. Mechanisms of microstructure control in conventional sintering. In Sintering of Ceramics—New Emerging Techniques; Lakshmanan, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 401–422. [Google Scholar]
- Bram, M.; Zapf, M.; Buchkremer, H.P.; Stöver, D. Application of electric current-assisted sintering techniques for the processing of advanced materials. Adv. Eng. Mater. 2020, 22, 2000051. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, H.L.; Sun, J.L.; Liu, X.Y.; Li, W.Z. The development and application of spark plasma sintering technique in advanced metal structure materials: A review. Powder Metall. Met. Ceram. 2021, 60, 410–438. [Google Scholar] [CrossRef]
- Radingoana, P.M. Densification and Microstructural Characterization of ZnO-Based Ceramics Obtained by SPS Sintering for Thermoelectric Application. Ph.D. Thesis, Université Paul Sabatier-Toulouse III, Toulouse, France, 2019. [Google Scholar]
- Colomban, P. Chemical preparation routes and lowering the sintering temperature of ceramics. Ceramics 2020, 3, 312–339. [Google Scholar] [CrossRef]
- Almeida, R.M.; Gonçalves, M.C. Sol–Gel process and products. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Conradt, R., Takada, A., Dyon, J., Eds.; Wiley: Hoboken, NJ, USA, 2021; Volume 2, pp. 969–979. [Google Scholar]
- Polinger, V.; Bersuker, I.B. Origin of polar nanoregions and relaxor properties of ferroelectrics. Phys. Rev. B 2018, 98, 214102. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhu, J.J.; Zhang, J.Z.; Xu, G.S.; Hu, Z.G.; Chu, J.H. Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Opt. Express 2014, 22, 21903–21911. [Google Scholar] [CrossRef]
- Su, R.; Zhang, X.; Li, W.; Li, H.; Wang, Q. High energy density performance of polymer nanocomposites induced by designed formation of BaTiO3@sheet-like TiO2 hybrid nanofillers. J. Phys. Chem. C 2016, 120, 11769–11776. [Google Scholar] [CrossRef]
- Pattipaka, S.; Manukonda, S.R.; Gattu, K.P.; Gangavaram, V.; Chukka, S.; Kumar, C.M. Enhanced energy storage performance and efficiency in Bi0.5(Na0.8K0.2)0.5TiO3–Bi0.2Sr0.7TiO3 relaxor ferroelectric ceramics via domain engineering. Materials 2023, 16, 4912. [Google Scholar] [CrossRef]
- Khaliq, A.; Sheeraz, M.; Ullah, A.; Seog, H.J.; Ahn, C.W.; Kim, T.H.; Kim, I.W. Ferroelectric seeds-induced phase evolution and large electrostrain under reduced poling field in bismuth-based composites. Ceram. Int. 2018, 44, 13278–13285. [Google Scholar] [CrossRef]
- Sheeraz, M.; Khaliq, A.; Ullah, A.; Han, H.S.; Khan, A.; Ullah, A.; Ahn, C.W. Stress driven high electrostrain at low field in incipient piezoelectrics. J. Eur. Ceram. Soc. 2019, 39, 4688–4696. [Google Scholar] [CrossRef]
- Matizamhuka, W.R. Fabrication of fine-grained functional ceramics by two-step sintering or Spark Plasma Sintering (SPS). In Design and Manufacturing; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Bordia, R.K.; Kang, S.-J.L.; Olevsky, E.A. Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc. 2017, 100, 2314–2352. [Google Scholar] [CrossRef]
- Tayari, F.; Nassar, K.I.; Carvalho, J.P.; Teixeira, S.S.; Hammami, I.; Gavinho, S.R.; Graça, M.P.; Valente, M.A. Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite. Gels 2025, 11, 450. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Alkallas, F.H.; Amin, L.G.; Abdel-Aty, A.H.; Alshehri, K.; Alofi, A.; Gomaa, H.M. Influence of calcium substitution on the structural, thermal, and electrical properties of PbTiO3 perovskite. J. Mater. Sci. Mater. Electron. 2025, 36, 1235. [Google Scholar] [CrossRef]
- Daniel, T.O.; Okafor, L.C.; Arikpo, J.U.; Udeh, E.; Shaibu, O.D.; Edaogbogun, G.O.; Olawale, P.E. Synthesis and Characterization of Calcium and Tin Co-Doped Barium Titanate (Ba0.91Ca0.09Sn0.01Ti0.99O3) Ceramic Using Solid State Synthesis for Energy Storage Application in Ceramic Capacitor. J. Chem. Soc. Pak. 2025, 47. [Google Scholar]
- Freeman, C.J. Use of Sol Chemistry and Fine Grained Precursors in the Production of Controlled Microstructural Polycrystalline Continuous Oxide Fibres. Ph.D. Thesis, University of Wolverhampton, Wolverhampton, UK, 2005. [Google Scholar]
- Prompa, K.; Swatsitang, E.; Putjuso, T. Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol–gel process. J. Mater. Sci. Mater. Electron. 2017, 28, 15033–15042. [Google Scholar] [CrossRef]
- Sharma, N.; Alam, S.N.; Ray, B.C. Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. In Spark Plasma Sintering of Materials: Advances in Processing and Applications; Springer: Cham, Switzerland, 2019; pp. 21–59. [Google Scholar]
- Akinyemi, S.A.; Ogundele, D.A.A.; Akinyemi, A.M. Cefixime and Aspirin alters antioxidant response, biochemical composition, and primary productivity of phytoplankton: A Mesocosm approach. Afr. J. Pure Appl. Sci. 2025, 6, 37–45. [Google Scholar]
- Bobylev, G.S.; Prikhodko, Y.M.; Pikalov, M.Y.; Besshaposhnikov, A.V.; Melnichenko, A.V.; Bazhin, V.Y. Full-scale experimental test production of high-basicity sinter in the Enakievo metallurgical plant sinter shop. Metallurgist 2020, 64, 741–749. [Google Scholar] [CrossRef]
- Kim, C.W.; Park, J.H.; Han, J.; Kim, K.S.; Kim, Y.D.; Kim, S.J. A selective morphosynthetic approach for single crystalline hematite through morphology evolution via microwave-assisted hydrothermal synthesis. J. Ind. Eng. Chem. 2017, 53, 341–347. [Google Scholar] [CrossRef]
- Canu, G.; Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 2017, 19, 3867–3891. [Google Scholar] [CrossRef]
- Walton, R.I. Perovskite oxides prepared by hydrothermal and solvothermal synthesis: A review of crystallisation, chemistry, and compositions. Chem.–Eur. J. 2020, 26, 9041–9069. [Google Scholar] [CrossRef]
- Tayari, F.; Attaf, A.; Attaf, N.; Al-Douri, Y.; Omri, K.; Touati, F. Progress and developments in the fabrication and characterization of metal halide perovskites for photovoltaic applications. Nanomaterials 2025, 15, 613. [Google Scholar] [CrossRef]
- Teixeira, S.S.; Graça, M.P.F.; Essid, M.; Nassar, K.I. Investigating structural, dielectric, and electrical characteristics of sol–gel synthesized perovskite ceramic Bi0.7Ba0.3(FeTi)0.5O3. J. Sol-Gel Sci. Technol. 2024, 112, 601–613. [Google Scholar] [CrossRef]
- Benamara, M.; Iben Nassar, K.; Rivero-Antúnez, P.; Essid, M.; Soreto Teixeira, S.; Zhao, S.; Serrà, A.; Esquivias, L. Study of electrical and dielectric behaviors of copper-doped zinc oxide ceramic prepared by spark plasma sintering for electronic device applications. Nanomaterials 2024, 14, 402. [Google Scholar] [CrossRef]
- Alanazi, A.Z.; Alhazzani, K.; El-Wekil, M.M.; Ali, A.M.B.H.; Darweesh, M.; Ibrahim, H. Sol–gel derived ceramic nanocomposite CNFs anchored with a nanostructured CeO2 modified graphite electrode for monitoring the interaction of a selective tyrosine kinase inhibitor capmatinib with dsDNA. RSC Adv. 2024, 14, 34448–34456. [Google Scholar] [CrossRef]
- Li, Y. Joining Technology and Application of Advanced Materials; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Wang, S.W.; Chen, L.D.; Hirai, T. Densification of Al2O3 powder using spark plasma sintering. J. Mater. Res. 2000, 15, 982–987. [Google Scholar] [CrossRef]
- Somasundaram, M.; Uttamchand, N.K.; Annamalai, A.R.; Jen, C.P. Insights on spark plasma sintering of magnesium composites: A review. Nanomaterials 2022, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Chang, W.; Chen, X.; Fu, K. Cold sintering-enabled interface engineering of composites for solid-state batteries. Front. Energy Res. 2023, 11, 1149103. [Google Scholar] [CrossRef]
- Jabr, A.; Jambhulkar, S.; Masadeh, A.; Li, J.F.; Randall, C.A. Scaling up the cold sintering process of ceramics. J. Eur. Ceram. Soc. 2023, 43, 5319–5329. [Google Scholar] [CrossRef]
- Bartoletti, A.; Populoh, S.; Sata, N.; Battaglia, C. Exploring the potential of cold sintering for proton-conducting ceramics: A review. Materials 2024, 17, 5116. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, V.; Palani, I.A.; Liu, Y.; Hu, Z. Hydrothermal synthesis of SrTiO3 mesocrystals: Single crystal to mesocrystal transformation induced by topochemical reactions. Cryst. Growth Des. 2012, 12, 4450–4456. [Google Scholar] [CrossRef]
- Tazim, T.Q.; Kumar, A.; Thakur, N.S.; Majumdar, D.; Singh, S. Hydrothermal synthesis of nano-metal oxides for structural modification: A review. Next Nanotechnol. 2025, 7, 100167. [Google Scholar] [CrossRef]
- Almutairi, H.H.; Parveen, N.; Ansari, S.A. Hydrothermal synthesis of multifunctional bimetallic Ag-CuO nanohybrids and their antimicrobial, antibiofilm and antiproliferative potential. Nanomaterials 2022, 12, 4167. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Z.; Wang, J.; Zeng, H.; Tan, X.; Zhang, X. Interfacial-polarization engineering in BNT-based bulk ceramics for ultrahigh energy-storage density. Adv. Sci. 2024, 11, 2409113. [Google Scholar] [CrossRef]
- Thakur, Y.; Ghosh, S.; Katiyar, R.S.; Guha, S. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 2017, 9, 10992–10997. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wu, Y.; Yang, X.; Guan, D.; Huang, X.; Li, F.; Guo, Y.; Wang, C.; Ge, B.; Hou, X.; et al. Breaking polarization-breakdown strength paradox for ultrahigh energy storage density in NBT-based ceramics. Nat. Commun. 2025, 16, 6228. [Google Scholar] [CrossRef] [PubMed]
- Guillemet, S.; Estournès, C.; Laurent, C.; Peigney, A.; Rousset, A. Colossal permittivity in ultrafine grain size BaTiO3–x and Ba0.95La0.05TiO3–x materials. Adv. Mater. 2008, 20, 551–555. [Google Scholar] [CrossRef]
- Al-Momin, A. Effect of Ferromagnetic and Ferroelectric Phases on the Magnetic and Transport Properties of xLi0.1Ni0.2Mn0.6Fe2.1O4+(1−x) Bi1−yRyFeO3 Multiferroic Composites. Ph.D. Thesis, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, 2020. [Google Scholar]
- Naveed-Ul-Haq, M. Magnetoelectric Effect in Lead-Free Multiferroic Composites and Thin Films; Universität Duisburg-Essen: Essen, Germany, 2018. [Google Scholar]
- Valiulina, L.I.; Cherepanov, V.N.; Valiev, R.R. Relationship between the electric polarizability and aromaticity of metallocene-containing macrocycles. Eurasian J. Chem. 2023, 28, 3. [Google Scholar] [CrossRef]
- Kuziemski, A.; Łączkowski, K.Z.; Baranowska-Łączkowska, A. Theoretical investigation of electric polarizability in porphyrin–zinc and porphyrin–zinc–thiazole complexes using small property-oriented basis sets. Int. J. Mol. Sci. 2024, 25, 11044. [Google Scholar] [CrossRef]
- Yan, X.J.; Tang, Y.; Zhang, X.; Li, Z.; Gao, H. Dependence of microwave dielectric properties on ceramic connectivity in ultralow-εr Al2O3 porous ceramics. Microstructures 2025, 5, 2025065. [Google Scholar] [CrossRef]
- Koval, V.; Jastrabik, L.; Kovacova, M.; Bobak, A.; Fetea, D.; Buryy, O. Dielectric relaxation and conductivity phenomena in ferroelectric ceramics at high temperatures. J. Eur. Ceram. Soc. 2024, 44, 2886–2902. [Google Scholar] [CrossRef]
- Zhang, Y. Optical Properties and Modulated Luminescence of Metal Ion Doped Phosphors. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2012. [Google Scholar]
- Zaman, T. Study of Structural, Dielectric and Ferroelectric Properties of Lead-Free BaTiO3–K0.5Na0.5NbO3 Ceramics. Master’s Thesis, Rajshahi University of Engineering & Technology (RUET), Rajshahi, Bangladesh, 2016. [Google Scholar]
- Sun, Y.; Zhang, L.; Chen, H.; Xiong, R.; Zhao, H. Defect engineering in perovskite oxide thin films. Chem. Commun. 2021, 57, 8402–8420. [Google Scholar] [CrossRef]
- Patsidis, A.C.; Papathanassiou, A.N.; Sakellis, E. Dielectric response of ZnO/PMMA nanocomposites with atmospheric pressure plasma-modified surfaces. Materials 2024, 17, 4063. [Google Scholar] [CrossRef]
- Anoufa, M.; Kiat, J.M.; Bogicevic, C. Ultrahigh permittivity in core-shell ferroelectric ceramics: Theoretical approach and practical conclusions. arXiv 2017, arXiv:1712.04197. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Zhang, Y.; Chen, L.; Li, Y. A BaTiO3-based flexible ferroelectric capacitor for non-volatile memories. J. Mater. 2025, 11, 100870. [Google Scholar] [CrossRef]
- Moise, T.; Summerfelt, S.; Rodriguez, J. A framework for embedded non-volatile memory development: Examples from Pb(ZrxTi1−x)O3 ferroelectric memory development at Texas Instruments. Electronics 2025, 14, 818. [Google Scholar] [CrossRef]
- Goel, R.; Gautam, D.; Singh, R.; Ghosh, S.; Pandey, D. Magnetoelectric coupling susceptibility in novel lead-free 0–3 type multiferroic particulate composites of (1−x)Na0.5Bi0.5TiO3–(x)CoCr0.4Fe1.6O4. Mater. Chem. Phys. 2022, 282, 126004. [Google Scholar] [CrossRef]
- Sato, K.; Asakura, N. Domain switching dynamics in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 revealed by time-resolved high-voltage electron microscopy. J. Appl. Phys. 2021, 130, 164101. [Google Scholar] [CrossRef]
- Tennery, V.J.; Hang, K.W.; Novak, R.E. Ferroelectric and structural properties of the Pb(Sc1/2Nb1/2)1−xTixO3 system. J. Am. Ceram. Soc. 1968, 51, 671–674. [Google Scholar] [CrossRef]
- Mao, P.; Liu, H.; Luo, D.; Guo, C.; Li, Q.; Wu, K.; Zhuang, Y. Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF–TrFE–CFE)/PVDF polymer blended composite films. Phys. Chem. Chem. Phys. 2020, 22, 13143–13153. [Google Scholar] [CrossRef]
- Hou, X.; Li, W.; Liu, Y.; Li, Y.; Wang, L.; Liu, Y. Polymer nanocomposite dielectric based on P(VDF-TrFE)/PMMA/BaTiO3 for TIPs-pentacene OFETs. Org. Electron. 2015, 17, 247–252. [Google Scholar] [CrossRef]
- Rehman, M.U.; Zhang, J.; He, W.; Liu, Y.; Zhang, J.; Fan, J. The effects of SiO2 addition on the phase, microstructure, dielectric, and energy storage properties of BaTiO3-based ceramics. Mater. Sci. Eng. B 2023, 288, 116190. [Google Scholar] [CrossRef]
- He, D.; Wang, Y.; Chen, X.; Deng, Y. Core–shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Compos. Part A Appl. Sci. Manuf. 2017, 93, 137–143. [Google Scholar] [CrossRef]
- Selvi, N.; Sankar, S.; Dinakaran, K. Effect of shell ZnO on the structure and optical property of TiO2 core@shell hybrid nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 2271–2277. [Google Scholar] [CrossRef]
- Eliseev, E.A.; Morozovska, A.N.; Kalinin, S.V.; Svechnikov, S.V.; Maksymovych, P. Strain-induced polarization enhancement in BaTiO3 core-shell nanoparticles. Phys. Rev. B 2024, 109, 014104. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Reda, S.M.; Amer, A.A. Enhanced performance of BiFeO3@nitrogen doped TiO2 core–shell structured nanocomposites: Synergistic effect towards solar cell amplification. Arab. J. Chem. 2020, 13, 2611–2619. [Google Scholar] [CrossRef]
- Kumari, M.L.A.; Shanker, R.; Chatterjee, S.; Ramana, C.V. Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study. Environ. Res. 2022, 203, 111841. [Google Scholar] [CrossRef]
- Upadhyay, M.; Bandyopadhyay, S.; Nath, T.K.; Pal, A. Thickness dependence of dielectric properties in sub-nanometric Al2O3/ZnO laminates. Solid-State Electron. 2021, 186, 108070. [Google Scholar] [CrossRef]
- Grabowska, E.; Zaleska-Medynska, A.; Marchelek, M.; Hupka, J.; Gazda, M.; Zasada, F. TiO2/SrTiO3 and SrTiO3 microspheres decorated with Rh, Ru or Pt nanoparticles: Highly UV–vis responsible photoactivity and mechanism. J. Catal. 2017, 350, 159–173. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, A.; Das, S.; Das, P.; Banerjee, A. Structure and electronic effects from Mn and Nb co-doping for low band gap BaTiO3 ferroelectrics. J. Phys. Chem. C 2021, 125, 14910–14923. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Wu, W.; Sun, X.; Xu, L.; Liu, Y. Ferroelectric BaTiO3@ZnO core–shell heterojunction triboelectric nanogenerators for electrochemical degradation of MO. Ceram. Int. 2024, 50, 4841–4850. [Google Scholar] [CrossRef]
- Voora, V.M.; Venkateswara Rao, A.; Ramachandran, R. Electrical properties of ZnO–BaTiO3–ZnO heterostructures with asymmetric interface charge distribution. Appl. Phys. Lett. 2009, 95, 082902. [Google Scholar] [CrossRef]
- Desmond, M.; Mavrogiannis, N.; Gagnon, Z. Maxwell-Wagner Polarization and Frequency-Dependent Injection at Aqueous Electrical Interfaces. Phys. Rev. Lett. 2012, 109, 187602. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, M.; Longuemart, S.; Depriester, M.; Delenclos, S.; Sahraoui, A.H. Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 2014, 89, 022511. [Google Scholar] [CrossRef]
- Bauer, G.E.W.; Tang, P.; Iguchi, R.; Xiao, J.; Shen, K.; Zhong, Z.; Yu, T.; Rezende, S.M.; Heremans, J.P.; Uchida, K. Polarization transport in ferroelectrics. Phys. Rev. Appl. 2023, 20, 050501. [Google Scholar] [CrossRef]
- Cowley, R.A.; Gvasaliya, S.N.; Lushnikov, S.G.; Roessli, B.; Rotaru, G.M. Relaxing with relaxors: A review of relaxor ferroelectrics. Adv. Phys. 2011, 60, 229–327. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y. Research on improving energy storage density and efficiency of dielectric ceramic ferroelectric materials based on BaTiO3 doping with multiple elements. J. Compos. Sci. 2023, 7, 233. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Qiang, Z.; Yang, J.; Liu, Y.; Huai, K.; Zhang, B.; Jin, S.; Xia, Y.; Fu, K.K.; et al. Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss. Compos. Sci. Technol. 2021, 216, 109070. [Google Scholar] [CrossRef]
- Hsu, H.-J.; Yang, K.H.; Hsiang, H.-I. Enhanced dielectric properties and thermal stability of BaTiO3 ceramics sintered in a reducing atmosphere through MnNb2O6 doping. Ceram. Int. 2025; in press. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, W. Sol-gel method preparation and first-principles calculations of CaCu3Ti4O12. J. Phys. Conf. Ser. 2025, 2941, 012026. [Google Scholar] [CrossRef]
- Wang, E.; Yang, H.; Guo, H.; Li, H.; Zhang, H.; Li, J.; Gu, M.; Yang, T.; Zhang, Y. Enhancement of Energy Storage Performance in NaNbO3-Modified BNT-ST Ceramics. Coatings 2025, 15, 504. [Google Scholar] [CrossRef]
- Riaz, M.; Ali, B.; Ali, S.M.; Khan, M.I.; Sahar, M.S.U.; Shahid, M.; Alam, M. Stress-induced transformation on the cubic perovskite RbTaO3 for high-temperature applications: A DFT approach. J. Comput. Electron. 2024, 23, 483–497. [Google Scholar] [CrossRef]
- Hickman, J.; Mishin, Y. Thermal conductivity and its relation to atomic structure for symmetrical tilt grain boundaries in silicon. Phys. Rev. Mater. 2020, 4, 033405. [Google Scholar] [CrossRef]
- Mahesh, M.L.V.; Bhanu Prasad, V.V.; James, A.R. Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 4684–4692. [Google Scholar] [CrossRef]
- Tuichai, W.; Danwittayakul, S.; Manyam, J.; Chanlek, N.; Takesada, M.; Thongbai, P. Giant dielectric properties of Ga3+–Nb5+ Co-doped TiO2 ceramics driven by the internal barrier layer capacitor effect. Materialia 2021, 18, 101175. [Google Scholar] [CrossRef]
- Elsehsah, K.A.A.A.; Noorden, Z.A.; Mat Saman, N. Current insights and future prospects of graphene aerogel-enhanced supercapacitors: A systematic review. Heliyon 2024, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, V.; Randall, C.A. Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc. 2020, 40, 3744–3758. [Google Scholar] [CrossRef]
- Jiang, B.; Iocozzia, J.; Zhao, L.; Zhang, H.; Harn, Y.W.; Chen, Y.; Lin, Z. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 2019, 48, 1194–1228. [Google Scholar] [CrossRef]
- Su, X.; Riggs, B.C.; Tomozawa, M.; Nelson, J.K.; Chrisey, D.B. Preparation of BaTiO3/low melting glass core–shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A 2014, 2, 18087–18096. [Google Scholar] [CrossRef]
- Pillai, V.V.; Ramasubramanian, B.; Sequerth, O.; Pilla, S.; Wang, T.; Mohanty, A.K.; Govindaraj, P.; Alhassan, S.M.; Salim, N.; Kingshott, P.; et al. Nanomaterial advanced smart coatings: Emerging trends shaping the future. Appl. Mater. Today 2025, 42, 102574. [Google Scholar] [CrossRef]
- Chamankar, N.; Khajavi, R.; Yousefi, A.A.; Rashidi, A.; Golestanifard, F. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 2020, 46, 19669–19681. [Google Scholar] [CrossRef]
- Luo, C.; Hu, S.; Xia, M.; Li, P.; Hu, J.; Li, G.; Jiang, H.; Zhang, W. A flexible lead-free BaTiO3/PDMS/C composite nanogenerator as a piezoelectric energy harvester. Energy Technol. 2018, 6, 922–927. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Li, T.; Lü, W.; Qiu, X.; Huang, Z.; Liu, Z.; Zeng, S.; Guo, R.; Zhao, Y.; et al. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett. 2015, 15, 2568–2573. [Google Scholar] [CrossRef]
- Vélu, G.; Blary, K.; Burgnies, L.; Carru, J.C.; Delos, E.; Marteau, A.; Lippens, D. A 310°/3.6-dB K-band phaseshifter using paraelectric BST thin films. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 87–89. [Google Scholar] [CrossRef]
- Vélu, G.; Blary, K.; Burgnies, L.; Marteau, A.; Houzet, G.; Lippens, D.; Carru, J.C. A 360° BST Phase Shifter With Moderate Bias Voltage at 30 GHz. IEEE Trans. Microw. Theory Tech. 2007, 55, 438–444. [Google Scholar] [CrossRef]
- Zidani, J.; Tajounte, L.; Benzaouak, A.; Touach, N.; Duong, A.; Zannen, M.; Lahmar, A. Advances in Lead-Free Flexible Piezoelectric Materials for Energy and Evolving Applications. Adv. Ind. Eng. Polym. Res. 2025; in press. [Google Scholar] [CrossRef]
- McLellan, B.C.; Corder, G.D.; Ali, S.H. Sustainability of rare earths—An overview of the state of knowledge. Minerals 2013, 3, 304–317. [Google Scholar] [CrossRef]
- Guo, X.; Yang, H.; Zhu, X.; Zhang, L. Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN. Scr. Mater. 2013, 68, 281–284. [Google Scholar] [CrossRef]
Mechanism | Origin | Frequency Range | Typical Role |
---|---|---|---|
Electronic | Displacement of electron clouds in atoms | Optical (1015 Hz) | Minor, fast response in high-frequency fields |
Ionic | Relative motion of positive and negative ions | Infrared (1013 Hz) | Moderate contributor to polar ceramics |
Dipolar (Orientational) | Rotation of permanent dipoles (e.g., in polymers) | Microwave (109–1011 Hz) | Strong effect on polymer-based composites |
Interfacial (MWS) | Charge accumulation at interfaces in heterogeneous materials | Low frequency (<106 Hz) | Dominant in nanocomposites with mixed phases |
Composite System | Filler Type | Interfacial Polarization Effect | Performance Impact |
---|---|---|---|
BaTiO3–CNT | 1D conductive | High MWS polarization; may increase leakage at high loading | ↑ εr ↓ breakdown strength if CNTs percolate |
PVDF–BaTiO3 | Ceramic–polymer | Strong dipolar + interfacial effects | ↑ flexibility and dielectric constant |
BaTiO3–Graphene Oxide | 2D conductive | Enhanced interface area; tailored permittivity | ↑ εr with controlled loss tangent |
KNN–SiO2 | Ceramic boundary | Space charge modification via SiO2 additives | ↑ breakdown strength; ↓ dielectric loss |
Sintering Technique | Temp (°C) | Grain Control | Key Benefits | Challenges |
---|---|---|---|---|
Conventional Sintering | 1200–1400 | Coarse grain growth | Simple, widely used | High porosity, energy intensive |
Spark Plasma Sintering | 800–1100 | Excellent grain retention | Fast densification, fine grains | Expensive equipment |
Cold Sintering | <300 | Nanograin preservation | Eco-friendly, low cost, fast | Limited to specific material systems |
Sol–gel + Annealing | 600–900 | Moderate grain control | Molecular-level mixing and uniform composition | Agglomeration if not well controlled |
Method | Typical Material Examples | Temp (°C) | Grain Size (nm) | Dielectric Constant (εr) | Key Advantages |
---|---|---|---|---|---|
Solid-State Sintering | BaTiO3, K0.5Na0.5NbO3 (KNN), Pb(Zr,Ti)O3 (PZT) | 1300–1500 | ~4000 | ~1200 | Simple, scalable, suitable for bulk fabrication |
Sol–Gel | BaTiO3, BiFeO3, PbTiO3 | 600–900 | ~50 | ~1800 | Fine grains, low porosity, precise stoichiometry control |
Spark Plasma Sintering | BaTiO3–CNT, Ba(Zr,Ti)O3 (BZT), CaCu3Ti4O12 (CCTO) | 900–1100 | ~300 | ~2500 | High density, rapid sintering, nanoscale grain retention |
Cold Sintering | ZnO–PTFE, BaTiO3–PVDF | <300 | ~200 | ~1400 | Low-energy, compatible with polymers, eco-friendly |
Hydrothermal | BaTiO3, SrTiO3, TiO2 nanostructures | 100–250 | ~70 | ~1600 | Morphology control, selective crystallization, high purity |
Aspect | Core–Shell Structures | Heterojunction Interfaces |
---|---|---|
Interface Type | Conformal, typical uniform around core | Discontinuous or planar, between distinct phases |
Polarization Mechanism | Enhanced interfacial and ferroelectric polarization | Dominantly Maxwell–Wagner interfacial polarization |
Permittivity Behavior | High dielectric constant with improved breakdown strength | Strong low-frequency dielectric dispersion |
Thermal Stability | High, due to encapsulation and grain growth suppression | Moderate; depends on phase interaction |
Energy Storage | High energy density in dense, well-aligned systems | Moderate; often limited by interface defects |
Examples | BaTiO3@SiO2, BiFeO3@TiO2, ZnO@Al2O3 | BaTiO3–PVDF, TiO2–SnO2, BaTiO3–Nb:SrTiO3 |
Applications | Capacitors, energy harvesters, high-temperature dielectrics | Flexible electronics, tunable dielectrics, EMI shielding |
Key Challenge | Proposed Solution |
---|---|
Scalability of processing techniques | Adoption of low-temperature scalable sintering (e.g., SPS, cold sintering) |
Interfacial engineering limitations | Advanced core–shell and surface functionalization strategies |
Long-term stability and reliability | Improved encapsulation and barrier coatings |
Eco-toxicity of additives and solvents | Development of green synthesis and biodegradable matrices |
Integration with flexible substrates | Engineering polymer–ceramic hybrids with elastic interfaces |
Limited AI-guided material discovery | Use of machine learning for structure–property predictions |
Cost and energy consumption | Optimization of processing-energy tradeoffs using LCA tools |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed Althumairi, N.; Hjiri, M.; Aldukhayel, A.M.; Jbeli, A.; Nassar, K.I. Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies. Nanomaterials 2025, 15, 1329. https://doi.org/10.3390/nano15171329
Ahmed Althumairi N, Hjiri M, Aldukhayel AM, Jbeli A, Nassar KI. Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies. Nanomaterials. 2025; 15(17):1329. https://doi.org/10.3390/nano15171329
Chicago/Turabian StyleAhmed Althumairi, Nouf, Mokhtar Hjiri, Abdullah M. Aldukhayel, Anouar Jbeli, and Kais Iben Nassar. 2025. "Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies" Nanomaterials 15, no. 17: 1329. https://doi.org/10.3390/nano15171329
APA StyleAhmed Althumairi, N., Hjiri, M., Aldukhayel, A. M., Jbeli, A., & Nassar, K. I. (2025). Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies. Nanomaterials, 15(17), 1329. https://doi.org/10.3390/nano15171329