Green Hydrothermal Synthesis of Mn3O4 Nano-Octahedra Using Carménère Grape Pomace Extract and Evaluation of Their Properties for Energy Storage and Electrocatalysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method of Obtaining Grape Pomace Extract
2.3. Characterization of Carménère Grape Pomace Extract
2.4. Determination of the Antioxidant Activity of EET-50
2.4.1. FRAP Assay
2.4.2. DPPH Radical Method
2.5. Synthesis of Mn3O4 and Mn3O4/β-MnO2
2.6. Characterization of Nanostructures
2.7. Electrochemical Analysis
2.8. Capacitance Estimation
3. Results
3.1. Chemical Characterization and Antioxidant Activity of the EET-50
3.2. Synthesis and Characterization of the Nanostructures
3.2.1. Scanning Electron Microscopy
3.2.2. X-Ray Diffraction
3.2.3. Electrochemical Measurements
Morphology | Specific Capacitance | h/V | Reference |
---|---|---|---|
Nanoparticles a | 198 F/g at 0.5 mA/cm2 | --- | [64] |
Nanorods and nanoparticles a | 233.41 F/g at 0.5 A/g | --- | [60] |
Nanoparticles embedded in nanorods c | 499.6 F/g at 1 mV/s | --- | [65] |
Nanoparticles d | --- | 0.450 at 1 mA/cm2 | [63] |
Mn3O4 b | --- | 0.570 at 10 mA/cm2 | [62] |
Mn3O4 e | --- | 0.582 at 1,4 mA/cm2 | [61] |
Nano-octahedra a | 236.27 F/g at 1 mA/g | 0.430 at 10 mA/cm2 | This work |
Nano-octahedra and nanorods β-MnO2 a | 169.4 F/g at 1 mA/g | 0.490 at 10 mA/cm2 | This work |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EET-50 | 50% v/v hydroalcoholic extract from grape pomace |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
ORR | Oxygen reduction reaction |
OER | Oxygen evolution reaction |
RHE | Reversible hydrogen electrode |
TPC | Total phenolic content |
TFC | Total flavonoid content |
TMA | Total monomeric anthocyanin content |
MW | Molecular weight |
DF | Dilution factor |
ε | Molar absorptivity |
FRAP | Ferritic reducing antioxidant power |
DPPH | 2,2-diphenyl-βpicrylhydrazyl |
TPTZ | Ferric-2,4,6,tripyridyl-s-triazine |
IC50 | Inhibitory concentration μg·mL−1 |
GC | Glassy carbon electrode |
CDG | Charge–discharge process at constant current |
LSV | Linear sweep voltammetry |
SET | Single-electron transfer hydrogen |
HAT | Hydrogen atom transfer |
References
- Chen, J.; Cheng, F. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Acc. Chem. Res. 2009, 42, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef]
- Jamadar, A.S.; Sutar, R.; Patil, S.; Khandekar, R.; Yadav, J.B. Progress in Metal Oxide-Based Electrocatalysts for Sustainable Water Splitting. Mater. Rep. Energy 2024, 4, 100283. [Google Scholar] [CrossRef]
- Nguyen, N.T.H.; Tran, G.T.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, D.T.C.; Van Tran, T. A Critical Review on the Biosynthesis, Properties, Applications and Future Outlook of Green MnO2 Nanoparticles. Environ. Res. 2023, 231, 116262. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Shaijumon, M.M.; Gowda, S.R.; Ajayan, P.M. Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Lett. 2009, 9, 1002–1006. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, X.; Khan, S.A.; Li, W.; Wan, L. Biogenic Synthesis of MnO2 Nanoparticles with Leaf Extract of Viola Betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Front. Microbiol. 2021, 12, 761084. [Google Scholar] [CrossRef]
- Piligkos, S.; Rajaraman, G.; Soler, M.; Kirchner, N.; Van Slageren, J.; Bircher, R.; Parsons, S.; Güdel, H.U.; Kortus, J.; Wernsdorfer, W.; et al. Studies of an Enneanuclear Manganese Single-Molecule Magnet. J. Am. Chem. Soc. 2005, 127, 5572–5580. [Google Scholar] [CrossRef]
- Sukhdev, A.; Challa, M.; Narayani, L.; Manjunatha, A.S.; Deepthi, P.R.; Angadi, J.V.; Mohan Kumar, P.; Pasha, M. Synthesis, Phase Transformation, and Morphology of Hausmannite Mn3O4 Nanoparticles: Photocatalytic and Antibacterial Investigations. Heliyon 2020, 6, e03245. [Google Scholar] [CrossRef]
- Yoshikai, N.; Zhang, S.L.; Yamagata, K.I.; Tsuji, H.; Nakamura, E. Mechanistic Study of the Manganese-Catalyzed [2 + 2 + 2] Annulation of 1,3-Dicarbonyl Compounds and Terminal Alkynes. J. Am. Chem. Soc. 2009, 131, 4099–4109. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Han, Z.; Chen, L.; Qian, B.; Jiang, X.; Pinto, J.; Yang, G. Composite Structure and Properties of Mn3O4/Graphene Oxide and Mn3O4/Graphene. J. Mater. Chem. A Mater. 2013, 1, 8385–8397. [Google Scholar] [CrossRef]
- Huang, S.Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.Y.; Wang, H.E.; Van Tendeloo, G.; Su, B.L. Engineering Single Crystalline Mn3O4 Nano-Octahedra with Exposed Highly Active {011} Facets for High Performance Lithium Ion Batteries. Nanoscale 2014, 6, 6819–6827. [Google Scholar] [CrossRef]
- Liu, B.; Qi, L.; Ye, J.; Wang, J.; Xu, C. Facile Fabrication of Graphene-Encapsulated Mn3O4 Octahedra Cross-Linked with a Silver Network as a High-Capacity Anode Material for Lithium Ion Batteries. New J. Chem. 2017, 41, 13454–13461. [Google Scholar] [CrossRef]
- Beknalkar, S.A.; Teli, A.M.; Bhat, T.S.; Pawar, K.K.; Patil, S.S.; Harale, N.S.; Shin, J.C.; Patil, P.S. Mn3O4 Based Materials for Electrochemical Supercapacitors: Basic Principles, Charge Storage Mechanism, Progress, and Perspectives. J. Mater. Sci. Technol. 2022, 130, 227–248. [Google Scholar] [CrossRef]
- Song, Y.J.; Yuan, Z.Y. One-Pot Synthesis of Mo2N/NC Catalysts with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction. Electrochim. Acta 2017, 246, 536–543. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Z.; Liang, W.; Yan, H.; Tuo, Y.; Li, Y.; Zhou, Y.; Zhang, J. Ultra-Small Co/CoOx Nanoparticles Dispersed on N-Doped Carbon Nanosheets for Highly Efficient Electrocatalytic Oxygen Evolution Reaction. J. Energy Chem. 2021, 55, 345–354. [Google Scholar] [CrossRef]
- Chen, X.; Han, L.; Zhao, G.; Zhao, L.; Gao, G.; Yu, L.; Li, Y.; Shan, X.; Li, J.; Liu, X.; et al. Construction of MnO2-Mn3O4 Heterostructures to Facilitate High-Performance Aqueous Magnesium Ion Energy Storage. Chem. Commun. 2024, 60, 3067–3070. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Agarwal, S.; Gupta, V.K. Synthesis and Characterization of Metal Oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) Nanoparticles as Photo Catalysts for Degradation of Textile Dyes. J. Photochem. Photobiol. B 2017, 173, 43–49. [Google Scholar] [CrossRef]
- Lan, L.; Li, Q.; Gu, G.; Zhang, H.; Liu, B. Hydrothermal synthesis of γ-MnOOH nanorods and their conversion to MnO2, Mn2O3, and Mn3O4 nanorods. J. Alloys Compd. 2015, 644, 430–437. [Google Scholar] [CrossRef]
- Van Tran, T.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Green Synthesis of ZrO2 Nanoparticles and Nanocomposites for Biomedical and Environmental Applications: A Review. Environ. Chem. Lett. 2022, 20, 1309–1331. [Google Scholar] [CrossRef]
- Xia, Y.; Qiang, Z.; Lee, B.; Becker, M.L.; Vogt, B.D. Solid State Microwave Synthesis of Highly Crystalline Ordered Mesoporous Hausmannite Mn3O4 Films. CrystEngComm 2017, 19, 4294–4303. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Jia, Y. Synthesis of Novel Mn3O4 Concave Octahedral Microcrystals and Their Anomalous Magnetic Properties. New J. Chem. 2013, 37, 3603–3606. [Google Scholar] [CrossRef]
- Duan, L.; Sun, B.; Wei, M.; Luo, S.; Pan, F.; Xu, A.; Li, X. Catalytic Degradation of Acid Orange 7 by Manganese Oxide Octahedral Molecular Sieves with Peroxymonosulfate under Visible Light Irradiation. J. Hazard. Mater. 2015, 285, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cui, X.; Zeng, R.; Du, G.; Sun, Z.; Zheng, R.; Ringer, S.P.; Dou, S.X. Performance Modulation of α-MnO2 Nanowires by Crystal Facet Engineering. Sci. Rep. 2015, 5, 8987. [Google Scholar] [CrossRef]
- Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of Plant Phytochemicals and Microbial Enzymes in Biosynthesis of Metallic Nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 6799–6814. [Google Scholar] [CrossRef]
- Gu, X.; Xu, Z.; Gu, L.; Xu, H.; Han, F.; Chen, B.; Pan, X. Preparation and Antibacterial Properties of Gold Nanoparticles: A Review. Environ. Chem. Lett. 2021, 19, 167–187. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Youssef, A.M.; Yakout, S.M.; Elnahrawy, A.M.; Hashem, A.M. Green Synthesized α-MnO2 As a Photocatalytic Reagent for Methylene Blue and Congo Red Degradation. J. Electron. Mater. 2021, 50, 2171–2181. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, S.; Abdullah; Zafar, S.; Rizwan, M.; Ali, M.; Ullah, R.; Albadrani, G.M.; Mohamed, H.R.H.; Akbar, F. Fagonia Cretica-Mediated Synthesis of Manganese Oxide (MnO2) Nanomaterials Their Characterization and Evaluation of Their Bio-Catalytic and Enzyme Inhibition Potential for Maintaining Flavor and Texture in Apples. Catalysts 2022, 12, 558. [Google Scholar] [CrossRef]
- Hashem, A.M.; Abuzeid, H.; Kaus, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Green Synthesis of Nanosized Manganese Dioxide as Positive Electrode for Lithium-Ion Batteries Using Lemon Juice and Citrus Peel. Electrochim. Acta 2018, 262, 74–81. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A Reproducible, Rapid and Inexpensive Folin-Ciocalteu Micro-Method in Determining Phenolics of Plant Methanol Extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Peña-Cerda, M.; Arancibia-Radich, J.; Valenzuela-Bustamante, P.; Pérez-Arancibia, R.; Barriga, A.; Seguel, I.; García, L.; Delporte, C. Phenolic Composition and Antioxidant Capacity of Ugni Molinae Turcz. Leaves of Different Genotypes. Food Chem. 2017, 215, 219–227. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gonzales, M.; Villena, G.K.; Kitazono, A.A. Evaluation of the Antioxidant Activities of Aqueous Extracts from Seven Wild Plants from the Andes Using an in Vivo Yeast Assay. Results Chem. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Lorca-Ponce, J.; Cisterna, J.; Cattin, L.; Bernède, J.C.; Louarn, G.; Ramírez, A.M.R. Electrochemical Fabrication of Nanowires Poly (Indole-6-Carboxylic Acid) Adorned with Nanorod MnO2 for Evaluation of Its Capacitive Properties. Electrochim. Acta 2023, 464, 142937. [Google Scholar] [CrossRef]
- Gacitúa, M.A.; del Valle, M.A.; Ramírez, A.M. Capacitors Based on PEDOT Nanowire Electrodeposits. J. Appl. Polym. Sci. 2023, 140, e54559. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A Comparative Study on Different Extraction Techniques to Recover Red Grape Pomace Polyphenols from Vinification Byproducts. Ind. Crop. Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crop. Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent Selection for Efficient Extraction of Bioactive Compounds from Grape Pomace. Ind. Crop. Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Gajardo-Parra, N.; Pérez-Correa, J.R.; Canales, R.I.; Martínez-Cifuentes, M.; Contreras-Contreras, G.; Mariotti-Celis, M.S. Enhanced Polyphenols Recovery from Grape Pomace: A Comparison of Pressurized and Atmospheric Extractions with Deep Eutectic Solvent Aqueous Mixtures. Antioxidants 2023, 12, 1446. [Google Scholar] [CrossRef] [PubMed]
- Pinton, S.; Furlan Goncalves Dias, F.; Lerno, L.A.; Barile, D.; Leite Nobrega de Moura Bell, J.M. Revitalizing Unfermented Cabernet Sauvignon Pomace Using an Eco-Friendly, Two-Stage Countercurrent Process: Role of PH on the Extractability of Bioactive Phenolics. Processes 2022, 10, 2093. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Oliveira da Silva, J.D.; dos Santos, H.C.; Bento, G.S.; Oliveira, J.F.R.; de Souza Abud, A.K.; Gimenez, I.d.F. Green Synthesis of Manganese Dioxide (MnO2) Nanoparticles Produced with Acerola (Malpighia Emarginata) Leaf Extract. Mater. Chem. Phys. 2024, 315, 128963. [Google Scholar] [CrossRef]
- Ashoka, S.; Nagaraju, G.; Chandrappa, G.T. Reduction of KMnO4 to Mn3O4 via Hydrothermal Process. Mater. Lett. 2010, 64, 2538–2540. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, T.; Yan, C.; Ma, J.; Li, C. Hydrothermal Synthesis of Novel Mn3O4 Nano-Octahedrons with Enhanced Supercapacitors Performances. Nanoscale 2010, 2, 2195–2198. [Google Scholar] [CrossRef]
- Lan, D.; Qin, M.; Yang, R.; Wu, H.; Jia, Z.; Kou, K.; Wu, G.; Fan, Y.; Fu, Q.; Zhang, F. Synthesis, Characterization and Microwave Transparent Properties of Mn3O4 Microspheres. J. Mater. Sci. Mater. Electron. 2019, 30, 8771–8776. [Google Scholar] [CrossRef]
- Su, C.Y.; Xu, Y.; Zhang, W.; Zhao, J.; Liu, A.; Tang, X.; Tsai, C.H.; Huang, Y.; Li, L.J. Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano 2010, 4, 5285–5292. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Stevenson, G.; Chamoun, M.; Lindström, R.W. MnO2/Mn2+ Chemistry: Charging Protocol and Electrolyte Regulation. Energy Storage Mater. 2023, 63, 103008. [Google Scholar] [CrossRef]
- Devi, R.; Kumar, V.; Kumar, S.; Bulla, M.; Sharma, S.; Sharma, A. Electrochemical Analysis of MnO2 (α, β, and γ)-Based Electrode for High-Performance Supercapacitor Application. Appl. Sci. 2023, 13, 7907. [Google Scholar] [CrossRef]
- Park, H.W.; Lee, H.J.; Park, S.M.; Roh, K.C. Synthesis and Electrochemical Properties of Mn3O4 Nanocrystals with Controlled Morphologies Grown from Compact Ion Layers. RSC Adv. 2016, 6, 18191–18197. [Google Scholar] [CrossRef]
- Tang, X.N.; Zhu, S.K.; Ning, J.; Yang, X.F.; Hu, M.Y.; Shao, J.J. Charge Storage Mechanisms of Manganese Dioxide-Based Supercapacitors: A Review. Xinxing Tan. Cailiao/New Carbon Mater. 2021, 36, 702–710. [Google Scholar] [CrossRef]
- Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosnier, O.; Bélanger, D. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc. 2006, 153, A2171. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, L.; Abbas, M.A.; Bang, J.H. The Influence of Surface Area, Porous Structure, and Surface State on the Supercapacitor Performance of Titanium Oxynitride: Implications for a Nanostructuring Strategy. Phys. Chem. Chem. Phys. 2017, 19, 21140–21151. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, T.; Li, Z.; Xiao, B.; Zhang, M. High Performance of Mn3O4 Cubes for Supercapacitor Applications. Mater. Lett. 2016, 178, 171–174. [Google Scholar] [CrossRef]
- Ramírez, A.M.R.; Heidari, S.; Vergara, A.; Aguilera, M.V.; Preuss, P.; Camarada, M.B.; Fischer, A. Rhenium-Based Electrocatalysts for Water Splitting. ACS Mater. Au 2023, 3, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.M.; Sullivan, B.T.; Palenik, M.C.; Yan, L.; Purohit, V.; Robison, G.; Kosheleva, I.; Henning, R.W.; Seidler, G.T.; Pushkar, Y. Rapid Evolution of the Photosystem II Electronic Structure during Water Splitting. Phys. Rev. X 2018, 8, 041014. [Google Scholar] [CrossRef]
- Zheng, W.X.; Cheng, X.X.; Chen, P.P.; Wang, L.L.; Duan, Y.; Feng, G.J.; Wang, X.R.; Li, J.J.; Zhang, C.; Yu, Z.Y.; et al. Boosting the Durability of RuO2 via Confinement Effect for Proton Exchange Membrane Water Electrolyzer. Nat. Commun. 2025, 16, 337. [Google Scholar] [CrossRef]
- Shaik, D.; Rosaiah, P.; Hussain, O.M. Supercapacitive Performance of Mn3O4 Nanoparticles Synthesized by Hydrothermal Method. Adv. Sci. Eng. Med. 2016, 8, 140–145. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Hao, Y.; Chen, C.; Zhang, D. High-Performance Mn3O4 Nanomaterials Synthesized via a New Two-Step Hydrothermal Method in Asymmetric Supercapacitors. Mater. Sci. Semicond. Process. 2021, 130, 105823. [Google Scholar] [CrossRef]
- Li, Z.Y.; Shi, S.T.; Zhong, Q.S.; Zhang, C.J.; Xu, C.W. Pt-Mn3O4/C as Efficient Electrocatalyst for Oxygen Evolution Reaction in Water Electrolysis. Electrochim. Acta 2014, 146, 119–124. [Google Scholar] [CrossRef]
- Ramírez, A.; Hillebrand, P.; Stellmach, D.; May, M.M.; Bogdanoff, P.; Fiechter, S. Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water. J. Phys. Chem. C 2014, 118, 14073–14081. [Google Scholar] [CrossRef]
- Yoon, S.; Seo, H.; Jin, K.; Kim, H.G.; Lee, S.Y.; Jo, J.; Cho, K.H.; Ryu, J.; Yoon, A.; Kim, Y.W. Atomic Reconstruction and Oxygen Evolution Reaction of Mn3O4Nanoparticles. J. Phys. Chem. Lett. 2022, 13, 8336–8343. [Google Scholar] [CrossRef]
- Shaik, D.P.M.D.; Rosaiah, P.; Hussain, O.M. Supercapacitive Properties of Mn3O4 Nanoparticles Synthesized by Hydrothermal Method. Proc. Mater. Today Proc. 2016, 3, 64–73. [Google Scholar] [CrossRef]
- Shunmugapriya, B.; Vijayakumar, T. Investigation on the Synthesis of Mn3O4 Nanoparticles Embedded on Nano Rods as an Electrode Material for Supercapacitor Application. Inorg. Chem. Commun. 2022, 146, 110179. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L.; Xia, Y.; Gan, Y.; Tao, X.; Liang, C.; Zhang, W. Well-Dispersed Ultrafine Mn3O4 Nanocrystals on Reduced Graphene Oxide with High Electrochemical Li-Storage Performance. New J. Chem. 2014, 38, 4743–4747. [Google Scholar] [CrossRef]
Yield (%) | Phenolic Content | Antioxidant Activity | |||
---|---|---|---|---|---|
TPC 1 (mgGAE/dw) | TFC 2 (mgQE/gdw) | TMA 3 (mgCE/gdw) | FRAP 4 (mmolTE/dw) | DPPH, IC50 5 (µg/mL) | |
7.8 ± 0.1 | 149.9 ± 0.4 | 12.1 ± 0.9 | 12.1 ± 0.4 | 1.59 ± 0.04 | 17.96 ± 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorca-Ponce, J.; Valenzuela-Bustamante, P.; Cornejo Retamales, P.; Nolan Mella, N.; Cavieres Ríos, V.; Pérez Velez, M.J.; Ramírez, A.M.R.; Diaz Jalaff, L. Green Hydrothermal Synthesis of Mn3O4 Nano-Octahedra Using Carménère Grape Pomace Extract and Evaluation of Their Properties for Energy Storage and Electrocatalysis. Nanomaterials 2025, 15, 1282. https://doi.org/10.3390/nano15161282
Lorca-Ponce J, Valenzuela-Bustamante P, Cornejo Retamales P, Nolan Mella N, Cavieres Ríos V, Pérez Velez MJ, Ramírez AMR, Diaz Jalaff L. Green Hydrothermal Synthesis of Mn3O4 Nano-Octahedra Using Carménère Grape Pomace Extract and Evaluation of Their Properties for Energy Storage and Electrocatalysis. Nanomaterials. 2025; 15(16):1282. https://doi.org/10.3390/nano15161282
Chicago/Turabian StyleLorca-Ponce, Javier, Paula Valenzuela-Bustamante, Paula Cornejo Retamales, Nicolas Nolan Mella, Valentina Cavieres Ríos, María J. Pérez Velez, Andrés M. Ramírez Ramírez, and Leslie Diaz Jalaff. 2025. "Green Hydrothermal Synthesis of Mn3O4 Nano-Octahedra Using Carménère Grape Pomace Extract and Evaluation of Their Properties for Energy Storage and Electrocatalysis" Nanomaterials 15, no. 16: 1282. https://doi.org/10.3390/nano15161282
APA StyleLorca-Ponce, J., Valenzuela-Bustamante, P., Cornejo Retamales, P., Nolan Mella, N., Cavieres Ríos, V., Pérez Velez, M. J., Ramírez, A. M. R., & Diaz Jalaff, L. (2025). Green Hydrothermal Synthesis of Mn3O4 Nano-Octahedra Using Carménère Grape Pomace Extract and Evaluation of Their Properties for Energy Storage and Electrocatalysis. Nanomaterials, 15(16), 1282. https://doi.org/10.3390/nano15161282