Nanoherbicides for Efficient, Safe, and Sustainable Weed Management: A Review
Abstract
1. Introduction
2. Preparation Methods of Nanoherbicides
3. Types and Characteristics of Nanoherbicides
3.1. Polymer-Based Nanoherbicides
3.2. Clay-Based Nanoherbicides
3.3. Silica-Based Nanoherbicides
3.4. MOFs-Based Nanoherbicides
3.5. Carbon-Based Nanoherbicides
4. Stimuli-Responsive Nanoherbicides
5. Advantages of Nanoherbicides
6. Risks and Challenges of Nanoherbicides
6.1. Risks to the Ecological Environment
6.2. Challenges of Commercial Application
7. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Rojas, S.; Rodríguez-Diéguez, A.; Horcajada, P. Metal–organic frameworks in agriculture. ACS Appl. Mater. Interfaces 2022, 14, 16983–17007. [Google Scholar] [CrossRef]
- Fuglie, K. Climate change upsets agriculture. Nat. Clim. Change 2021, 11, 294–295. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The problem of weed infestation of agricultural plantations vs. the assumptions of the european biodiversity strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Jayasoorya, R.; Kumar, P. Utilization of biodegradable carrier-based nano herbicide formulations for sustainable weed management in agriculture. Front. Agron. 2024, 6, 1497041. [Google Scholar] [CrossRef]
- Goswami, L.; Kim, K.-H.; Deep, A.; Das, P.; Bhattacharya, S.S.; Kumar, S.; Adelodun, A.A. Engineered nano particles: Nature, behavior, and effect on the environment. J. Environ. Manag. 2017, 196, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztor, G.; Taller, J.; Kazinczi, G. Herbicide resistance: Managing weeds in a changing world. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Tyagi, P.K.; Arya, A.; Ramniwas, S.; Tyagi, S. Editorial: Recent trends in nanotechnology in precision and sustainable agriculture. Front. Plant Sci. 2023, 14, 1256319. [Google Scholar] [CrossRef]
- Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1823–1867. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, F.; Jia, W.; Jiang, Y.; Wu, X.; Song, S.; Shen, H.; Shen, J. Nanomaterials and nanotechnology in agricultural pesticide delivery: A review. Langmuir 2024, 40, 18806–18820. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; You, C.; Qu, Q.; Zhang, X.; Deng, Y.; Ma, W.; Huang, C. Recent advances in the design of controlled and sustained-release micro/nanocarriers of pesticide. Environ. Sci. Nano 2023, 10, 351–371. [Google Scholar] [CrossRef]
- Tangamornsuksan, W.; Lohitnavy, O.; Sruamsiri, R.; Chaiyakunapruk, N.; Scholfield, C.N.; Reisfeld, B.; Lohitnavy, M. Paraquat exposure and parkinson’s disease: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2019, 74, 225–238. [Google Scholar] [CrossRef]
- Mohd Ghazi, R.; Nik Yusoff, N.R.; Abdul Halim, N.S.; Wahab, I.R.A.; Ab Latif, N.; Hasmoni, S.H.; Ahmad Zaini, M.A.; Zakaria, Z.A. Health effects of herbicides and its current removal strategies. Bioengineered 2023, 14, 2259526. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ren, Y.; Xue, H. Fabrication and application of carrier-free and carrier-based nanopesticides in pest management. Arch. Insect Biochem. Physiol. 2024, 116, e22124. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, A.; Cao, L.; Cao, C.; Zhao, P.; Yu, M.; Zheng, L.; Huang, Q. Efficient delivery of the herbicide quinclorac by nanosuspension for enhancing deposition, uptake and herbicidal activity. Pest Manag. Sci. 2024, 80, 4665–4674. [Google Scholar] [CrossRef]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Development of phosphatidylcholine/tween 80 based biocompatible clove oil-in-water nanoemulsion as a green nanocarrier for controlled herbicide delivery. Environ. Pollut. 2021, 293, 118558. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. J. Hazard. Mater. 2019, 385, 121525. [Google Scholar] [CrossRef]
- Prudnikova, S.V.; Boyandin, A.N.; Kalacheva, G.S.; Sinskey, A.J. Degradable polyhydroxyalkanoates as herbicide carriers. J. Polym. Environ. 2012, 21, 675–682. [Google Scholar] [CrossRef]
- Preisler, A.C.; Pereira, A.E.; Campos, E.V.; Dalazen, G.; Fraceto, L.F.; Oliveira, H.C. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against bidens pilosa without enhancing long-term residual effect on glycine max. Pest Manag. Sci. 2019, 76, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, V.; de Sousa, B.T.; Preisler, A.C.; Carvalho, L.B.; Pereira, A.d.E.S.; Tornisielo, V.L.; Dalazen, G.; Oliveira, H.C.; Fraceto, L.F. Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. J. Hazard. Mater. 2021, 418, 126350. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.E.S.; Grillo, R.; Mello, N.F.S.; Rosa, A.H.; Fraceto, L.F. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 2014, 268, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.; Do Espirito Santo Pereira, A.; Fraceto, L.F.; De Oliveira, H.C.; Dalazen, G. Effectiveness of nanoatrazine in post-emergent control of the tolerant weed Digitaria insularis. J. Plant Prot. Res. 2020, 60, 185–192. [Google Scholar]
- Bombo, A.B.; Pereira, A.; Lusa, M.G.; Medeiros, O.E.; Oliveira, J.L.; Campos, E.; Jesus, M.B.; Oliveira, H.C.; Fraceto, L.F.; Mayer, J. A mechanistic view of interactions of a nanoherbicide with target organism. J. Agric. Food Chem. 2019, 67, 4453–4462. [Google Scholar] [CrossRef]
- De Sousa, B.T.; Do Espirito Santo Pereira, A.; Fraceto, L.F.; Oliveira, H.C.; Dalazen, G. Post-emergence herbicidal activity of nanoatrazine against alternanthera tenella colla plants compared to other weed species. Heliyon 2022, 8, e09902. [Google Scholar] [CrossRef]
- Diyanat, M.; Saeidian, H. The metribuzin herbicide in polycaprolactone nanocapsules shows less plant chromosome aberration than non-encapsulated metribuzin. Environ. Chem. Lett. 2019, 17, 1881–1888. [Google Scholar] [CrossRef]
- Takeshita, V.; Preisler, A.C.; Munhoz-Garcia, G.V.; Bragança, L.; De Pinácio, C.W.; Oliveira, H.C.; Tornisielo, V.L.; Cardoso, B.C.; Ramalho, E.F.B.; Pimpinato, R.F.; et al. A multi-technique approach for nanoherbicide tracking: Uptake and translocation pathways of metribuzin nanocarrier in weed plants. Environ. Sci. Nano 2024, 11, 4536–4550. [Google Scholar] [CrossRef]
- Takeshita, V.; Munhoz-Garcia, G.V.; Pinácio, C.W.; Cardoso, B.C.; Nalin, D.; Tornisielo, V.L.; Fraceto, L.F. Availability of metribuzin-loaded polymeric nanoparticles in different soil systems: An important study on the development of safe nanoherbicides. Plants 2022, 11, 3366. [Google Scholar] [CrossRef]
- Takeshita, V.; Carvalho, L.B.; Galhardi, J.A.; Munhoz-Garcia, G.V.; Pimpinato, R.F.; Oliveira, H.C.; Tornisielo, V.L.; Fraceto, L.F. Development of a preemergent nanoherbicide: From efficiency evaluation to the assessment of environmental fate and risks to soil microorganisms. ACS Nanosci. Au 2022, 2, 307–323. [Google Scholar] [CrossRef]
- CHEN, X.; Wang, T. Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres. J. Integr. Agric. 2019, 18, 1035–1041. [Google Scholar] [CrossRef]
- Schnoor, B.; Elhendawy, A.; Joseph, S.; Putman, M.; Chacón-Cerdas, R.; Flores-Mora, D.; Bravo-Moraga, F.; Gonzalez-Nilo, F.; Salvador-Morales, C. Engineering atrazine loaded poly (lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges. J. Agric. Food Chem. 2018, 66, 7889–7898. [Google Scholar] [CrossRef] [PubMed]
- Kannamreddy, V.; Chinnamuthu, C.R.; Marimuthu, S.; Bharathi, C. Synthesizing nanoencapsulated sulfentrazone herbicide and optimizing time and dose for season long weed management in irrigated blackgram (Vigna mungo L.). Legume Res. 2021, 46, 1518–1525. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Torbati, S.; AliMirzayi, N.; Nozad, E.; Kochameshki, M.G.; Shokri, A. Preparation and investigation of poly(methylmethacrylate) nano-capsules containing haloxyfop-r-methyl and their release behavior. J. Environ. Sci. Health B 2020, 55, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, V.; Oliveira, F.F.; Garcia, A.; Zuverza-Mena, N.; Tamez, C.; Cardoso, B.C.; De Pinácio, C.W.; Steven, B.; LaReau, J.C.; Astete, C.E.; et al. Delivering metribuzin from biodegradable nanocarriers: Assessing herbicidal effects for soybean plant protection and weed control. Environ. Sci. Nano 2024, 12, 388–404. [Google Scholar] [CrossRef]
- Diyanat, M.; Saeidian, H.; Baziar, S.; Mirjafary, Z. Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ. Sci. Pollut. Res. Int. 2019, 26, 21579–21588. [Google Scholar] [CrossRef]
- Grillo, R.; Rosa, A.H.; Fraceto, L.F. Poly(ε-caprolactone) nanocapsules carrying the herbicide atrazine: Effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int. J. Environ. Sci. Technol. 2014, 11, 1691–1700. [Google Scholar] [CrossRef]
- Sousa, B.T.; Carvalho, L.B.; Preisler, A.C.; Saraiva-Santos, T.; Oliveira, J.L.; Verri, W.A., Jr.; Dalazen, G.; Fraceto, L.F.; Oliveira, H. Chitosan coating as a strategy to increase postemergent herbicidal efficiency and alter the interaction of nanoatrazine with bidens pilosa plants. ACS Appl. Mater. Interfaces 2024, 17, 13122–13134. [Google Scholar] [CrossRef]
- Khan, B.A.; Nadeem, M.A.; Iqbal, M.; Yaqoob, N.; Javaid, M.M.; Maqbool, R.; Elnaggar, N.; Oraby, H. Chitosan nanoparticles loaded with mesosulfuron methyl and mesosulfuron methyl + florasulam + MCPA isooctyl to manage weeds of wheat (Triticum aestivum L.). Green Process. Synth. 2023, 12, 20228152. [Google Scholar] [CrossRef]
- Ghaderpoori, M.; Jafari, A.; Nazari, E.; Rashidipour, M.; Nazari, A.; Chehelcheraghi, F.; Kamarehie, B.; Rezaee, R. Preparation and characterization of loaded paraquat- polymeric chitosan/xantan/tripolyphosphate nanocapsules and evaluation for controlled release. J. Environ. Health Sci. Eng. 2020, 18, 1057–1066. [Google Scholar] [CrossRef]
- Babaei, S.; Kahrizi, D.; Nosratti, I.; Karimi, N.; Arkan, E.; Tahir, M.B. Preparation and characterization of chloridazon-loaded alginate/chitosan nanocapsules. Cell Mol. Biol. 2022, 68, 34–42. [Google Scholar] [CrossRef]
- Dos Santos Silva, M.; Cocenza, D.S.; Grillo, R.; De Melo, N.F.S.; Tonello, P.S.; De Oliveira, L.C.; Cassimiro, D.L.; Rosa, A.H.; Fraceto, L.F. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J. Hazard. Mater. 2011, 190, 366–374. [Google Scholar] [CrossRef]
- Maruyama, C.R.; Guilger, M.; Pascoli, M.; Bileshy-José, N.; Abhilash, P.C.; Fraceto, L.F.; de Lima, R. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 2016, 6, 19768. [Google Scholar] [CrossRef]
- Rashidipour, M.; Maleki, A.; Kordi, S.; Birjandi, M.; Pajouhi, N.; Mohammadi, E.; Heydari, R.; Rezaee, R.; Rasoulian, B.; Davari, B. Pectin/chitosan/tripolyphosphate nanoparticles: Efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J. Agric. Food Chem. 2019, 67, 5736–5745. [Google Scholar] [CrossRef]
- Munhoz-Garcia, G.V.; Takeshita, V.; Oliveira, J.L.; Vecchia, B.D.; Nalin, D.; De Werk Pinácio, C.; De Oliveira, A.L.C.; Cardoso, B.C.; Tornisielo, V.L.; Fraceto, L.F. Nanobased natural polymers as a carrier system for glyphosate: An interesting approach aimed at sustainable agriculture. J. Agric. Food Chem. 2025, 73, 1097–1111. [Google Scholar] [CrossRef] [PubMed]
- Artusio, F.; Casà, D.; Granetto, M.; Tosco, T.; Pisano, R. Alginate nanohydrogels as a biocompatible platform for the controlled release of a hydrophilic herbicide. Processes 2021, 9, 1641. [Google Scholar] [CrossRef]
- Flores-Céspedes, F.; Daza-Fernández, I.; Villafranca-Sánchez, M.; Fernández-Pérez, M.; Morillo, E.; Undabeytia, T. Lignin and ethylcellulose in controlled release formulations to reduce leaching of chloridazon and metribuzin in light-textured soils. J. Hazard. Mater. 2017, 343, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.B.; Godoy, I.S.; Preisler, A.C.; de Freitas Proença, P.L.; Saraiva-Santos, T.; Verri, W.A.; Oliveira, H.C.; Dalazen, G.; Fraceto, L.F. Pre-emergence herbicidal efficiency and uptake of atrazine-loaded zein nanoparticles: A sustainable alternative to weed control. Environ. Sci. Nano 2023, 10, 1629–1643. [Google Scholar] [CrossRef]
- Heydari, M.; Yousefi, A.R.; Nikfarjam, N.; Rahdar, A.; Kyzas, G.Z.; Bilal, M. Plant-based nanoparticles prepared from protein containing tribenuron-methyl: Fabrication, characterization, and application. Chem. Biol. Technol. Agric. 2021, 8, 53. [Google Scholar] [CrossRef]
- Tang, G.; Tian, Y.; Gao, Y.; Zhou, Z.; Chen, X.; Li, Y.; Yu, X.; Wang, H.; Li, X.; Cao, Y. Supramolecular self-assembly of herbicides with reduced risks to the environment. ACS Nano 2022, 16, 4892–4904. [Google Scholar] [CrossRef]
- Nadiminti, P.P.; Sharma, H.; Kada, S.R.; Pfeffer, F.M.; Dell, L.A.O.; Cahill, D.M. Use of Mg–Al nanoclay as an efficient vehicle for the delivery of the herbicide 2,4-dichlorophenoxyacetic acid. ACS Sustain. Chem. Eng. 2019, 7, 10962–10970. [Google Scholar] [CrossRef]
- Ghazali, S.A.I.S.M.; Sarijo, S.H.; Hussein, M.Z. New synthesis of binate herbicide-interleaved anionic clay material: Synthesis, characterization and simultaneous controlled-release properties. J. Porous Mater. 2021, 28, 495–505. [Google Scholar] [CrossRef]
- Khatem, R.; Celis, R.; Hermosín, M.C. Cationic and anionic clay nanoformulations of imazamox for minimizing environmental Risk. Appl. Clay Sci. 2019, 168, 106–115. [Google Scholar] [CrossRef]
- Granetto, M.; Serpella, L.; Fogliatto, S.; Re, L.; Bianco, C.; Vidotto, F.; Tosco, T. Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. Sci. Total Environ. 2022, 806, 151199. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Wang, S.; Dong, H.; Luo, Y.; Jia, Z.; Zhou, X.; Chen, M.; Xie, D.; Jia, D. Halloysite tubes as nanocontainers for herbicide and its controlled release in biodegradable poly(vinyl alcohol)/starch film. J. Agric. Food Chem. 2017, 65, 10445–10451. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Zhang, G.; Liu, B.; Wu, Z.; Cai, D. Electrical-driven release and migration of herbicide using a gel-based nanocomposite. J. Agric. Food Chem. 2020, 68, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Hou, X.; Li, Q.; Nan, H.; Ge, F.; Liu, Y.; Li, F.; Zhang, D.; Tian, J. Loading glyphosate in attapulgite and sodium alginate hydrogels to construct pH-responsive controlled release microsphere for enhanced soil sustained release. ACS Agric. Sci. Technol. 2022, 2, 1090–1100. [Google Scholar] [CrossRef]
- Jain, S.K.; Dutta, A.; Kumar, J.; Shakil, N.A. Preparation and characterization of dicarboxylic acid modified starch-clay composites as carriers for pesticide delivery. Arab. J. Chem. 2020, 13, 7990–8002. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Zou, P.; Huang, A.; Zhang, M.; Ma, L. Cationic starch modified bentonite-alginate nanocomposites for highly controlled diffusion release of pesticides. Int. J. Biol. Macromol. 2022, 213, 123–133. [Google Scholar] [CrossRef]
- Giroto, A.; Campos, A.; Pereira, E.; Cruz, C.; Marconcini, J.; Ribeiro, C. Study of a nanocomposite starch-clay for slow-release of herbicides: Evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, Q.; Xie, Y.; Ding, J.; Zhao, H.; Zhang, Z.; Ma, Z.; Cong, H.; Meng, Z. Controlled release of herbicides through glyphosate intercalated layered double hydroxides and enhancement of anti-scouring ability via poly-l-aspartic acid and chitosan modification. Int. J. Biol. Macromol. 2023, 253, 126750. [Google Scholar] [CrossRef]
- Wilpiszewska, K.; Spychaj, T.; Paździoch, W. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon. Carbohydr. Polym. 2016, 136, 101–106. [Google Scholar] [CrossRef]
- Del Carmen Galán-Jiménez, M.; Morillo, E.; Bonnemoy, F.; Mallet, C.; Undabeytia, T. A Sepiolite-based formulation for slow release of the herbicide mesotrione. Appl. Clay Sci. 2020, 189, 105503. [Google Scholar] [CrossRef]
- Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Liu, D.; He, H. Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole. Sci. Rep. 2015, 5, 8870. [Google Scholar] [CrossRef]
- Teng, G.; Chen, C.; Ma, X.; Mao, H.; Yuan, X.; Xu, H.; Wu, Z.; Zhang, J. Spherical assembly of halloysite clay nanotubes as a general reservoir of hydrophobic pesticides for pH-responsive management of pests and weeds. Small 2024, 20, e2402921. [Google Scholar] [CrossRef]
- Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 2017, 66, 6594–6603. [Google Scholar] [CrossRef]
- Shan, Y.; Cao, L.; Xu, C.; Zhao, P.; Cao, C.; Li, F.; Xu, B.; Huang, Q. Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction. Int. J. Mol. Sci. 2019, 20, 1330. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, J.-Q.; Yi, J.-M.; Lian, R.-J.; Zhang, Z.-Y.; Li, J.-H.; He, S.; Bai, L.-Y. A pH-responsive MOF-functionalized hollow mesoporous silica controlled herbicide delivery system exhibits enhanced activity against ACCase-herbicide-resistant weeds. Pest Manag. Sci. 2023, 79, 5237–5249. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Guo, M.; Fan, C.; Dong, H.; Ding, G.; Zhang, W.; Tang, G.; Yang, J.; Kong, D.; Cao, Y. Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials. ACS Sustain. Chem. Eng. 2017, 5, 4802–4810. [Google Scholar] [CrossRef]
- Wang, M.; Lou, J.; Chen, Y.; Yang, L.; Wang, H. Preparation and properties of photoresponsive pendimethalin@silica-cinnamamide/γ-CD microspheres for pesticide controlled release. J. Agric. Food Chem. 2023, 71, 2270–2278. [Google Scholar] [CrossRef]
- Mejías, F.J.R.; Trasobares, S.; Varela, R.M.; Molinillo, J.M.G.; Calvino, J.J.; Macías, F.A. One-step encapsulation of ortho-disulfides in functionalized zinc MOF enabling metal-organic frameworks in agriculture. ACS Appl. Mater. Interfaces 2021, 13, 7997. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Ma, S.; Lv, S.; Wang, Y.; Lü, S.; Liu, M. Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 2021, 13, 43374. [Google Scholar] [CrossRef]
- Ren, L.; Li, W.; Li, Q.; Zhang, D.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Jin, X.; Cao, A. metolachlor metal–organic framework nanoparticles for reducing leaching, ecotoxicity and improving bioactivity. Pest Manag. Sci. 2022, 78, 5366–5378. [Google Scholar] [CrossRef]
- Sierra-Serrano, B.; García-García, A.; Hidalgo, T.; Ruiz-Camino, D.; Rodríguez-Diéguez, A.; Amariei, G.; Rosal, R.; Horcajada, P.; Rojas, S. Copper glufosinate-based metal–organic framework as a novel multifunctional agrochemical. ACS Appl. Mater. Interfaces 2022, 14, 34955–34962. [Google Scholar] [CrossRef]
- Lee, S.; Wang, G.; Ji, N.; Zhang, M.; Wang, D.; Sun, L.; Meng, W.; Zheng, Y.; Li, Y.; Wu, Y. Synthesis, characterizations and kinetics of MOF-5 as herbicide vehicle and its controlled release in PVA/ST biodegradable composite membranes. Z. Für Anorg. Und Allg. Chem. 2021, 648, e202100252. [Google Scholar] [CrossRef]
- Guo, K.; Deng, X.; Peng, Y.; Yang, N.; Qian, K.; Bai, L. A MOF based pH-responsive dual controlled release system for herbicide pretilachlor and safener AD-67 delivery enhances the herbicidal efficacy and reduces the side effects. Environ. Sci. Nano 2023, 10, 1016–1029. [Google Scholar] [CrossRef]
- Iyarin, T.M.E.; Aravind Kumar, B.N.; Babu, R.; Nirmalnath, P.J.; Hebsur, N.S.; Halli, H.M.; Govindasamy, P.; Senthamil, E.; Sannagoudar, M.S.; Palsaniya, D.R. Nanocomposite based slow release atrazine effectively controlled striga asiatica incidence, and enhanced sugarcane yield. Sci. Rep. 2024, 14, 30821. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zang, W.; Zhang, Z.; Wang, P.; Yang, Q. The enhanced and tunable sustained release of pesticides using activated carbon as a carrier. Materials 2019, 12, 4019. [Google Scholar] [CrossRef]
- Tang, G.; Wang, J.; Xiao, J.; Liu, Y.; Huang, Y.; Zhou, Z.; Zhang, X.; Hu, G.; Yan, W.; Cao, Y. Amphiphilic cationic carbon dots for efficient delivery of light-dependent herbicide. Adv. Sci. 2024, 11, e2406523. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, P.; Xie, Y.; Bai, L. Self-assembled sphere covalent organic framework with enhanced herbicidal activity by loading cyhalofop-butyl. J. Agric. Food Chem. 2023, 71, 1417–1425. [Google Scholar] [CrossRef]
- Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ϵ-caprolactone microspheres and nanospheres: An overview. Int. J. Appl. Pharm. 2004, 278, 1–23. [Google Scholar]
- Grillo, R.; dos Santos, N.Z.P.; Maruyama, C.R.; Rosa, A.H.; de Lima, R.; Fraceto, L.F. Poly(ε-Caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 2012, 231–232, 1–9. [Google Scholar] [CrossRef]
- Byun, Y.; Hwang, J.B.; Bang, S.H.; Darby, D.; Cooksey, K.; Dawson, P.L.; Park, H.J.; Whiteside, S. Formulation and characterization of α-tocopherol loaded poly ɛ-caprolactone (PCL) nanoparticles. Lebensm.-Wiss. Technol. 2011, 44, 24–28. [Google Scholar] [CrossRef]
- Oliveira, H.C.; Stolf-Moreira, R.; Martinez, C.B.R.; Sousa, G.F.M.; Grillo, R.; Jesus, M.B.; Fraceto, L.F. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Front. Chem. 2015, 3, 61. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Volova, T.; Shumilova, A.; Zhila, N.; Sukovatyi, A.; Shishatskaya, E.; Thomas, S. Efficacy of slow-release formulations of metribuzin and tribenuron methyl herbicides for controlling weeds of various species in wheat and barley stands. ACS Omega 2020, 5, 25135–25147. [Google Scholar] [CrossRef]
- Wang, X.; Tarahomi, M.; Sheibani, R.; Xia, C.; Wang, W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int. J. Biol. Macromol. 2023, 241, 124472. [Google Scholar] [CrossRef] [PubMed]
- Smola-Dmochowska, A.; Lewicka, K.; Macyk, A.; Rychter, P.; Pamuła, E.; Dobrzyński, P. Biodegradable polymers and polymer composites with antibacterial properties. Int. J. Mol. Sci. 2023, 24, 7473. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.R.; Kirichuk, A.A.; Rubanik, V.V.; Rubanik, V.V.; Tskhovrebov, A.G.; Kritchenkov, A.S. Chitosan and its derivatives: Preparation and antibacterial properties. Materials 2023, 16, 6076. [Google Scholar] [CrossRef]
- Pontes, M.; Antunes, D.; De Oliveira, I.P.; Forini, M.; Santos, J.; Arruda, G.; Caires, A.; Santiago, E.F.; Grillo, R. Chitosan/tripolyphosphate nanoformulation carrying paraquat: Insights of its enhanced herbicidal activity. Environ. Sci. Nano 2021, 8, 1336–1351. [Google Scholar] [CrossRef]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Clemente, Z.; De Oliveira, J.L.; Campos, E.V.R.; Chalupe, V.C.; Jonsson, C.M.; De Lima, R.; Sanches, G.; Nishisaka, C.S.; Rosa, A.H.; et al. Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. J. Hazard. Mater. 2015, 286, 562–572. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, N.; Yu, J.; Jin, S.; Shen, G.; Chen, H.; Yuzhen, N.; Xiang, D.; Qian, K. Research Progress of a Pesticide Polymer-Controlled Release System Based on Polysaccharides. Polymers 2023, 15, 2810. [Google Scholar] [CrossRef]
- Pal, A.; Kaur, P.; Dwivedi, N.; Rookes, J.; Bohidar, H.B.; Yang, W.; Cahill, D.M.; Manna, P.K. Clay-nanocomposite based smart delivery systems: A promising tool for sustainable farming. ACS Agric. Sci. Technol. 2022, 3, 3–16. [Google Scholar] [CrossRef]
- Choy, J.-H.; Choi, S.-J.; Oh, J.-M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122–132. [Google Scholar] [CrossRef]
- Dähn, R.; Scheidegger, A.M.; Manceau, A.; Schlegel, M.L.; Baeyens, B.; Bradbury, M.H.; Chateigner, D. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals. A polarized x-ray absorption fine structure study. Geochim. Cosmochim. Acta 2003, 67, 1–15. [Google Scholar] [CrossRef]
- Natarelli, C.V.L.; Claro, P.I.C.; Miranda, K.W.E.; Ferreira, G.M.D.; Oliveira, J.E.; Marconcini, J.M. 2,4-Dichlorophenoxyacetic acid adsorption on montmorillonite organoclay for controlled release applications. SN Appl. Sci. 2019, 1, 1212. [Google Scholar] [CrossRef]
- Jia, X.; Yan, Y.; Zhang, K.; Wang, C.; You, X.; Yang, S.; Wang, J.; Zhang, B.; Wang, Y.; Xie, J.; et al. Glufosinate ammonium-loaded halloysite nanotubes for slow-release weeding polymer mulch films. ACS Appl. Nano Mater. 2023, 6, 6186–6196. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, V.; Nagpal, G. A comprehensive review of nano clay: From development and applications to research opportunities. Environ. Prog. Sustain. Energy 2025, e70055. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Z.; Xu, Z.; Ma, Y.; Niu, Z.; Chen, J.; Zhang, M.; Shi, F. Progress on layered double hydroxides as green materials in sustainable agricultural production. Adv. Environ. Res. 2025, 271, 121031. [Google Scholar] [CrossRef]
- Yan, G.; Huang, Q.; Zhao, S.; Xu, Y.; He, Y.; Nikolic, M.; Nikolic, N.; Liang, Y.; Zhu, Z. Silicon nanoparticles in sustainable agriculture: Synthesis, absorption, and plant stress alleviation. Front. Plant Sci. 2024, 15, 1393458. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lei, C.; Yu, C. Mesoporous silica nanoparticles for protein protection and delivery. Front. Chem. 2019, 7, 290. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Song, H.; Yu, C. Silica-based nanoparticles for biomedical applications: From nanocarriers to biomodulators. Acc. Chem. Res. 2020, 53, 1545–1556. [Google Scholar] [CrossRef]
- Zhang, J.; Karmakar, S.; Yu, M.; Mitter, N.; Zou, J.; Yu, C. Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins. Small 2014, 10, 5068–5076. [Google Scholar] [CrossRef]
- Farha, O.K.; Eryazici, I.; Jeong, N.C.; Hauser, B.G.; Wilmer, C.E.; Sarjeant, A.A.; Snurr, R.Q.; Nguyen, S.T.; Yazaydın, A.Ö.; Hupp, J.T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, H.; Li, M.; Keeffe, M.O.; Eddaoudi, M. Reticular chemistry 3.2: Typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 2020, 120, 8039–8065. [Google Scholar] [CrossRef]
- Jeong, C.; Ansari, M.Z.; Anwer, A.H.; Kim, S.-H.; Nasar, A.; Shoeb, M.; Mashkoor, F. Areview on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep. Purif. Technol. 2023, 305, 122416. [Google Scholar] [CrossRef]
- Mondol, M.M.H.; Jhung, S.H. Adsorptive removal of pesticides from water with metal-organic framework-based materials. Chem. Eng. J. 2021, 421, 129688. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Song, C.; Ding, G.; Yang, J.; Wu, J.; Wu, G.; Zhang, M.Z.; Song, C.; Guo, L.-P.; Qin, J.; et al. High-performance functional Fe-MOF for removing aflatoxin B1 and other organic pollutants. Adv. Mater. Interfaces 2022, 9, 2102480. [Google Scholar] [CrossRef]
- Zhao, Y.; Zuo, X.; Lu, X.; Li, Z.; Gao, F. Hierarchical porous hollow N-doped Cu-based MOF derivatives as highly sensitive electrochemical sensing platform for pesticides detection. Sens. Actuators B 2022, 362, 131749. [Google Scholar] [CrossRef]
- Sun, D.W.; Huang, L.; Pu, H.; Ma, J. Introducing reticular chemistry into agrochemistry. Chem. Soc. Rev. 2021, 50, 1070–1110. [Google Scholar] [CrossRef]
- Bruneau, M.; Bennici, S.; Brendle, J.; Dutournie, P.; Limousy, L.; Pluchon, S. Systems for stimuli-controlled release: Materials and applications. J. Control. Release 2019, 294, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Salahshour Sani, P.; Orooji, Y.; Majidi, M.R.; Yoon, Y.; Khataee, A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem. Toxicol. 2022, 165, 113176. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, F.; Lv, Q.; Qin, W.; He, X.; Zhang, Y.; Zhou, Y.; Li, X.; Li, J. Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. J. Environ. Manage. 2022, 316, 115301. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yan, T.; Liao, Y.; Han, G. Efficient adsorption removal of 2,4-dichlorophenoxyacetic acid using amine-functionalized metal–organic frameworks (MOFs): Performance and mechanisms. Sep. Purif. Technol. 2024, 334, 126120. [Google Scholar] [CrossRef]
- Vikrant, K.; Kumar, V.; Kim, K.H.; Kukkar, D. Metal–organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. 2017, 5, 22877–22896. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352–8355. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585. [Google Scholar] [CrossRef]
- Nguyen, M.N. Potential use of silica-rich biochar for the formulation of adaptively controlled release fertilizers: A mini review. J. Clean. Prod. 2021, 307, 127188. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Gougherty, A.V.; Davies, T.J. Towards a phylogenetic ecology of plant pests and pathogens. Philos. Trans. R. Soc. 2021, 376, 20200359. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Z.; Yang, Y.; Li, Z.; Wen, Y.; Liu, M.; Li, S.; Su, L.; Zhou, Z.; Zhu, Y.; et al. Auricularia auricula biochar supported γ-FeOOH nanoarrays for electrostatic self-assembly and pH-responsive controlled release of herbicide and fertilizer. Chem. Eng. J. 2022, 437, 134984. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Dai, Z.; Xiang, Y.; Liu, B.; Bian, P.; Zheng, K.; Wu, Z.; Cai, D. Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chem. Eng. J. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Shan, P.; Lu, Y.; Lu, W.; Yin, X.; Liu, H.; Li, D.; Lian, X.; Wang, W.; Li, Z.; Li, Z. Biodegradable and light-responsive polymeric nanoparticles for environmentally safe herbicide delivery. ACS Appl. Mater. Interface 2022, 14, 43759–43770. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, G.; Xiang, Y.; Cai, D.; Wu, Z. Fabrication of a temperature-controlled-release herbicide using a nanocomposite. ACS Sustain. Chem. Eng. 2017, 5, 4969–4975. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, C.; Liu, Y.; Zhou, L.; Wu, S.; Yin, Q. Biocompatible nano-cocrystal engineering for targeted herbicide delivery: Enhancing efficacy through stimuli-responsive release and reduced environmental losses. ACS Appl. Mater. Interfaces 2024, 16, 51283–51300. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, X.; Chen, Y.; Yang, W.; Du, X. User-safe and efficient chitosan-gated porous carbon nanopesticides and nanoherbicides. J. Colloid. Interface Sci. 2021, 594, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Atta, S.; Bera, M.; Paul, A.; Singh, P. Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: For controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Adv. 2015, 5, 86990–86996. [Google Scholar] [CrossRef]
- Shan, P.; Li, D.; Lu, W.; Lu, W.; Yin, X.; Lian, X.; Lu, Y.; Qi, Y.; Zhang, M.; Du, K.; et al. Photo-degradable functional polyesters from an o-nitrobenzyl dithiol: Synthesis and applications in herbicide delivery. ACS Appl. Polym. Mater. 2023, 5, 5334–5341. [Google Scholar] [CrossRef]
- Feng, S.; Wang, J.; Zhang, L.; Chen, Q.; Yue, W.; Ke, N.; Xie, H. Coumarin-containing light-responsive carboxymethyl chitosan micelles as nanocarriers for controlled release of pesticide. Polymers 2020, 12, 2268. [Google Scholar] [CrossRef]
- Gao, C.; Huang, Q.; Lan, Q.; Feng, Y.; Tang, F.; Hoi, M.; Zhang, J.; Lee, S.; Wang, R. A User-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat. Commun. 2018, 9, 2967. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Li, X.; Chen, F.; Ye, H.; Rong, K.; Ran, Z.; Liu, B.; Pan, Z.; Xie, X.; Tang, J.; et al. Biomineralization-inspired porous calcium carbonate microspheres as a controlled release system of herbicides/pesticides. J. Environ. Chem. Eng. 2024, 12, 112572. [Google Scholar] [CrossRef]
- Younis, S.A.; Kim, K.-H.; Shaheen, S.M.; Antoniadis, V.; Tsang, Y.F.; Rinklebe, J.; Deep, A.; Brown, R.J. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew. Sustain. Energy Rev. 2021, 152, 111686. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309. [Google Scholar] [CrossRef]
- Juárez-Maldonado, A.; Tortella, G.; Rubilar, O.; Fincheira, P.; Benavides-Mendoza, A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J. Adv. Res. 2021, 31, 113–126. [Google Scholar] [CrossRef]
- Yang, X.; He, Q.; Guo, F.; Sun, X.; Zhang, J.; Chen, Y. Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. J. Hazard. Mater. 2021, 401, 123270. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.V.J.; Sharma, P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016, 54, 110–119. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Sushkova, S.; Tsitsuashvili, V.; Mandzhieva, S.; Gorovtsov, A.; Nevidomskyaya, D.; Gromakova, N. Effect of nanoparticles on crops and soil microbial communities. J. Soils Sediments 2018, 18, 2179–2187. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Keller, A.A. Interactions, Transformations, and Bioavailability of Nano-Copper Exposed to Root Exudates. Environ. Sci. Technol. 2017, 51, 9774–9783. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Guo, Z.; Wang, M.; Qi, C.; Chen, G.; Huang, X.; Yan, S.; Xu, D. Stimuli-responsive pesticide carriers based on porous nanomaterials: A review. Chem. Eng. J. 2023, 455, 140167. [Google Scholar] [CrossRef]
- Gladkova, M.M.; Terekhova, V.A. Engineered nanomaterials in soil: Sources of entry and migration pathways. Mosc. Univ. Soil Sci. Bull. 2013, 68, 129–134. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [PubMed]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira-Junior, J.; Alves, T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef]
- Schwab, F. Opportunities and Limitations of Nanoagrochemicals. Helv. Chim. Acta 2022, 106, e202200136. [Google Scholar] [CrossRef]
- Santos, P.A.; Biraku, X.; Nielsen, E.; Ozketen, A.C.; Ozketen, A.A.; Hakki, E.E. Agricultural nanotechnology for a safe and sustainable future: Current status, challenges, and beyond. J. Sci. Food Agric. 2025, 105, 3159–3169. [Google Scholar] [CrossRef]
Carrier Materials | Carrier Types | Material Preparation Method | Active Ingredient | Performance | References |
---|---|---|---|---|---|
Poly(ε-caprolactone) (PCL) | Polymer | Preformed polymer interfacial deposition method | Atrazine | High herbicidal activity and biosecurity | [22,23,24,25,26,27] |
PCL | Polymer | Preformed polymer interfacial deposition method | Metribuzin | High herbicidal activity and low environmental risk | [28,29,30,31] |
Poly(lactic-co-glycolic acid) | Polymer | Solvent evaporation method | Atrazine | Slow release | [32,33] |
Polyethylene glycol | Polymer | Solvent evaporation method | Sulfentrazone | High herbicidal activity and good biocompatibility | [34] |
Poly(methyl methacrylate) | Polymer | Emulsion Polymerization method | Haloxyfop-R-methyl | High biocompatibility | [35] |
PCL and lignin | Polymer | Preformed polymer inter-facial deposition method | Metribuzin | High herbicidal activity and good ecological compatibility | [36] |
PCL | Polymer | Preformed polymer inter-facial deposition method | Pretilachlor | High herbicidal activity and low cytotoxicity | [37] |
PCL and chitosan | Polymer | Preformed polymer inter-facial deposition method | Atrazine | Adjustable size and dispersion | [38,39] |
Chitosan | Polymer | Ion gel method | Mesosulfuron methyl and florasulam and 2-methyl-4-chlorophenoxyacetic acid | Low toxicity and high herbicidal activity | [40] |
Chitosan | Polymer | Ion gel method | Paraquat | Improved adhesion and herbicidal activity | [41] |
Paraquat | Polymer | Ion gel method | Chloridazon | Controlled release | [42] |
Chloridazon | Polymer | Ion gel method | Paraquat | Reduced soil adsorption and high herbicidal activity | [43] |
Paraquat | Polymer | Ion gel method | Imazapic and imazapyr | High herbicidal activity and low genotoxicity | [44] |
Imazapic and imazapyr | Polymer | Ion gel method | Paraquat | High herbicidal activity and reduced adsorption | [45] |
Paraquat | Polymer | Interfacial polymerization and ionic gel method | Glyphosate | High biocompatibility and low toxicity | [46] |
Glyphosate | Polymer | Reverse microemulsion template method | Dicamba | Prolonged release | [47] |
Dicamba | Polymer | Coating method | Chloridazon and etribuzin | Reduction in migration in soil | [48] |
Chloridazon and etribuzin | Polymer | Anti-solvent precipitation method | Atrazine | High herbicidal activity | [49] |
Atrazine | Polymer | Anti-solvent precipitation method | Tribenuron-methyl | High herbicidal activity | [50] |
Tribenuron-methyl | Polymer | Self-assembly method | 2,4-D | Reduction in soil leaching | [51] |
2,4-D | Clay | Ion exchange method | 2,4-D | High herbicidal activity | [52] |
2,4-D | Clay | Ion exchange method | 2,4,5-Trichlorophenoxybutyrate and 2-methyl-4-chlorophenoxy acetate | Controlled release | [53] |
2,4,5-Trichlorophenoxybutyrate and 2-methyl-4-chlorophenoxy acetate | Clay | Direct synthesis and co-precipitation method | Imazamox | Reduction in soil leaching | [54] |
Imazamox | Clay | Direct adsorption method | Dicamba | Improved stability | [55] |
Dicamba | Clay | Casting method | Atrazine | Prolonged release and reduced soil leaching | [56] |
Atrazine | Clay | Ion gel method | Glyphosate | Controlled release and good biocompatibility | [57,58] |
Glyphosate | Clay | Starch modification method | Atrazine | Prolonged release | [59] |
Atrazine | Clay | Starch modification method | Alachlor | Prolonged release | [60] |
Alachlor | Clay | Starch gel method | Ametryn | Extend the shelf life | [61] |
Ametryn | Clay | In situ method | Glyphosate | Prolonged release, high utilization, and erosion resistance | [62] |
Glyphosate | Clay | Starch modification method | Isoproturon | Long shelf life and reduced soil leaching | [63] |
Isoproturon | Clay | Modification method | Mesotrione | Controlled release | [64] |
Mesotrione | Clay | Immersion method | Amitrole | Controlled release | [65] |
Amitrole | Clay | Self-assembly method | Prometryn. | Controlled release and reduced soil leaching | [66] |
Prometryn | Silica | Grafting method | 2,4-D sodium salt | High herbicidal activity and safety | [67] |
2,4-D sodium salt | Silica | Grafting method | Diquat | Controlled release and high herbicidal activity | [68] |
Diquat | Silica | Hard template method | Quizalofop-p-ethyl | High herbicidal activity | [69] |
Quizalofop-p-ethyl | Silica | Interfacial polymerization method | Pendimethalin | Stable, controlled release, high herbicidal activity, and low genotoxicity | [70] |
Pendimethalin | Silica | Crosslinking method | Pendimethalin | Controlled release and low genotoxicity | [71] |
Pendimethalin | Metal–organic framework (MOF) | In situ method | DiS–NH2 and DiS-O-acetyl | High herbicidal activity | [72] |
DiS–NH2 and DiS-O-acetyl | MOF | Hard template method | 2,4-D | High herbicidal activity | [73] |
2,4-D | MOF | One-pot method | Metolachlor | Controlled release, high herbicidal activity, and safety | [74] |
Metolachlor | MOF | Ion ligand method | Glufosinate ammonium | High herbicidal activity and low genotoxicity | [75] |
Glufosinate ammonium | MOF | Electrostatic spraying method | Atrazine | Low risk and extended release time. | [76] |
Atrazine | MOF | Self-assembly method | Pretilachlor | High adhesion and herbicidal activity | [77] |
Pretilachlor | Carbon | Hummer’s method | Atrazine | High herbicidal activity and biocompatibility | [78] |
Atrazine | Carbon | Modification method | 2,4-D sodium salt | Long shelf life | [79] |
2,4-D sodium salt | Carbon | Electrostatic adsorption method | Acifluorfen sodium | Reduction in soil leaching | [80] |
Acifluorfen sodium | COF | Electrostatic adsorption method | Cyhalofop-butyl | High herbicidal activity | [81] |
Stimulation Conditions | Responsive Materials | Active Ingredient | Response Release Rate | References |
---|---|---|---|---|
Light | Perylene-3-ylmethanol | 2,4-D | 90% release rate achieved in 40 h | [131] |
Light | Azobenzene | Glyphosate | Achieved 100% release rate in 2.5 h | [126] |
Light | Cinnamamide | Pendimethalin | The release rate in 72 h exceeds 80% | [71] |
Light | 1,1,3,3-Tetramethylguanidine | 2,4-D | The release rate after 10 min reached 97.3% | [127] |
Light | o-Nitrobenzyl dithiol and diacrylates | 2,4-D | 7 min release rate reaches 95.4% | [132] |
Light | Coumarin | 2,4-D | The release rate reaches 90% in 500 min | [133] |
Light | Azobenzene | Paraquat | Reach 75% release within 10 h | [134] |
Temperature | Poly(vinyl alcohol) | Glyphosate | The release rate after 13 h is 12% | [128] |
Temperature | Phenazine | Clopyralid | At 10, 20, and 30 °C, after 20 h, the release was 49.245%, 53.644%, and 55.797% | [129] |
Temperature and pH | Porous carbon nanoparticles | Paraquat | At pH 2.0, the release rate after 24 h is 9.7%, and after 14 days it is 22.8% | [130] |
pH | Polyvinyl pyrrolidone | Glyphosate | At pH 6.5, the release amount reaches 74.5% after 24 h | [135] |
pH | Tannic acid | Prometryn | At pH 5.5, the release amount over 24 h is 80.5% | [66] |
pH | ZIF-67 | Pretilachlor and AD-67 | The overall release rates of Pretilachlor and AD-67 on the seventh day were 86% and 96%, respectively | [77] |
Enzyme | Polyethylenimine | Pendimethalin | The cumulative release rate reached 81.94% in 30 h | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Niu, P.; Gao, F.; Zeng, Z.; Cui, H.; Cui, B. Nanoherbicides for Efficient, Safe, and Sustainable Weed Management: A Review. Nanomaterials 2025, 15, 1304. https://doi.org/10.3390/nano15171304
Chen F, Niu P, Gao F, Zeng Z, Cui H, Cui B. Nanoherbicides for Efficient, Safe, and Sustainable Weed Management: A Review. Nanomaterials. 2025; 15(17):1304. https://doi.org/10.3390/nano15171304
Chicago/Turabian StyleChen, Fangyuan, Pengkun Niu, Fei Gao, Zhanghua Zeng, Haixin Cui, and Bo Cui. 2025. "Nanoherbicides for Efficient, Safe, and Sustainable Weed Management: A Review" Nanomaterials 15, no. 17: 1304. https://doi.org/10.3390/nano15171304
APA StyleChen, F., Niu, P., Gao, F., Zeng, Z., Cui, H., & Cui, B. (2025). Nanoherbicides for Efficient, Safe, and Sustainable Weed Management: A Review. Nanomaterials, 15(17), 1304. https://doi.org/10.3390/nano15171304