Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Analytic and Spectroscopic Characterization
2.3. Scanning Electron (SEM) and Transmission Electron (TEM) Microscopy
2.4. In Vitro Drug Release
2.5. Hemolysis Test
2.6. Antiproliferative Properties
2.7. Antioxidant Activities
3. Materials and Methods
3.1. Materials
3.2. Preparation of F. vulgare Seed Extract
3.3. Synthesis of Se NPs
3.4. Preparation of the Chitosan-Coated Se NPs—Se@Ch
3.5. Loading with Paclitaxel (PTX)
3.6. Instrumentation
3.7. In Vitro PTX Release
3.8. Hemolytic Activity Assay
3.9. Coagulation Time Assay
3.10. Antiproliferative Activity
3.11. Antioxidant Activity Assay Using DPPH
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, M.M.U.; Hoq, M.I.; Tanju, R.I.; Jakaria, M.; Sayeed, M.A. Breast Cancer Awareness, Screening Practices, and Perceived Barriers Among Female Undergraduate Students: An Institution-Based Cross-Sectional Study. Cancer Rep. 2025, 8, e70187. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Khan, M.Y.; Imran, A.; Maqsood, Q.; Hussain, N.; Ali, S.W. Revolutionizing Breast Cancer Care: Cutting-Edge Breakthroughs and Future Frontiers in Precision Medicine. In Breast Cancer Treatment: An Interdisciplinary Approach; Rezaei, N., Ed.; Springer: Cham, Switzerland, 2024; pp. 115–141. [Google Scholar] [CrossRef]
- Shirzad, M.; Shaban, M.; Mohammadzadeh, V.; Rahdar, A.; Fathi-karkan, S.; Hoseini, Z.S.; Najafi, M.; Kharaba, Z.; Aboudzadeh, M.A. Artificial Intelligence-Assisted Design of Nanomedicines for Breast Cancer Diagnosis and Therapy: Advances, Challenges, and Future Directions. BioNanoScience 2025, 15, 354. [Google Scholar] [CrossRef]
- Shokoohi, M.; Sedaghatshoar, S.; Arian, H.; Mokarami, M.; Habibi, F.; Bamarinejad, F. Genetic Advancements in Breast Cancer Treatment: A Review. Discov. Oncol. 2025, 16, 127. [Google Scholar] [CrossRef]
- Ma, P.; Luo, Z.; Li, Z.; Lin, Y.; Li, Z.; Wu, Z.; Ren, C.; Wu, Y.L. Mitochondrial Artificial K+ Channel Construction Using MPTPP@5F8 Nanoparticles for Overcoming Cancer Drug Resistance via Disrupting Cellular Ion Homeostasis. Adv. Healthc. Mater. 2024, 13, 2302012. [Google Scholar] [CrossRef]
- Abouzeid, H.A.; Kassem, L.; Liua, X.; Abuelhana, A. Paclitaxel Resistance in Breast Cancer: Current Challenges and Recent Advanced Therapeutic Strategies. Cancer Treat. Res. Commun. 2025, 43, 100918. [Google Scholar] [CrossRef]
- Elshaer, M.; Howley, B.V.; Howe, P.H. ARIH1 Inhibition Promotes Microtubule Stability and Sensitizes Breast Cancer Cells to Microtubule-Stabilizing Agents. Cancers 2025, 17, 782. [Google Scholar] [CrossRef]
- Huang, H.; Kung, F.-L.; Huang, Y.-W.; Hsu, C.-C.; Guh, J.-H.; Hsu, L.-C. Sensitization of Cancer Cells to Paclitaxel-Induced Apoptosis by Canagliflozin. Biochem. Pharmacol. 2024, 223, 116140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Arora, A.; Pant, V.; Guchhait, S.; Kumar, R.; Mathur, D.; Singh, B.K. Advances in Drug Delivery Systems for Lipophilic Drug Paclitaxel: Developments, Challenges, and Opportunities (A Review). Russ. J. Bioorg. Chem. 2024, 50, 1752–1782. [Google Scholar] [CrossRef]
- Singh, S.; Pal, K. Polyphenol Modified CuO Nanorods Capped by Kappa-Carrageenan for Controlled Paclitaxel Release in Furnishing Targeted Chemotherapy in Breast Carcinoma Cells. Int. J. Biol. Macromol. 2024, 255, 127893. [Google Scholar] [CrossRef]
- Sati, P.; Sharma, E.; Dhyani, P.; Attri, D.C.; Rana, R.; Kiyekbayeva, L.; Büsselberg, D.; Samuel, S.M.; Sharifi-Rad, J. Paclitaxel and Its Semi-Synthetic Derivatives: Comprehensive Insights into Chemical Structure, Mechanisms of Action, and Anticancer Properties. Eur. J. Med. Res. 2024, 29, 90. [Google Scholar] [CrossRef] [PubMed]
- Gralewska, P.; Gajek, A.; Marczak, A.; Rogalska, A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors Against Ovarian Cancer. Int. J. Mol. Sci. 2024, 25, 8304. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.L.; Joerger, M.; Bang, Y.-J.; Mathijssen, R.H.; Zhou, C.; Zhang, L.; Gandara, D.; Stahl, M.; Monk, B.J.; Jaehde, U. Paclitaxel Therapeutic Drug Monitoring-International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations. Eur. J. Cancer 2024, 202, 114024. [Google Scholar] [CrossRef] [PubMed]
- Al-Kofahi, T.; Altrad, B.; Amawi, H.; Aljabali, A.A.; Abul-Haija, Y.M.; Obeid, M.A. Paclitaxel-Loaded Niosomes in Combination with Metformin: Development, Characterization and Anticancer Potentials. Ther. Deliv. 2024, 15, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, E.A.; Elsamahy, T.; El Bayomi, R.M.; Hussein, M.A.; Darwish, I.A.; El-tahlawy, A.S.; Alahmad, W.; Darling, R.J.; Hafez, A.E.-S.E.; Sobhi, M.; et al. Nanoparticle-Driven Aquaculture: Transforming Disease Management and Boosting Sustainable Fish Farming Practices. Aquacult. Int. 2025, 33, 288. [Google Scholar] [CrossRef]
- Lunawat, A.K.; Thakur, S.; Kurmi, B.D.; Gupta, G.D.; Patel, P.; Raikwar, S. Revolutionizing Cancer Treatment: The Role of Chitosan Nanoparticles in Therapeutic Advancements. J. Drug Deliv. Sci. Technol. 2024, 96, 105661. [Google Scholar] [CrossRef]
- Maghimaa, M.; Sagadevan, S.; Suryadevara, P.R.; Sudhan, H.H.; Burle, G.S.R.; Ruokolainen, J.; Nelson, V.K.; Kesari, K.K. Cytotoxicity and Targeted Drug Delivery of Green Synthesized Metallic Nanoparticles Against Oral Cancer: A Review. Inorg. Chem. Commun. 2025, 173, 113806. [Google Scholar] [CrossRef]
- Hossain, A.; Rayhan, M.T.; Mobarak, M.H.; Rimon, M.I.H.; Hossain, N.; Islam, S.; Al Kafi, S.A. Advances and Significances of Gold Nanoparticles in Cancer Treatment: A Comprehensive Review. Results Chem. 2024, 8, 101559. [Google Scholar] [CrossRef]
- Waqar, M.A. A Comprehensive Review on Recent Advancements in Drug Delivery via Selenium Nanoparticles. J. Drug Target. 2025, 33, 157–170. [Google Scholar] [CrossRef]
- Sonkusre, P.; Cameotra, S.S. Biogenic Selenium Nanoparticles Induce ROS-Mediated Necroptosis in PC-3 Cancer Cells Through TNF Activation. J. Nanobiotechnol. 2017, 15, 43. [Google Scholar] [CrossRef]
- He, L.; Javid Anbardan, Z.; Habibovic, P.; van Rijt, S. Doxorubicin-and Selenium-Incorporated Mesoporous Silica Nanoparticles as a Combination Therapy for Osteosarcoma. ACS Appl. Nano Mater. 2024, 7, 25400–25411. [Google Scholar] [CrossRef]
- Nie, S.; He, X.; Sun, Z.; Zhang, Y.; Liu, T.; Chen, T.; Zhao, J. Selenium Speciation-Dependent Cancer Radiosensitization by Induction of G2/M Cell Cycle Arrest and Apoptosis. Front. Bioeng. Biotechnol. 2023, 11, 1168827. [Google Scholar] [CrossRef]
- Nag, S.; Kar, S.; Mishra, S.; Stany, B.; Seelan, A.; Mohanto, S.; Kamaraj, C.; Subramaniyan, V. Unveiling Green Synthesis and Biomedical Theranostic Paradigms of Selenium Nanoparticles (SeNPs)-A State-of-the-Art Comprehensive Update. Int. J. Pharm. 2024, 622, 124535. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, S.; Pan, I.; Issac, P.K.; Kumar, M.S.K.; Giri, J.; Guru, A.; Arockiaraj, J. Selenium nanoparticles as neuroprotective agents: Insights into molecular mechanisms for Parkinson’s disease treatment. Mol. Neurobiol. 2025, 62, 6655–6682. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, Y.; Zhang, W.; Bao, C.-Y.; Li, C.-R.; Zhang, J.-Y.; Liu, T.; Li, S.; Huang, J.-X.; Xie, Z.-G. Molecular Mechanism for Selective Cytotoxicity Towards Cancer Cells of Diselenide-Containing Paclitaxel Nanoparticles. Int. J. Biol. Sci. 2019, 15, 1755–1770. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Jayakodi, S.; Yadav, K.K.; Somu, P.; Isaq, M.; Shanmugam, V.K.; Chaitanyakumar, A.; Basavegowda, N. Preparation of Paclitaxel-Encapsulated Bio-Functionalized Selenium Nanoparticles and Evaluation of their Efficacy against Cervical Cancer. Molecules 2022, 27, 7290. [Google Scholar] [CrossRef]
- Gong, G.; Fu, B.; Ying, C.; Zhu, Z.; He, X.; Li, Y.; Xuan, Q.; Huang, Y.; Lin, Y.; Li, Y. Targeted delivery of paclitaxel by functionalized selenium nanoparticles for anticancer therapy through ROS-mediated signaling pathways. RSC Adv. 2018, 8, 39957–39966. [Google Scholar] [CrossRef]
- Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3456–3464. [Google Scholar] [CrossRef]
- Bidkar, A.P.; Sanpui, P.; Ghosh, S.S. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine 2017, 12, 2641–2651. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Vetchinkina, E.P.; Loshchinina, E.A.; Burov, A.M.; Nikitina, V.E.; Kamnev, A.A. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb. Ecol. 2014, 68, 495–503. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Ebid, W.M.; Sayed, A.M.E. Enhancing the Structure, Optical, and Antimicrobial Advancements of Starch/Chitosan Blend Through Green-Synthesized SeO2 Nanoparticles and Their Application for Ras Cheese Packaging. Food Bioprocess. Technol. 2025, 18, 5572–5588. [Google Scholar] [CrossRef]
- Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.-U.-R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomed. 2021, 16, 249–268. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 2022, 12, 467–480. [Google Scholar] [CrossRef]
- Puri, A.; Mohite, P.; Ansari, Y.; Mukerjee, N.; Alharbi, H.M.; Upaganlawar, A.; Thorat, N. Plant-derived selenium nanoparticles: Investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments. Mater. Adv. 2024, 5, 3602–3628. [Google Scholar] [CrossRef]
- Keshtmand, Z.; Khademian, E.; Jafroodi, P.P.; Abtahi, M.S.; Yaraki, M.T. Green synthesis of selenium nanoparticles using Artemisia chamaemelifolia: Toxicity effects through regulation of gene expression for cancer cells and bacteria. Nano Struct. Nano Objects 2023, 36, 101049. [Google Scholar] [CrossRef]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Hussain, A.; Lakhan, M.N.; Hanan, A.; Soomro, I.A.; Ahmed, M.; Bibi, F.; Zehra, I. Recent progress on green synthesis of selenium nanoparticles—A review. Mater. Today Sustain. 2023, 23, 100420. [Google Scholar] [CrossRef]
- Zhong, B.; Xu, W.; Wu, H.; Xian, W.; Gong, M.; Wu, Z. Differences in slow-release characteristics and release kinetics of three selenium nanoparticles from different synthesis strategies: Revealing the advantages synthesized by Lactiplantibacillus plantarum. Food Biosci. 2024, 62, 105307. [Google Scholar] [CrossRef]
- Yassein, A.S.; Elamary, R.B.; Alwaleed, E.A. Biogenesis, characterization, and applications of Spirulina selenium nanoparticles. Microb. Cell Fact. 2025, 24, 39. [Google Scholar] [CrossRef]
- Prabhu, K.; Mohanraj, K.; Kannan, S.; Barathan, S.; Sivakumar, G. Effect of pH, L-arginine concentration, and aging time on selenium nanostructures. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2014, 44, 383–388. [Google Scholar] [CrossRef]
- Cruz, L.Y.; Wang, D.; Liu, J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J. Photochem. Photobiol. B 2019, 191, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Konarska, J.; Szmytke, J.; Grudniak, A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules 2024, 29, 1686. [Google Scholar] [CrossRef]
- Ferrari, R.; Sponchioni, M.; Morbidelli, M.; Moscatelli, D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: The checkpoints on the road from the synthesis to clinical translation. Nanoscale 2018, 10, 22701–22719. [Google Scholar] [CrossRef] [PubMed]
- Kozma, M.; Acharya, B.; Bissessur, R. Chitin, chitosan, and nanochitin: Extraction, synthesis, and applications. Polymers 2022, 14, 3989. [Google Scholar] [CrossRef]
- Peter, S.; Lyczko, N.; Gopakumar, D.; Maria, H.J.; Nzihou, A.; Thomas, S. Chitin and chitosan based composites for energy and environmental applications: A review. Waste Biomass Valorization 2021, 12, 4777–4804. [Google Scholar] [CrossRef]
- Youssef, Y.A.; Tammam, S.N.; Elshenawy, B.M.; Ilyas, S.; Gad, A.A.; Farag, K.S.; Mathur, S.; Abdel-Kader, R.M. Peptide-loaded chitosan nanoparticles improve mitochondrial and cognitive functions via inhibition of Aβ-ABAD interaction in Alzheimer’s disease. Eur. J. Pharmaceut. Biopharmaceut. 2025, 214, 114778. [Google Scholar] [CrossRef]
- Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E.K. Chitosan nanoparticles at the biological interface: Implications for drug delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- Herdiana, Y.; Wathoni, N.; Gozali, D.; Shamsuddin, S.; Muchtaridi, M. Chitosan-based nano-smart drug delivery system in breast cancer therapy. Pharmaceutics 2023, 15, 879. [Google Scholar] [CrossRef]
- Sharma, H.; Yang, H.; Sharma, N.; An, S.S.A. Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays. Pharmaceutics 2024, 18, 2. [Google Scholar] [CrossRef]
- Beyazen, A.; Dessalegn, E.; Mamo, W. Phytochemical screening and biological activities of leaf of Foeniculum vulgare (Ensilal). World J. Agric. Sci. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Rafieian, F.; Amani, R.; Rezaei, A.; Karaça, A.C.; Jafari, S.M. Exploring fennel (Foeniculum vulgare): Composition, functional properties, potential health benefits, and safety. Crit. Rev. Food Sci. Nutr. 2024, 64, 6924–6941. [Google Scholar] [CrossRef]
- Vella, F.M.; Pignone, D.; Laratta, B. The Mediterranean Species Calendula officinalis and Foeniculum vulgare as Valuable Source of Bioactive Compounds. Molecules 2024, 29, 3594. [Google Scholar] [CrossRef]
- Molaei-Kordabad, N.; Alizadeh-Salteh, S.; Ghanbari-Jahromi, M.; Saber, M. In vitro study on anticancer effect of Dodder grown on fennel (Foeniculum vulgare) and camelthorn (Alhagi maorurum) against human cancer cells lines. J. Herbal Med. 2024, 43, 100819. [Google Scholar] [CrossRef]
- Saleem, M.; Noor, S.; Naqvi, S.T.Q.; Muhammad, S.A. Green Synthesis of Copper Nanoparticles using Foeniculum Vulgare Seed Extract and Evaluation of their Biological Activities. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 269–279. [Google Scholar] [CrossRef]
- Hussein, H.J.; Hadi, M.Y.; Hameed, I.H. Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography-mass spectrometry. J. Pharmacogn. Phytother. 2016, 8, 60–89. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Catechins and Selenium Species—How They React with Each Other. Molecules 2023, 28, 5897. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022, 27, 2486. [Google Scholar] [CrossRef]
- Salah, M.; Elkabbany, N.A.; Partila, A.M. Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species. Sci. Rep. 2024, 14, 20523. [Google Scholar] [CrossRef]
- Gosala, R.; Subramanian, R.; Subramanian, B. Modulating drug delivery with nano-selenium capped by chitosan reverse micelles for anticancer potential. J. Drug Deliv. Sci. Technol. 2025, 108, 106860. [Google Scholar] [CrossRef]
- Hassan, M.G.; Hawwa, M.T.; Baraka, D.M.; El-Shora, H.M.; Hamed, A.A. Biogenic selenium nanoparticles and selenium/chitosan-nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential. BMC Microbiol. 2024, 24, 21. [Google Scholar] [CrossRef]
- Kumar, A.; Sevonkaev, I.; Goia, D.V. Synthesis of selenium particles with various morphologies. J. Colloid Interface Sci. 2014, 416, 119–123. [Google Scholar] [CrossRef]
- Derakhshan-Sefidi, M.; Bakhshi, B.; Rasekhi, A. Thiolated chitosan nanoparticles encapsulated nisin and selenium: Antimicrobial/antibiofilm/anti-attachment/immunomodulatory multi-functional agent. BMC Microbiol. 2024, 24, 257. [Google Scholar] [CrossRef]
- Herdiana, Y.; Febrina, E.; Nurhasanah, S.; Gozali, D.; Elamin, K.M.; Wathoni, N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024, 16, 1043. [Google Scholar] [CrossRef] [PubMed]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef]
- Santadkha, T.; Skolpap, W.; Thitapakorn, V. Diffusion Modeling and in vitro release kinetics studies of curcumin−loaded superparamagnetic nanomicelles in cancer drug delivery system. J. Pharm. Sci. 2022, 111, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Okano, T.; Miyazaki, T.; Kohori, F.; Sakai, K.; Yokoyama, M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 2006, 115, 46–56. [Google Scholar] [CrossRef]
- Rahdari, T.; Mahdavimehr, M.; Ghafouri, H.; Ramezanpour, S.; Ehtesham, S.; Asghari, S.M. Advancing Triple-Negative Breast Cancer Treatment through Peptide Decorated Solid Lipid Nanoparticles for Paclitaxel Delivery. Sci. Rep. 2025, 15, 6043. [Google Scholar] [CrossRef]
- Kamenska, T.; Abrashev, M.; Georgieva, M.; Krasteva, N. Impact of polyethylene glycol functionalization of graphene oxide on anticoagulation and haemolytic properties of human blood. Materials 2021, 14, 4853. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, C.; Zhao, G.; Stoll, S.; Ren, F.; Leng, X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol. 2017, 15, 4. [Google Scholar] [CrossRef]
- Chen, J.; Ding, J.; Li, D.; Wang, Y.; Wu, Y.; Yang, X.; Chinnathambi, A.; Salmen, S.H.; Alharbi, S.A. Facile preparation of Au nanoparticles mediated by Foeniculum vulgare aqueous extract and investigation of the anti-human breast carcinoma effects. Arab. J. Chem. 2022, 15, 103479. [Google Scholar] [CrossRef]
- Yadav, P.K.; Verma, S.; Chauhan, D.; Yadav, P.; Tiwari, A.K.; Saklani, R.; Gupta, D.; Rana, R.; Shah, A.A.; Verma, S. Simultaneous estimation of paclitaxel and bortezomib via LC-MS/MS: Pharmaceutical and pharmacokinetic applications. Nanomedicine 2024, 19, 1995–2010. [Google Scholar] [CrossRef]
- Chahardoli, A.; Qalekhani, F.; Shokoohinia, Y.; Fattahi, A. Biological and catalytic activities of green synthesized silver nanoparticles from the leaf infusion of Dracocephalum kotschyi Boiss. Glob. Chall. 2021, 5, 2000018. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Bae, J.; Jung, A.; Park, S.; Chung, S.; Seok, J.; Roh, H.; Han, Y.; Oh, J.-M.; Sohn, S.; et al. Surface functionalization-specific binding of coagulation factors by zinc oxide nanoparticles delays coagulation time and reduces thrombin generation potential in vitro. PLoS ONE 2017, 12, e0181634. [Google Scholar] [CrossRef]
- Wang, C.-H.; Yang, J.-M.; Guo, Y.-B.; Shen, J.; Pei, X.-H. Anticancer Activity of Tetrandrine by Inducing Apoptosis in Human Breast Cancer Cell Line MDA-MB-231 In Vivo. J. Evid. Based Complement. Altern. Med. 2020, 2020, 6823520. [Google Scholar] [CrossRef]
- Ravikumar, S.; Fredimoses, M.; Gnanadesigan, M. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines. Asian Pac. J. Trop. Biomed. 2012, 2, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.A.; Alanazi, N.A.H.; Mashlawi, A.M.; Shommo, S.A.; Akeel, M.A.; Alhejely, A.; Sulieman, A.M.E.; Salama, S.A. Chemical Composition of Anabasis articulata, and Biological Activity of Greenly Synthesized Zinc Oxide Composite Nanoparticles (Zn-NPs): Antioxidant, Anticancer, and Larvicidal Activities. Agronomy 2024, 14, 1742. [Google Scholar] [CrossRef]
- Hamrita, B.; Emira, N.; Papetti, A.; Badraoui, R.; Bouslama, L.; Ben Tekfa, M.-I.; Hamdi, A.; Patel, M.; Elasbali, A.M.; Adnan, M. Phytochemical Analysis, Antioxidant, Antimicrobial, and Anti-Swarming Properties of Hibiscus sabdariffa L. Calyx Extracts: In Vitro and In Silico Modelling Approaches. Evid. Based Complement. Altern. Med. 2022, 2022, 1252672. [Google Scholar] [CrossRef] [PubMed]
- Shojaee, M.S.; Moeenfard, M.; Farhoosh, R. Kinetics and stoichiometry of gallic acid and methyl gallate in scavenging DPPH radical as affected by the reaction solvent. Sci. Rep. 2022, 12, 8765. [Google Scholar] [CrossRef]
pH | Zero-Order | First-Order | Higuchi | Korsmeyer-Peppas | ||||
---|---|---|---|---|---|---|---|---|
K0 | R2 | K1 | R2 | KH | R2 | K | R2 | |
9.0 | 1.85 | 0.90 | 0.0164 | 0.8118 | 0.9835 | 0.9835 | 0.3835 | 0.9905 |
7.4 | 1.54 | 0.89 | 0.0163 | 0.8038 | 0.9802 | 0.9802 | 0.3825 | 0.9887 |
3.5 | 2.21 | 0.85 | 0.0176 | 0.7393 | 0.9618 | 0.9618 | 0.4287 | 0.9695 |
Delivery System b [Incubation] | IC50 (µg/mL) [Cell Line] c | Reference |
---|---|---|
Se@Ch–PTX NPs [24 h] | 14.3 [MDA-MB-231] | this work |
PTX/Se NPs [24] | 36.2/52.4 [MDA-MB-231] | this work |
PTX@Se NPs b [48 h or 72 h] | 2.98 [MCF-7], 0.79 [HeLa] | [25] |
Se@Ch–PTX NPs [24 h] | 30.0 [HeLa] | [26] |
Se@HA–PTX d [24 h] | 4 [A549] | [28] |
Se@PTX [24 h] | 8 [A549] | [28] |
Se@PTX e [48 h] | 13.8 [A549], 5.4 [MCF-7], 8.7 [HeLa], 4.8 [HT-29] | [29] |
Se NPs [48 h] | 28.1 [A549], 12.2 [MCF-7], 25.3 [HeLa], 10.9 [HT-29] | [29] |
C-peptide–SLN–PTX f [24 h] | 1.2 [4T1] e, 1.0 [MDA-MB-231] | [67] |
SLN–PTX [24 h] | 3.4 [4T1], 4.0 [MDA-MB-231] | [67] |
C-peptide/PTX [24 h] | 10.7/8.9 [4T1] 9.8/8.3 [MDA-MB-231] | [67] |
Concentrations (mg/mL) | Ascorbic Acid | Se@Ch–PTX NPs | Se NPs |
---|---|---|---|
50 | 80.64 ± 1.56 | 75.91 ± 1.27 | 70.63 ± 1.36 |
40 | 72.12 ± 1.37 | 70.25 ± 0.89 | 60.78 ± 1.32 |
30 | 64.22 ± 1.91 | 65.15 ± 0.71 | 54.52 ± 1.28 |
20 | 55.64 ± 1.35 | 58.96 ± 0.56 | 46.42 ± 0.98 |
10 | 46.81 ± 1.28 | 50.85 ± 0.47 | 39.12 ± 0.54 |
5 | 38.94 ± 1.08 | 45.12 ± 0.48 | 30.36 ± 0.28 |
2.5 | 31.47 ± 1.12 | 37.56 ± 0.51 | 23.21 ± 0.38 |
IC50 (mg/mL) b | 22.03 | 33.72 | 39.44 |
F value c | 1.91 *** | 1.52 *** | 1.63 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Darwesh, M.Y.; Manai, M.; Chebbi, H.; Klein, A. Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery. Nanomaterials 2025, 15, 1276. https://doi.org/10.3390/nano15161276
Al-Darwesh MY, Manai M, Chebbi H, Klein A. Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery. Nanomaterials. 2025; 15(16):1276. https://doi.org/10.3390/nano15161276
Chicago/Turabian StyleAl-Darwesh, Mouhaned Y., Maroua Manai, Hammouda Chebbi, and Axel Klein. 2025. "Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery" Nanomaterials 15, no. 16: 1276. https://doi.org/10.3390/nano15161276
APA StyleAl-Darwesh, M. Y., Manai, M., Chebbi, H., & Klein, A. (2025). Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery. Nanomaterials, 15(16), 1276. https://doi.org/10.3390/nano15161276