A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights
Abstract
1. Introduction
2. Emerging Components and Advanced Incorporation Methods
2.1. Advances and Challenges in Electrospinning CS
2.2. Polymer Blending Strategies for Electrospun CS Nanofibers
Synthetic Polymer | Molecular Weight (Mw) | Characteristics and Role in Blend | Notable Examples | Experimental Parameters | Refs. |
---|---|---|---|---|---|
Polyvinyl alcohol (PVA) | ≈115 kDa (Mw; grade ~98–99% hydrolysis) | Forms hydrogen bonds with CS, improves spinnability, mechanical strength, and flexibility. | CS/PVA (90% CS) electrospun smooth, homogeneous fibers used as antimicrobial layers in meat packaging. | CS: DDA ≈ 91.5%, 0.05% (w/v); solvent: 2% acetic acid (v/v) | [98] |
Polyethylene oxide (PEO) | ≈1000 kDa (Mw) | Enhances electrospinnability by chain entanglement and surface tension reduction; food safe. | Inner CS–PEO nanofiber layer (90% CS) in active packaging reduced bacterial growth on raw meat. | CS: MW 102 kDa, DA 88%, 5% (w/v) in 0.5 M acetic acid | [61] |
Polylactic acid (PLA) | ≈40 kDa (Mw) | Improves tensile strength and lowers oxygen and water vapor permeability. | PLA/CS electrospun layers added to films for enhanced barrier and antimicrobial functions. | CS: MW 890 kDa, ~8% (w/v); solvent: 50% acetic acid | [99] |
Polycaprolactone (PCL) | ≈80 kDa (Mw) | Adds durability and moisture resistance; suitable for food-contact (not fully edible). | Starch/PCL/CS mats combined antimicrobial bioactivity and structural integrity for food safety. | CS: MW 120 kDa, DDA 85%; concentration 3% (w/v); solvent: formic acid: acetic acid = 70:30 (v/v) | [100] |
Polyethylene glycol (PEG) | ≈1.5 kDa (PEG 400) | Adds elasticity (low MW); assists fiber formation (high MW); modulates release kinetics; may increase fiber moisture sensitivity if used in large amounts. | CS/PEG fibers loaded with Eos for controlled release applications. | CS: DDA ≈ 91.5%; concentration 0.05% (w/v); solvent 2% (v/v) acetic acid | [98] |
2.3. Inorganic Additive Strategies for Electrospun CS Nanofibers
2.4. Incorporation Methods
3. Functionalities of CS-Based Electrospun Nanofibers
3.1. Mechanical Properties and Characterization Techniques
3.2. Thermal Stability and Barrier Properties
3.3. Antimicrobial and Antiviral Properties
4. Applications of CS-Based Electrospun Nanofibers
4.1. CS-Based Nanofibers for Vegetables, Fruits, Salads, Fresh-Cut Foods
4.2. Dairy Products
4.3. Meat and Seafood
4.4. Nuts
5. Modeling and Simulation Techniques and Insights
5.1. Models, Methods, and Mechanistic Insights
5.2. Mechanical Properties
5.3. Gas and Water Barrier Properties
5.4. Antimicrobial Efficacy
5.5. Biodegradable Performance
6. Key Challenges, Potential Solutions, and Future Perspectives
6.1. Scaling Electrospinning for Industrial Applications
6.2. Simulation-Driven and Machine Learning-Enabled Design
6.3. Regulatory and Safety Considerations
6.4. Toward Multiscale and Multifunctional Solutions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Chitosan |
GRAS | Generally Recognized as Safe |
FDA | U.S. Food and Drug Administration |
EFSA | European Food Safety Authority |
DFT | Density Functional Theory |
MC | Monte Carlo |
MD | Molecular Dynamics |
CG | Coarse-Grained |
FEM | Finite Element Modeling |
ML | Machine Learning |
XRD | X-ray Diffraction |
AFM | Atomic Force Microscopy |
FTIR | Fourier-transform infrared |
UTS | Ultimate Tensile Strength |
PVA | Polyvinyl alcohol |
PEO | Polyethylene oxide |
PCL | Polycaprolactone |
PLA | Polylactic acid |
PEG | Polyethylene glycol |
PVP | polyvinylpyrrolidone |
TFA | Trifluoroacetic acid |
DCM | Dichloromethane |
ZnO | Zinc Oxide |
TiO2 | Titanium Dioxide |
CuO | Copper Oxide |
CeO2 | Cerium Oxide |
MgO | Magnesium oxide |
CaCO3 | Calcium Carbonate |
MMT | Montmorillonite |
HNTs | Halloysite Nanotubes |
GO | Graphene Oxide |
CNF | Cellulose Nanofibrils |
RMSD | Root Mean Square Deviation |
MSD | Mean-Squared Displacement |
TCP | Tricalcium Phosphate Nanoparticles |
LAMMPS | Large-scale Atomic/Molecular Massively Parallel Simulator |
PCFF | Polymer Consistent Force Field |
CVFF | Consistent-Valence Forcefield |
NMR | Nuclear Magnetic Resonance |
COMPASS | Condensed-phase Optimized Potentials for Atomistic Simulation Studies |
GCE | Glassy Carbon Electrode |
BOA | Blood Orange Anthocyanins |
S. aureus | Staphylococcus aureus and Escherichia coli |
E. coli | Escherichia coli |
References
- Miller, J. The Essential Role of Food in Human Life: A Comprehensive Overview. J. Nutr. Food Sci. 2024, 14, 14–44. [Google Scholar] [CrossRef]
- Duggan, C.P.; Brennan, L.; Christian, P.; Fanzo, J.; Ludwig, D.S.; Editors of the American Journal of Clinical Nutrition. Knowledge and debate in the American Journal of Clinical Nutrition: New sections, new science, and looking forward and outward. Am. J. Clin. Nutr. 2020, 111, 1–3. [Google Scholar] [CrossRef]
- Bai, L.; Liu, M.; Sun, Y. Overview of Food Preservation and Traceability Technology in the Smart Cold Chain System. Foods 2023, 12, 2881. [Google Scholar] [CrossRef]
- Li, L.; Meng, Z.; Liang, Y.; Gong, S.; Wang, Z.; Xu, X.; Wang, S. Future directions for multifunctional preservation technologies in food preservation: A review. J. Stored Prod. Res. 2025, 114, 102712. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Wu, M.; Yu, D.-G. Nanofibers-Based Food Packaging. ES Food Agrofor. 2021, 7, 1–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Xu, Y.; Shi, X.; Zhang, M.; Huang, Y.; Liang, Y.; Chen, Y.; Ji, W.; Kim, J.R.; et al. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res. 2022, 15, 5556–5568. [Google Scholar] [CrossRef]
- Li, Y.; Rokayya, S.; Jia, F.; Nie, X.; Xu, J.; Elhakem, A.; Almatrafi, M.; Benajiba, N.; Helal, M. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Sci. Rep. 2021, 11, 55. [Google Scholar] [CrossRef]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun nanofibers: Solving global issues. Mater. Today 2006, 9, 40–50. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Lim, C.T.; Ramakrishna, S.; Huang, Z.M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med. 2005, 16, 933–946. [Google Scholar] [CrossRef]
- Abid, S.; Hussain, T.; Raza, Z.A.; Nazir, A. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2019, 19, e1800256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, S. Self-Sustained and Coordinated Rhythmic Deformations with SMA for Controller-Free Locomotion. Adv. Intell. Syst. 2024, 6, 2300667. [Google Scholar] [CrossRef]
- Lou, L.; Osemwegie, O.; Ramkumar, S.S. Functional Nanofibers and Their Applications. Ind. Eng. Chem. Res. 2020, 59, 5439–5455. [Google Scholar] [CrossRef]
- Dong, Y.; Jaleh, B.; Ashrafi, G.; Kashfi, M.; Rhee, K.Y. Mechanical properties of the hybrids of natural (alginate, collagen, chitin, cellulose, gelatin, chitosan, silk, and keratin) and synthetic electrospun nanofibers: A review. Int. J. Biol. Macromol. 2025, 312, 143742. [Google Scholar] [CrossRef]
- Lou, L.; Dolmetsch, T.; Aguiar, B.A.; Mohammed, S.; Agarwal, A. Quantum Dots on a String: In Situ Observation of Branching and Reinforcement Mechanism of Electrospun Fibers. Small 2024, 20, e2311073. [Google Scholar] [CrossRef]
- Wen, P.; Zong, M.-H.; Linhardt, R.J.; Feng, K.; Wu, H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci. Technol. 2017, 70, 56–68. [Google Scholar] [CrossRef]
- Brandelli, A. Nanocomposites and their application in antimicrobial packaging. Front. Chem. 2024, 12, 1356304. [Google Scholar] [CrossRef]
- Priya, S.; Batra, U.; R, N.S.; Sharma, S.; Chaurasiya, A.; Singhvi, G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int. J. Biol. Macromol. 2022, 218, 209–224. [Google Scholar] [CrossRef]
- Vencato, A.A.; Clerici, N.J.; Mendes Juchem, A.L.; Rolla, H.C.; Brandelli, A. Nisin electrospun nanofibers as promising active food packaging. J. Food Eng. 2025, 400, 112643. [Google Scholar] [CrossRef]
- Charles, A.P.R.; Rajasekaran, B.; Awasti, N.; Choudhary, P.; Khanashyam, A.C.; Majumder, K.; Wu, Y.; Pandiselvam, R.; Jin, T.Z. Emerging chitosan systems incorporated with polyphenols: Their applications in intelligent packaging, active packaging, and nutraceutical systems—A comprehensive review. Int. J. Biol. Macromol. 2025, 308, 142714. [Google Scholar] [CrossRef] [PubMed]
- Tamzid, F.; Sakhawat, S.B.; Rashid, T.U. Chitosan based electrospun nanofibrous materials: A sustainable alternative for food packaging. Trends Food Sci. Technol. 2024, 151, 104617. [Google Scholar] [CrossRef]
- Ponnusamy, P.G.; Mani, S. Life cycle assessment of manufacturing cellulose nanofibril-reinforced chitosan composite films for packaging applications. Int. J. Life Cycle Assess. 2022, 27, 380–394. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C.; Blanco, A. Chitosan grafted/cross-linked with biodegradable polymers: A review. Int. J. Biol. Macromol. 2021, 178, 325–343. [Google Scholar] [CrossRef]
- Patel, D.K.; Won, S.Y.; Jung, E.; Han, S.S. Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review. Int. J. Biol. Macromol. 2025, 293, 139426. [Google Scholar] [CrossRef]
- Purohit, S.D.; Bhaskar, R.; Singh, H.; Priyadarshi, R.; Kim, H.; Son, Y.; Gautam, S.; Han, S.S. Chitosan-based electrospun fibers for bone-tissue engineering: Recent research advancements. Int. J. Biol. Macromol. 2024, 281, 136530. [Google Scholar] [CrossRef]
- Zhou, R.; Ma, Y.; Yang, M.; Cheng, Y.; Ma, X.; Li, B.; Zhang, Y.; Cui, X.; Liu, M.; Long, Y.; et al. Wound dressings using electrospun nanofibers: Mechanisms, applications, and future directions. Eur. Polym. J. 2025, 231, 113900. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef]
- Chowdhury, M.F.M.; Khan, M.N.; Rahman, M.M. Metal nanoparticles incorporated chitosan-based electrospun nanofibre mats for wound dressing applications: A review. Int. J. Biol. Macromol. 2024, 282, 137352. [Google Scholar] [CrossRef]
- Tamilarasi, G.P.; Sabarees, G.; Manikandan, K.; Gouthaman, S.; Alagarsamy, V.; Solomon, V.R. Advances in electrospun chitosan nanofiber biomaterials for biomedical applications. Mater. Adv. 2023, 4, 3114–3139. [Google Scholar] [CrossRef]
- Zeng, L.; Kang, D.; Zhu, L.; Zhou, Z.; Li, Y.; Ling, W.; Zhang, Y.; Yu, D.G.; Kim, I.; Song, W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J. Control Release 2024, 372, 810–828. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Ali, A.; Jobaer, M.; Mahedi, S.I.; Krishnamoorthy, A.; Bhuiyan, M.A.R. Electrospun nanofibers based on plant extract bioactive materials as functional additives: Possible sources and prospective applications. Mater. Adv. 2024, 5, 7862–7890. [Google Scholar] [CrossRef]
- Castro-Munoz, R.; Kharazmi, M.S.; Jafari, S.M. Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review. Int. J. Biol. Macromol. 2023, 245, 125424. [Google Scholar] [CrossRef]
- Silina, A.; El Achari, A.; Salaün, F. Metal-organic framework electrospun nanofibers in application to dye removal from textile wastewaters: A review. J. Environ. Chem. Eng. 2024, 12, 114819. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Siengchin, S. Efficient removal of dyes, heavy metals and oil-water from wastewater using electrospun nanofiber membranes: A review. J. Water Process Eng. 2024, 59, 104983. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Daneshvar, E.A.S.; Vossoughi, M.; Simchi, A.; Sadrzadeh, M. Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS Omega 2021, 6, 10816–10827. [Google Scholar] [CrossRef]
- Akhavan-Mahdavi, S.; Mirbagheri, M.S.; Assadpour, E.; Sani, M.A.; Zhang, F.; Jafari, S.M. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv. Colloid Interface Sci. 2024, 325, 103111. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.A.M.; Afifi, A.M.; Zuki, F.M.; SalehHudin, H.S. Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: A comprehensive review. Beilstein J. Nanotechnol. 2025, 16, 286–307. [Google Scholar] [CrossRef]
- Tayebi-Khorrami, V.; Shahgordi, S.; Dabbaghi, M.M.; Fadaei, M.S.; Masoumi Shahrbabak, S.; Fallahianshafiei, S.; Fadaei, M.R.; Hasnain, M.S.; Nayak, A.K.; Askari, V.R. From nature to nanotech: Harnessing the power of electrospun polysaccharide-based nanofibers as sustainable packaging. Int. J. Biol. Macromol. 2025, 299, 140127. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, F.; Yong, H.; Chen, D.; Tang, C.; Kan, J.; Liu, J. Recent advances in chitosan-based active and intelligent packaging films incorporated with flavonoids. Food Chem. X 2025, 25, 102200. [Google Scholar] [CrossRef] [PubMed]
- Elhaes, H.; Ezzat, H.A.; Ibrahim, A.; Samir, M.; Refaat, A.; Ibrahim, M.A. Spectroscopic, Hartree–Fock and DFT study of the molecular structure and electronic properties of functionalized chitosan and chitosan-graphene oxide for electronic applications. Opt. Quantum Electron. 2024, 56, 458. [Google Scholar] [CrossRef]
- Siraleartmukul, K.; Siriwong, K.; Remsungnen, T.; Muangsin, N.; Udomkichdecha, W.; Hannongbua, S. Solvation structure of glucosamine in aqueous solution as studied by Monte Carlo simulation using ab initio fitted potential. Chem. Phys. Lett. 2004, 395, 233–238. [Google Scholar] [CrossRef]
- McDonnell, M.T.; Greeley, D.A.; Kit, K.M.; Keffer, D.J. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films. J. Phys. Chem. B 2016, 120, 8997–9010. [Google Scholar] [CrossRef]
- Lei, M.; Huang, W.; Jin, Z.; Sun, J.; Zhang, M.; Zhao, S. Effect of molecular structure and ionization state on aggregation of carboxymethyl chitosan: A molecular dynamics study. Carbohydr. Polym. 2022, 297, 119993. [Google Scholar] [CrossRef]
- Gade, H.M. Exploring molecular dynamics investigations in PLA-based systems: A comprehensive review. Comput. Mater. Sci. 2025, 248, 113609. [Google Scholar] [CrossRef]
- Michna, A.; Lupa, D.; Plazinski, W.; Batys, P.; Adamczyk, Z. Physicochemical characteristics of chitosan molecules: Modeling and experiments. Adv. Colloid Interface Sci. 2025, 337, 103383. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Terkula Iber, B.; Azman Kasan, N.; Torsabo, D.; Wese Omuwa, J. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater. 2022, 10, 1097–1123. [Google Scholar] [CrossRef]
- Thadathil, N.; Velappan, S.P. Recent developments in chitosanase research and its biotechnological applications: A review. Food Chem. 2014, 150, 392–399. [Google Scholar] [CrossRef]
- Romanazzi, G.; Moumni, M. Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr. Opin. Biotechnol. 2022, 78, 102834. [Google Scholar] [CrossRef]
- Flórez, M.; Guerra-Rodríguez, E.; Cazón, P.; Vázquez, M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Jančič, U.; Božič, M.; Hribernik, S.; Mohan, T.; Kargl, R.; Kleinschek, K.S.; Gorgieva, S. High oxygen barrier chitosan films neutralized by alkaline nanoparticles. Cellulose 2021, 28, 10457–10475. [Google Scholar] [CrossRef]
- Casalini, S.; Giacinti Baschetti, M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: A review. J. Sci. Food Agric. 2023, 103, 1021–1041. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Pal, D.; Poonia, A.K. Nanofillers as a potential key for shaping the future of the industries. Hybrid Adv. 2024, 7, 100340. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Konfo, T.R.C.; Djouhou, F.M.C.; Koudoro, Y.A.; Dahouenon-Ahoussi, E.; Avlessi, F.; Sohounhloue, C.K.D.; Simal-Gandara, J. Essential oils as natural antioxidants for the control of food preservation. Food Chem. Adv. 2023, 2, 100312. [Google Scholar] [CrossRef]
- Essifi, K.; Hammani, A.; Berraaouan, D.; El Bachiri, A.; Fauconnier, M.-L.; Tahani, A. Montmorillonite nanoclay based formulation for controlled and selective release of volatile essential oil compounds. Mater. Chem. Phys. 2022, 277, 125569. [Google Scholar] [CrossRef]
- Zhan, J.; Chen, H.; Zhou, H.; Hao, L.; Xu, H.; Zhou, X. Essential oil-loaded chitosan/zinc (II) montmorillonite synergistic sustained-release system as antibacterial material. J. Dispers. Sci. Technol. 2021, 44, 288–298. [Google Scholar] [CrossRef]
- Kriegel, C.; Kit, K.M.; McClements, D.J.; Weiss, J. Electrospinning of chitosan–poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 2009, 50, 189–200. [Google Scholar] [CrossRef]
- Mengistu Lemma, S.; Bossard, F.; Rinaudo, M. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly (ethylene oxide). Int. J. Mol. Sci. 2016, 17, 1790. [Google Scholar] [CrossRef] [PubMed]
- de Farias, B.S.; Sant’Anna Cadaval, T.R., Jr.; de Almeida Pinto, L.A. Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. Int. J. Biol. Macromol. 2019, 123, 210–220. [Google Scholar] [CrossRef]
- Mania, S.; Banach-Kopec, A.; Staszczyk, K.; Kulesza, J.; Augustin, E.; Tylingo, R. An influence of molecular weight, deacetylation degree of chitosan xerogels on their antimicrobial activity and cytotoxicity. Comparison of chitosan materials obtained using lactic acid and CO (2) saturation. Carbohydr. Res. 2023, 534, 108973. [Google Scholar] [CrossRef]
- Carrasco-Sandoval, J.; Aranda, M.; Henriquez-Aedo, K.; Fernandez, M.; Lopez-Rubio, A.; Fabra, M.J. Impact of molecular weight and deacetylation degree of chitosan on the bioaccessibility of quercetin encapsulated in alginate/chitosan-coated zein nanoparticles. Int. J. Biol. Macromol. 2023, 242, 124876. [Google Scholar] [CrossRef]
- Homayoni, H.; Ravandi, S.A.H.; Valizadeh, M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym. 2009, 77, 656–661. [Google Scholar] [CrossRef]
- Garcia Garcia, C.E.; Bossard, F.; Rinaudo, M. Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers 2021, 13, 1037. [Google Scholar] [CrossRef]
- Su, H.; Chen, X.; Mao, L.; Li, T. Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition. Mar. Drugs 2024, 22, 443. [Google Scholar] [CrossRef]
- Refate, A.; Mohamed, Y.; Mohamed, M.; Sobhy, M.; Samhy, K.; Khaled, O.; Eidaroos, K.; Batikh, H.; El-Kashif, E.; El-Khatib, S.; et al. Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon 2023, 9, e17051. [Google Scholar] [CrossRef]
- Darko, G.; Goethals, A.; Torto, N.; De Clerck, K. Steady state electrospinning of uniform polyethersulfone nanofibers using a non-heated solvent mixture. Appl. Nanosci. 2015, 6, 837–845. [Google Scholar] [CrossRef]
- Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit. Polymer 2005, 46, 3372–3384. [Google Scholar] [CrossRef]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Ewaldz, E.; Randrup, J.; Brettmann, B. Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS Polym. Au. 2022, 2, 108–117. [Google Scholar] [CrossRef]
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Gündüz, G.Ş. Investigation of the Effect of Needle Diameter and the Solution Flow Rate on Fiber Morphology in the Electrospinning Method. Fibres Text. East. Eur. 2023, 31, 22–29. [Google Scholar] [CrossRef]
- Alven, S.; Buyana, B.; Feketshane, Z.; Aderibigbe, B.A. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021, 13, 964. [Google Scholar] [CrossRef]
- Acosta, M.; Santiago, M.D.; Irvin, J.A. Electrospun Conducting Polymers: Approaches and Applications. Materials 2022, 15, 8820. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Lu, W.; Wang, Y.; Zhang, P.; Yao, Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019, 9, 25712–25729. [Google Scholar] [CrossRef]
- Nezarati, R.M.; Eifert, M.B.; Cosgriff-Hernandez, E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Oleiwi, A.H.; Jabur, A.R.; Alsalhy, Q.F. Electrospinning technology in water treatment applications: Review article. Desalination Water Treat. 2025, 322, 101175. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Ma, A.; Bai, X.; Zeng, Y.; Liu, D.; Liu, B.; Zhang, W.; Tang, S. Recent advances in coaxial electrospun nanofibers for wound healing. Mater. Today Bio. 2024, 29, 101309. [Google Scholar] [CrossRef]
- Su, S.; Bedir, T.; Kalkandelen, C.; Ozan Başar, A.; Turkoğlu Şaşmazel, H.; Bulent Ustundag, C.; Sengor, M.; Gunduz, O. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur. Polym. J. 2021, 142, 110158. [Google Scholar] [CrossRef]
- Hong, F.; Qiu, P.; Wang, Y.; Ren, P.; Liu, J.; Zhao, J.; Gou, D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem. X 2024, 21, 101095. [Google Scholar] [CrossRef]
- Abdullahi, A.; Korumilli, T.; Rao, K.J. Development of hydrophobic jute fibers reinforced chitosan/guar gum biocomposite film for sustainable food packaging solution. Results Surf. Interfaces 2025, 19, 100512. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers 2020, 12, 2518–2552. [Google Scholar] [CrossRef]
- Duan, M.; Sun, J.; Yu, S.; Zhi, Z.; Pang, J.; Wu, C. Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging. Int. J. Biol. Macromol. 2023, 233, 123433. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.W. Genipin-Crosslinked Gelatin/Chitosan-Based Functional Films Incorporated with Rosemary Essential Oil and Quercetin. Materials 2022, 15, 3769. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Takeda, H.; Noda, J.; Wakamori, H.; Kono, H. Chitosan Hydrogels Crosslinked with Oxidized Sucrose for Antimicrobial Applications. Gels 2023, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Pereao, O.; Uche, C.; Bublikov, P.S.; Bode-Aluko, C.; Rossouw, A.; Vinogradov, I.I.; Nechaev, A.N.; Opeolu, B.; Petrik, L. Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: Fabrication and characterization. Mater. Today Chem. 2021, 20, 100416. [Google Scholar] [CrossRef]
- Paipitak, K.; Pornpra, T.; Mongkontalang, P.; Techitdheer, W.; Pecharapa, W. Characterization of PVA-Chitosan Nanofibers Prepared by Electrospinning. Procedia Eng. 2011, 8, 101–105. [Google Scholar] [CrossRef]
- Olvera Bernal, R.A.; Olekhnovich, R.O.; Uspenskaya, M.V. Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers 2023, 15, 2037. [Google Scholar] [CrossRef]
- Badgujar, P.; Malik, A.K.; Mehata, A.K.; Setia, A.; Verma, N.; Randhave, N.; Shukla, V.N.; Kande, V.; Singh, P.; Tiwari, P.; et al. Polyvinyl alcohol-chitosan based oleanolic acid nanofibers against bacterial infection: In vitro studies and in vivo evaluation by optical and laser Doppler imaging modalities. Int. J. Biol. Macromol. 2024, 279, 135532. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, J.; Jiang, L.; Lin, J.; Ge, Y.; Hu, Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int. J. Biol. Macromol. 2024, 277, 134435. [Google Scholar] [CrossRef]
- Cetin, F.S.; Avci, T.; Uygur, E.; Ilhan, E.; Kaya, E.; Tinaz, G.B.; Duta, L.; Dogan, C.; Gunduz, O. Development and Characterization of Antimicrobial Chitosan/Polyethylene Oxide/Bacterial Cellulose Nanofibers. Polymers 2025, 17, 693. [Google Scholar] [CrossRef]
- Varnaitė-Žuravliova, S.; Savest, N.; Baltušnikaitė-Guzaitienė, J.; Abraitienė, A.; Krumme, A. Electrospinning of Chitosan Biopolymer and Polyethylene Oxide Blends. Autex Res. J. 2020, 20, 426–440. [Google Scholar] [CrossRef]
- Ozturk, E.A.; Ege, Z.R.; Murat, S.; Erdemir, G.; Kuruca, S.; Erkmen, Z.E.; Duygulu, O.; Gunduz, O.; Caykara, T.; Eroglu, M.S. Poly(L-lactic acid)/poly(ethylene oxide) based composite electrospun fibers loaded with magnesium-aluminum layered double hydroxide nanoparticles. Int. J. Biol. Macromol. 2022, 217, 562–571. [Google Scholar] [CrossRef]
- Andrade Del Olmo, J.; Mikes, P.; Asatiani, N.; Alonso, J.M.; Saez Martinez, V.; Perez Gonzalez, R. Alternating Current Electrospinning of Polycaprolactone/Chitosan Nanofibers for Wound Healing Applications. Polymers 2024, 16, 1333. [Google Scholar] [CrossRef]
- Zhao, Y.; Templonuevo, R.M.; Chun, J. Enhancement of polycaprolactone nanofiber film performance by hydrogen bonding interactions with chitosan for food packaging. Int. J. Biol. Macromol. 2025, 300, 139437. [Google Scholar] [CrossRef]
- Sukum, P.; Punyodom, W.; Dangtip, S.; Poramapijitwat, P.; Daranarong, D.; Jenvoraphot, T.; Nisoa, M.; Kuensaen, C.; Boonyawan, D. Argon Plasma Jet-Treated Poly (Vinyl Alcohol)/Chitosan and PEG 400 Plus Mangifera indica Leaf Extract for Electrospun Nanofiber Membranes: In Vitro Study. Polymers 2023, 15, 2559. [Google Scholar] [CrossRef] [PubMed]
- Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Praglowska, J.; Pogorielova, O.; Janus, L.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Kahdim, Q.S.; Abdelmoula, N.; Al-Karagoly, H.; Albukhaty, S.; Al-Saaidi, J. Fabrication of a Polycaprolactone/Chitosan Nanofibrous Scaffold Loaded with Nigella sativa Extract for Biomedical Applications. BioTech 2023, 12, 19. [Google Scholar] [CrossRef]
- Jeong, S.I.; Krebs, M.D.; Bonino, C.A.; Samorezov, J.E.; Khan, S.A.; Alsberg, E. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds. Tissue Eng. Part A 2011, 17, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Espindola-Gonzalez, A.; Martinez-Hernandez, A.L.; Fernandez-Escobar, F.; Castano, V.M.; Brostow, W.; Datashvili, T.; Velasco-Santos, C. Natural-synthetic hybrid polymers developed via electrospinning: The effect of PET in chitosan/starch system. Int. J. Mol. Sci. 2011, 12, 1908–1920. [Google Scholar] [CrossRef]
- Jafari, J.; Emami, S.H.; Samadikuchaksaraei, A.; Bahar, M.A.; Gorjipour, F. Electrospun chitosan–gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Bio-Med. Mater. Eng. 2011, 21, 99–112. [Google Scholar] [CrossRef]
- Wongsasulak, S.; Pathumban, S.; Yoovidhya, T. Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein–chitosan composite electrospun fibers. J. Food Eng. 2014, 120, 110–117. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Lai, J.; Zhang, X.; Wang, Y.; Zhu, Y. Preparation and characterization of chitosan/whey isolate protein active film containing TiO(2) and white pepper essential oil. Front. Nutr. 2022, 9, 1047988. [Google Scholar] [CrossRef]
- Hodaei, H.; Esmaeili, Z.; Erfani, Y.; Esnaashari, S.S.; Geravand, M.; Adabi, M. Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method. Sci. Rep. 2024, 14, 23796. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.; Wang, L.; Haider, M.K.; Mayakrishnan, G.; Lakshminarayanan, R.; Kim, K.O.; Ullah, A.; Kim, I.S. Investigating alginate and chitosan electrospun nanofibers as a potential wound dressing: An in vitro study. Nanocomposites 2024, 10, 242–255. [Google Scholar] [CrossRef]
- Esmaeili Ranjbar, A.; Asadi, F.; Mohandesnezhad, S.; Vatanparast, M.; Mohandesnezhad, S.; Mirzaei, M.R.; Noroozi Karimabad, M.; Fathabadi, A.S.; Esmaeili Ranjbar, F. Surface modification of electrospun polycaprolactone and zein using cold atmospheric plasma for tissue engineering applications. Sci. Rep. 2025, 15, 14567. [Google Scholar] [CrossRef]
- Brain Wilfer, P.; Giridaran, G.; Jeya Jeevahan, J.; Britto Joseph, G.; Senthil Kumar, G.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [Google Scholar] [CrossRef]
- Singh, G.P.; Bangar, S.P.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef]
- Abdullah; Cai, J.; Hafeez, M.A.; Wang, Q.; Farooq, S.; Huang, Q.; Tian, W.; Xiao, J. Biopolymer-based functional films for packaging applications: A review. Front. Nutr. 2022, 9, 1000116. [Google Scholar] [CrossRef]
- Xu, Y.X.; Kim, K.M.; Hanna, M.A.; Nag, D. Chitosan–starch composite film: Preparation and characterization. Ind. Crops Prod. 2005, 21, 185–192. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef]
- Toniciolli Rigueto, C.V.; Rosseto, M.; Alessandretti, I.; de Oliveira, R.; Wohlmuth, D.A.R.; Ferreira Menezes, J.; Loss, R.A.; Dettmer, A.; Pizzutti, I.R. Gelatin films from wastes: A review of production, characterization, and application trends in food preservation and agriculture. Food Res. Int. 2022, 162, 112114. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Pecorini, F.; Zanardi, E.; Kerry, J.P. Parameters Affecting the Water Vapour Permeability of Gelatin Films as Evaluated by the Infrared Detecting Method ASTM F1249. Sustainability 2022, 14, 9018. [Google Scholar] [CrossRef]
- Saranti, T.; Melo, P.T.S.; Cerqueira, M.A.; Aouada, F.A.; de Moura, M.R. Performance of Gelatin Films Reinforced with Cloisite Na(+) and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers 2021, 13, 4298. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, M.; Momtaz, E.; Mehrgardi, M.A.; Momtaz, F.; Narimani, T.; Poursina, F. Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Sci. Rep. 2024, 14, 519. [Google Scholar] [CrossRef] [PubMed]
- Abka-Khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahid, M.A.; Hossain, M.T.; Sheikh, M.S.; Rahman, M.S.; Uddin, N.; Rahim, A.; Khan, R.A.; Hossain, I. Sources, extractions, and applications of alginate: A review. Discov. Appl. Sci. 2024, 6, 443. [Google Scholar] [CrossRef]
- Orhotohwo, O.L.; Lucci, P.; Aquilanti, L.; Jaiswal, A.K.; Pacetti, D.; Jaiswal, S. Development and optimisation of sodium alginate and chitosan edible films with sea fennel by-product extract for active food packaging. LWT 2025, 226, 117960. [Google Scholar] [CrossRef]
- Orhotohwo, O.L.; Nartea, A.; Lucci, P.; Jaiswal, A.K.; Jaiswal, S.; Pacetti, D. Application of sea fennel’s bioactive compounds in the development of edible films and coatings: A review. Food Biosci. 2024, 61, 104843. [Google Scholar] [CrossRef]
- Jaski, A.C.; Schmitz, F.; Horta, R.P.; Cadorin, L.; da Silva, B.J.G.; Andreaus, J.; Paes, M.C.D.; Riegel-Vidotti, I.C.; Zimmermann, L.M. Zein—A plant-based material of growing importance: New perspectives for innovative uses. Ind. Crops Prod. 2022, 186, 115250. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Oromiehie, A.R.; Musavi, M.; D-Jomeh, Z.E.; Rad, E.R.; Milani, J. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res. Int. 2006, 39, 882–890. [Google Scholar] [CrossRef]
- Qu, L.; Chen, G.; Dong, S.; Huo, Y.; Yin, Z.; Li, S.; Chen, Y. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind. Crops Prod. 2019, 130, 450–458. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 155, 47–56. [Google Scholar] [CrossRef]
- Ngasotter, S.; Xavier, K.A.M.; Sagarnaik, C.; Sasikala, R.; Mohan, C.O.; Jaganath, B.; Ninan, G. Evaluating the reinforcing potential of steam-exploded chitin nanocrystals in chitosan-based biodegradable nanocomposite films for food packaging applications. Carbohydr. Polym. 2025, 348, 122841. [Google Scholar] [CrossRef]
- Neji, A.B.; Jridi, M.; Kchaou, H.; Nasri, M.; Dhouib Sahnoun, R. Preparation, characterization, mechanical and barrier properties investigation of chitosan-kaolinite nanocomposite. Polym. Test. 2020, 84, 106380. [Google Scholar] [CrossRef]
- Dejene, B.K.; Abtew, M.A. Chitosan/zinc oxide (ZnO) nanocomposites: A critical review of emerging multifunctional applications in food preservation and biomedical systems. Int. J. Biol. Macromol. 2025, 316, 144773. [Google Scholar] [CrossRef]
- Qu, B.; Luo, Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100102. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, W.; Zhang, Z.; Zhang, D.; Guo, Z.; Ren, P.; Liu, F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers 2023, 15, 4015. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Z.; Sheng, L.; Ma, M.; Xu, Q. Influence of nanosilica on inner structure and performance of chitosan based films. Carbohydr. Polym. 2019, 212, 421–429. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Acharya, B.; Korber, D.R. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers 2021, 13, 2790. [Google Scholar] [CrossRef]
- Kevadiya, B.D.; Rajkumar, S.; Bajaj, H.C. Application and evaluation of layered silicate–chitosan composites for site specific delivery of diclofenac. Biocybern. Biomed. Eng. 2015, 35, 120–127. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Park, D.; Lee, Y.C. Chitosan Combined with ZnO, TiO(2) and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers 2017, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Thakur, G.; Singh, A.; Singh, I. Chitosan-Montmorillonite Polymer Composites: Formulation and Evaluation of Sustained Release Tablets of Aceclofenac. Sci. Pharm. 2015, 84, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Lahbib, M.; Mejri, C.; Bejaoui, M.; Ben Hassine, S.; Chouk, W.; Oueslati, A.; Oueslati, W. Multifunctional chitosan/montmorillonite/TiO2 nanocomposites: Correlating microstructure with dielectric and photocatalytic properties. J. Indian Chem. Soc. 2025, 102, 101606. [Google Scholar] [CrossRef]
- Souza, V.; Rodrigues, C.; Valente, S.; Pimenta, C.; Pires, J.; Alves, M.; Santos, C.; Coelhoso, I.; Fernando, A. Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings 2020, 10, 110. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Wang, Z.; Cai, R.; Yue, T.; Cui, L. Preparation and Characterization of Chitosan-Nano-ZnO Composite Films for Preservation of Cherry Tomatoes. Foods 2021, 10, 3135. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Ruvalcaba-Gomez, J.M.; Maytorena-Verdugo, C.I.; Gonzalez-Silva, N.; Romero-Toledo, R.; Aguilera-Aguirre, S.; Perez-Larios, A.; Montalvo-Gonzalez, A.E. Chitosan-TiO(2): A Versatile Hybrid Composite. Materials 2020, 13, 811. [Google Scholar] [CrossRef]
- Bejan, A.; Anisiei, A.; Andreica, B.I.; Rosca, I.; Marin, L. Chitosan nanofibers encapsulating copper oxide nanoparticles: A new approach towards multifunctional ecological membranes with high antimicrobial and antioxidant efficiency. Int. J. Biol. Macromol. 2024, 260, 129377. [Google Scholar] [CrossRef]
- Sanmugam, A.; Abbishek, S.; Kumar, S.L.; Sairam, A.B.; Palem, V.V.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Vikraman, D. Synthesis of chitosan based reduced graphene oxide-CeO(2) nanocomposites for drug delivery and antibacterial applications. J. Mech. Behav. Biomed. Mater. 2023, 145, 106033. [Google Scholar] [CrossRef]
- Mohamad, E.A.; Shehata, A.M.; Abobah, A.M.; Kholief, A.T.; Ahmed, M.A.; Abdelhakeem, M.E.; Dawood, N.K.; Mohammed, H.S. Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. Int. J. Biol. Macromol. 2023, 253, 127045. [Google Scholar] [CrossRef]
- Wang, Y.; Cen, C.; Chen, J.; Fu, L. MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr. Polym. 2020, 236, 116078. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Kumar, P.; Gaikwad, K.K. UV-shielding and antioxidant properties of chitosan film impregnated with Acacia catechu modified with calcium carbonate for food packaging. Int. J. Biol. Macromol. 2024, 257, 128790. [Google Scholar] [CrossRef] [PubMed]
- Frohbergh, M.E.; Katsman, A.; Botta, G.P.; Lazarovici, P.; Schauer, C.L.; Wegst, U.G.; Lelkes, P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012, 33, 9167–9178. [Google Scholar] [CrossRef]
- Upadhyay, P.; Ullah, A. Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles. Int. J. Biol. Macromol. 2024, 261, 129764. [Google Scholar] [CrossRef] [PubMed]
- Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A.; Skorik, Y.A.; Petrova, V.A.; Choma, A.; Komaniecka, I. Silver Nanoparticles on Chitosan/Silica Nanofibers: Characterization and Antibacterial Activity. Int. J. Mol. Sci. 2019, 21, 166. [Google Scholar] [CrossRef]
- Korniienko, V.; Husak, Y.; Diedkova, K.; Varava, Y.; Grebnevs, V.; Pogorielova, O.; Bertins, M.; Korniienko, V.; Zandersone, B.; Ramanaviciene, A.; et al. Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles. Polymers 2024, 16, 1729. [Google Scholar] [CrossRef]
- Moschini, E.; Colombo, G.; Chirico, G.; Capitani, G.; Dalle-Donne, I.; Mantecca, P. Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO. Sci. Rep. 2023, 13, 2326. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Daskalova, D.S.; Yordanova, L.P.; Pavlova, E.L. Copper and Copper Nanoparticles Applications and Their Role against Infections: A Minireview. Processes 2024, 12, 352. [Google Scholar] [CrossRef]
- Huang, X.; Bao, X.; Liu, Y.; Wang, Z.; Hu, Q. Catechol-Functional Chitosan/Silver Nanoparticle Composite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. Sci. Rep. 2017, 7, 1860. [Google Scholar] [CrossRef]
- Ameh, T.; Sayes, C.M. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Pharmacol. 2019, 71, 103220. [Google Scholar] [CrossRef] [PubMed]
- Istiqola, A.; Syafiuddin, A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. J. Chin. Chem. Soc. 2020, 67, 1942–1956. [Google Scholar] [CrossRef]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J. Agric. Food Chem. 2014, 62, 1403–1411. [Google Scholar] [CrossRef]
- von Goetz, N.; Fabricius, L.; Glaus, R.; Weitbrecht, V.; Gunther, D.; Hungerbuhler, K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 612–620. [Google Scholar] [CrossRef]
- Tran, T.A.; Vu, T.L.; Le, K.M.; Le, M.-A.T.; Nguyen, K.T.-T.; Vu, T.B.; Quan, V.M.; Vo, P.P.; Tang, T.-N.; Nguyen, V.K.; et al. Fabrication and characterization of hydrophobic montmorillonite-modified PCL/COS nanofibrous electrospun membrane for hemostatic dressing. Colloids Surf. A Physicochem. Eng. Asp. 2025, 708, 135975. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 2012, 51, 566–575. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H.M. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef]
- Shweta; Brindhav, A.M.; Sharma, S.; Azizi, S.; Rana, V.S. Unveiling the cutting-edge applications of nanotechnology in the food industry- from lab to table-a comprehensive review. J. Agric. Food Res. 2025, 21, 101831. [Google Scholar] [CrossRef]
- Bourakadi, K.E.; Merghoub, N.; Fardioui, M.; Mekhzoum, M.E.M.; Kadmiri, I.M.; Essassi, E.M.; Qaiss, A.E.K.; Bouhfid, R. Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Compos. Part B Eng. 2019, 172, 103–110. [Google Scholar] [CrossRef]
- Massaro, M.; Ciani, R.; Cina, G.; Colletti, C.G.; Leone, F.; Riela, S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics 2022, 11, 1761. [Google Scholar] [CrossRef]
- Chaudhary, N.; Mishra, G.; Yadav, T.; Srivastava, N.; Maurya, V.K.; Saxena, S.K. Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics 2022, 11, 1820. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Ju, J.; Yan, H.; Huang, X.; Tan, Y. Advances in Halloysite Nanotubes-Polysaccharide Nanocomposite Preparation and Applications. Polymers 2019, 11, 987. [Google Scholar] [CrossRef]
- Mariah, M.A.A.; Vonnie, J.M.; Erna, K.H.; Nur’Aqilah, N.M.; Huda, N.; Abdul Wahab, R.; Rovina, K. The Emergence and Impact of Ethylene Scavengers Techniques in Delaying the Ripening of Fruits and Vegetables. Membranes 2022, 12, 117. [Google Scholar] [CrossRef]
- Kumar, L.; Deshmukh, R.K.; Hakim, L.; Gaikwad, K.K. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. Food Bioproc. Tech. 2023, 17, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, Y.H.; Kim, H.M.; Oh, J.M.; Kim, Y.R.; Choi, S.J. Determination of the fate and biological responses of food additive silica particles in commercial foods. Food Chem. 2020, 331, 127304. [Google Scholar] [CrossRef] [PubMed]
- Attaeyan, A.; Shahgholi, M.; Karimipour, A. Enhancing Mechanical Properties of Chitosan-Silica Aerogels with Tricalcium Phosphate Nanoparticles: A Molecular Dynamics Study for Bone Tissue Engineering. Polymers 2025, 17, 755. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Ruan, D.; Huang, M.; Tian, M.; Zhu, K.; Gan, Z.; Xiao, Z. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef]
- Sultan, M.; Abdelhakim, A.A.; Nassar, M.; Hassan, Y.R. Active packaging of chitosan film modified with basil oil encapsulated in silica nanoparticles as an alternate for plastic packaging materials. Food Biosci. 2023, 51, 102298. [Google Scholar] [CrossRef]
- Fakhariha, M.; Rafati, A.A.; Garmakhany, A.D.; Asl, A.Z. Nanoencapsulation enhances stability, release behavior, and antimicrobial properties of Sage and Thyme essential oils. Sci. Rep. 2025, 15, 18373. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Liu, H.; Yao, Z.; Liu, A.; Ming, L. Evaluation of Hydrophilic and Hydrophobic Silica Particles on the Release Kinetics of Essential Oil Pickering Emulsions. ACS Omega 2022, 7, 8651–8664. [Google Scholar] [CrossRef] [PubMed]
- Ataei, S.; Azari, P.; Hassan, A.; Pingguan-Murphy, B.; Yahya, R.; Muhamad, F. Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. Adv. Polym. Technol. 2020, 2020, 9040535. [Google Scholar] [CrossRef]
- Weisany, W.; Yousefi, S.; Tahir, N.A.; Golestanehzadeh, N.; McClements, D.J.; Adhikari, B.; Ghasemlou, M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv. Colloid Interface Sci. 2022, 303, 102655. [Google Scholar] [CrossRef]
- Taokaew, S.; Chuenkaek, T. Developments of Core/Shell Chitosan-Based Nanofibers by Electrospinning Techniques: A Review. Fibers 2024, 12, 26. [Google Scholar] [CrossRef]
- Coskuner Filiz, B.; Basaran Elalmis, Y.; Bektas, I.S.; Kanturk Figen, A. Fabrication of stable electrospun blended chitosan-poly (vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int. J. Biol. Macromol. 2021, 192, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Wang, C.; Yang, X.; Chen, X.; Gao, C.; Feng, X.-X.; Chen, J.-Y.; Ye, J.; Gou, Z. Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydr. Polym. 2011, 84, 239–246. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R. Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. J. Membr. Sci. 2005, 267, 68–77. [Google Scholar] [CrossRef]
- Safari, P.; Rahimabadi, E.Z.; Vaezi, M.R.; Behnamghader, A.; Tahergorabi, R. Development of ZnO-NPs reinforced chitosan nanofiber mats with improved antibacterial and biocompatibility properties. Sci. Rep. 2025, 15, 16567. [Google Scholar] [CrossRef]
- Olson, E.; Liu, F.; Blisko, J.; Li, Y.; Tsyrenova, A.; Mort, R.; Vorst, K.; Curtzwiler, G.; Yong, X.; Jiang, S. Self-assembly in biobased nanocomposites for multifunctionality and improved performance. Nanoscale Adv. 2021, 3, 4321–4348. [Google Scholar] [CrossRef]
- Fajriati, I.; Mudasir, M.; Wahyuni, E.T. The Effect of pH and Aging Time on the Synthesis of TiO2—Chitosan Nanocomposites as Photocatalyst by Sol-Gel Method at Room Temperature. Molekul 2017, 12, 117–125. [Google Scholar] [CrossRef]
- Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.A. In Situ Synthesis of Hybrid Inorganic (-) Polymer Nanocomposites. Polymers 2018, 10, 1129. [Google Scholar] [CrossRef]
- Gupta, K.K.; Mishra, P.K.; Srivastava, P.; Gangwar, M.; Nath, G.; Maiti, P. Hydrothermal in situ preparation of TiO2 particles onto poly (lactic acid) electrospun nanofibres. Appl. Surf. Sci. 2013, 264, 375–382. [Google Scholar] [CrossRef]
- Zouli, N.; Maafa, I.M.; Abutaleb, A.; Yousef, A.; El-Halwany, M.M. Electrospun NiPd Nanoparticles Supported on Polymer Membrane Nanofibers as an Efficient Catalyst for NaBH(4) Dehydrogenation. Polymers 2023, 15, 1083. [Google Scholar] [CrossRef]
- Annur, D.; Wang, Z.K.; Liao, J.D.; Kuo, C. Plasma-Synthesized Silver Nanoparticles on Electrospun Chitosan Nanofiber Surfaces for Antibacterial Applications. Biomacromolecules 2015, 16, 3248–3255. [Google Scholar] [CrossRef]
- Kadavil, H.; Zagho, M.; Elzatahry, A.; Altahtamouni, T. Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective. Nanomaterials 2019, 9, 77. [Google Scholar] [CrossRef]
- Hoque, M.; McDonagh, C.; Tiwari, B.K.; Kerry, J.P.; Pathania, S. Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review. Appl. Sci. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Hu, B.; Guo, Y.; Li, H.; Liu, X.; Fu, Y.; Ding, F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr. Polym. 2021, 271, 118427. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Q.; Niu, Y.Q.; Liu, J.H.; Chen, X.X.; Li, C.S.; Gates, W.P.; Zhou, C.H. Functional Montmorillonite/Polymer Coatings. Clays Clay Miner. 2024, 70, 209–232. [Google Scholar] [CrossRef]
- Wang, M.; Phillips, T.D. Lecithin-amended montmorillonite clays enhance the antibacterial effect of barrier creams. Colloids Surf. B Biointerfaces 2023, 229, 113450. [Google Scholar] [CrossRef] [PubMed]
- Barik, M.; BhagyaRaj, G.V.S.; Dash, K.K.; Shams, R. A thorough evaluation of chitosan-based packaging film and coating for food product shelf-life extension. J. Agric. Food Res. 2024, 16, 101164. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.P.; Lee, J. Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging. Polymers 2025, 17, 1257. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Asiri, A.M. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci. Rep. 2018, 8, 6260. [Google Scholar] [CrossRef]
- Moura, D.; Mano, J.F.; Paiva, M.C.; Alves, N.M. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Technol. Adv. Mater. 2016, 17, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, H.; Koosha, M.; Nasirizadeh, N.; Salari, M.; Abdouss, M.; Li, T.; Gong, Y. The Effect of Nanoclay Type on the Mechanical Properties and Antibacterial Activity of Chitosan/PVA Nanocomposite Films. J. Compos. Sci. 2024, 8, 255. [Google Scholar] [CrossRef]
- Gu, B.K.; Park, S.J.; Kim, M.S.; Kang, C.M.; Kim, J.I.; Kim, C.H. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 2013, 97, 65–73. [Google Scholar] [CrossRef]
- Pugar, D.; Haramina, T.; Leskovac, M.; Curkovic, L. Preparation and Characterization of Poly(vinyl-alcohol)/Chitosan Polymer Blend Films Chemically Crosslinked with Glutaraldehyde: Mechanical and Thermal Investigations. Molecules 2024, 29, 5914. [Google Scholar] [CrossRef]
- Jasrotia, S.; Gupta, S.; Kudipady, M.L.; Puttaiahgowda, Y.M. Development and Characterization of Chitosan-PVA-Tannic Acid Film for Extended Shelf Life and Safety of Food Products. ACS Omega 2025, 10, 19361–19378. [Google Scholar] [CrossRef]
- Xu, J.; Liu, K.; Chang, W.; Chiou, B.S.; Chen, M.; Liu, F. Regulating the Physicochemical Properties of Chitosan Films through Concentration and Neutralization. Foods 2022, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Sundareva Yu, A.; Dumina, I.S.; Salomatina, E.V.; Smirnova, O.N.; Bulanov, E.N.; Zarubin, D.M.; Smirnova, L.A. Properties of chitosan films modified with TiO2 nanoparticles promising as biodegradable food packaging. J. Phys. Conf. Ser. 2024, 2845, 012035. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Partovi, R.; Talebi, F.; Babaei, A. Chitosan/TiO2 nanoparticle/ Cymbopogon citratus essential oil film as food packaging material: Physico-mechanical properties and its effects on microbial, chemical, and organoleptic quality of minced meat during refrigeration. J. Food Process. Preserv. 2020, 44, e14536. [Google Scholar] [CrossRef]
- Langwald, S.V.; Ehrmann, A.; Sabantina, L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. Membranes 2023, 13, 488. [Google Scholar] [CrossRef]
- Joshi, J.; Homburg, S.V.; Ehrmann, A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers 2022, 14, 1267. [Google Scholar] [CrossRef] [PubMed]
- Kwasniewska, A.; Swietlicki, M.; Proszynski, A.; Gladyszewski, G. The Quantitative Nanomechanical Mapping of Starch/Kaolin Film Surfaces by Peak Force AFM. Polymers 2021, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Smolyakov, G.; Pruvost, S.; Cardoso, L.; Alonso, B.; Belamie, E.; Duchet-Rumeau, J. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites. Carbohydr. Polym. 2016, 151, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.J.; Rajagopalan, P. Measuring Cytoplasmic Stiffness of Fibroblasts as a Function of Location and Substrate Rigidity Using Atomic Force Microscopy. ACS Biomater. Sci. Eng. 2018, 4, 3974–3982. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A.A.; Nguyen, D.D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers 2020, 12, 1142. [Google Scholar] [CrossRef]
- Czibulya, Z.; Csik, A.; Toth, F.; Pal, P.; Csarnovics, I.; Zelko, R.; Hegedus, C. The Effect of the PVA/Chitosan/Citric Acid Ratio on the Hydrophilicity of Electrospun Nanofiber Meshes. Polymers 2021, 13, 3557. [Google Scholar] [CrossRef]
- Liu, Y.; Lang, C.; Ding, Y.; Sun, S.; Sun, G. Chitosan with enhanced deprotonation for accelerated thermosensitive gelation with β-glycerophosphate. Eur. Polym. J. 2023, 196, 112229. [Google Scholar] [CrossRef]
- Marlina, D.; Hoshina, H.; Ozaki, Y.; Sato, H. Crystallization and crystalline dynamics of poly(3-hydroxybutyrate)/poly(4-vinylphenol) polymer blends studied by low-frequency vibrational spectroscopy. Polymer 2019, 181, 121790. [Google Scholar] [CrossRef]
- Grant, J.J.; Pillai, S.C.; Perova, T.S.; Hehir, S.; Hinder, S.J.; McAfee, M.; Breen, A. Electrospun Fibres of Chitosan/PVP for the Effective Chemotherapeutic Drug Delivery of 5-Fluorouracil. Chemosensors 2021, 9, 70. [Google Scholar] [CrossRef]
- Duan, M.; Sun, J.; Huang, Y.; Jiang, H.; Hu, Y.; Pang, J.; Wu, C. Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. Food Sci. Hum. Wellness 2023, 12, 614–621. [Google Scholar] [CrossRef]
- Dufour, E.; Gassara, S.; Petit, E.; Pochat-Bohatier, C.; Deratani, A. Quantitative PVP mapping in PVDF hollow fiber membranes by using Raman spectroscopy coupled with spectral chemiometrics analysis. Eur. Phys. J. Spec. Top. 2015, 224, 1911–1919. [Google Scholar] [CrossRef]
- Iswarya, S.; Theivasanthi, T.; Gopinath, S.C.B. Electrochemical potential of chitosan nanoparticles obtained by the reverse micellar process. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 143018. [Google Scholar] [CrossRef]
- Pourhosseini, S.; Yamini, Y.; Nasrollahi, S.S. Electrospun chitosan modified montmorillonite/polyvinyl alcohol nanofibers as suitable coating for fiber-in-tube solid-phase microextraction of trace amounts of tricyclic antidepressants in biological fluids. Adv. Sample Prep. 2025, 13, 100145. [Google Scholar] [CrossRef]
- Borjigin, M.; Eskridge, C.; Niamat, R.; Strouse, B.; Bialk, P.; Kmiec, E.B. Electrospun fiber membranes enable proliferation of genetically modified cells. Int. J. Nanomed. 2013, 8, 855–864. [Google Scholar] [CrossRef]
- Castilla-Cortazar, I.; Vidaurre, A.; Mari, B.; Campillo-Fernandez, A.J. Morphology, Crystallinity, and Molecular Weight of Poly(epsilon-caprolactone)/Graphene Oxide Hybrids. Polymers 2019, 11, 1099. [Google Scholar] [CrossRef]
- Gautam, S.; Chou, C.-F.; Dinda, A.K.; Potdar, P.D.; Mishra, N.C. Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J. Mater. Sci. 2013, 49, 1076–1089. [Google Scholar] [CrossRef]
- Nelson, M.T.; Keith, J.P.; Li, B.-B.; Stocum, D.L.; Li, J. Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2012, 226, 111–121. [Google Scholar] [CrossRef]
- Kao, H.H.; Kuo, C.Y.; Tagadur Govindaraju, D.; Chen, K.S.; Chen, J.P. Polycaprolactone/Chitosan Composite Nanofiber Membrane as a Preferred Scaffold for the Culture of Mesothelial Cells and the Repair of Damaged Mesothelium. Int. J. Mol. Sci. 2022, 23, 9517. [Google Scholar] [CrossRef]
- Permyakova, E.S.; Manakhov, A.M.; Kiryukhantsev-Korneev, P.V.; Leybo, D.V.; Konopatsky, A.S.; Makarets, Y.A.; Filippovich, S.Y.; Ignatov, S.G.; Shtansky, D.V. Electrospun Polycaprolactone/ZnO Nanocomposite Membranes with High Antipathogen Activity. Polymers 2022, 14, 5364. [Google Scholar] [CrossRef] [PubMed]
- Boura-Theodoridou, O.; Giannakas, A.; Katapodis, P.; Stamatis, H.; Ladavos, A.; Barkoula, N.-M. Performance of ZnO/chitosan nanocomposite films for antimicrobial packaging applications as a function of NaOH treatment and glycerol/PVOH blending. Food Packag. Shelf Life 2020, 23, 100456. [Google Scholar] [CrossRef]
- Cassimjee, H.; Kumar, P.; Ubanako, P.; Choonara, Y.E. Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications. Pharmaceutics 2022, 14, 441. [Google Scholar] [CrossRef]
- Buraidah, M.H.; Arof, A.K. Characterization of chitosan/PVA blended electrolyte doped with NH4I. J. Non-Cryst. Solids 2011, 357, 3261–3266. [Google Scholar] [CrossRef]
- Fouilloux, J.; Abbad Andaloussi, S.; Langlois, V.; Dammak, L.; Renard, E. Straightforward Way to Provide Antibacterial Properties to Healthcare Textiles through N-2-Hydroxypropyltrimethylammonium Chloride Chitosan Crosslinking. ACS Omega 2024, 9, 5440–5451. [Google Scholar] [CrossRef]
- Smith, T.; Affram, K.; Bulumko, E.; Agyare, E. Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. J. Nat. Sci. 2018, 4, e535. [Google Scholar]
- Dimzon, I.K.; Knepper, T.P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int. J. Biol. Macromol. 2015, 72, 939–945. [Google Scholar] [CrossRef]
- Abraham, A.; Soloman, P.A.; Rejini, V.O. Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol. 2016, 24, 741–748. [Google Scholar] [CrossRef]
- He, Y.; Zhong, T.; Liu, Y.; Wan, M.; Sun, L.; Zhao, Y.; Wang, Z. Development of a multifunctional active food packaging membrane based on electrospun polyvinyl alcohol/chitosan for preservation of fruits. Int. J. Biol. Macromol. 2024, 277, 134636. [Google Scholar] [CrossRef]
- Elomar, Z.; Eticha, A.K.; Doğan, N.; Akgul, Y.; Doğan, C. Tailoring of Gelatin-Chitosan Nanofibers Functionalized with Eucalyptus Essential Oil via Electroblowing for Potential Food Packaging and Wound Dressing Applications. Fibers Polym. 2024, 25, 2457–2469. [Google Scholar] [CrossRef]
- Gierszewska, M.; Jakubowska, E.; Olewnik-Kruszkowska, E. Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polym. Test. 2019, 77, 105872. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; El-Ghorab, A.H.; Hussein, A.M.S.; El-Massry, K.F.; Lotfy, S.N.; Sayed Ahmed, M.Y.; Soliman, T.N. Correlation between chemical composition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils. Arab. J. Chem. 2020, 13, 6815–6827. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, C.; Wang, P.; Zhang, Y.; Zhang, H. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr. Polym. 2020, 247, 116711. [Google Scholar] [CrossRef] [PubMed]
- Gezmis-Yavuz, E.; Ergon-Can, T.; Cansoy, C.E.; Koseoglu-Imer, D.Y. Fabrication and Application of Halloysite Nanotube-Embedded Photocatalytic Nanofibers with Antibacterial Properties. ACS Omega 2023, 8, 1453–1465. [Google Scholar] [CrossRef]
- Liu, S.; Qiao, S.; Zhu, J.; Yang, Y.; Chen, H.; Dai, H.; Zhu, H.; Yu, Y.; Ma, L.; Zhang, Y.; et al. Enhanced barrier and antioxidant properties of gelatin films by structural-colored bioactive materials for food packaging. Food Hydrocoll. 2024, 150, 109744. [Google Scholar] [CrossRef]
- Antaby, E.; Klinkhammer, K.; Sabantina, L. Electrospinning of Chitosan for Antibacterial Applications—Current Trends. Appl. Sci. 2021, 11, 11937. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, S.; Xu, Q.; Xu, L.; Zhu, D.; Li, X.; Shui, Y.; Liu, X.; Bi, X. Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit. Coatings 2021, 11, 512. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Q.; Liu, Y.; Li, S.; Dong, K.; Su, Y.; Jiang, Y.; Yang, X.; Guo, L. Effects of nisin loaded chitosan-pectin nanoparticles on shelf life and storage stability of room temperature stored processed cheese. Food Chem. 2025, 473, 143103. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, S.; Ehtesham Nia, A.; Hokmabadi, H.; Yahia, E.M. Quality evaluation of fresh pistachios (Pistacia vera L.) cultivars coated with chitosan/TiO2 nanocomposite. Int. J. Biol. Macromol. 2024, 258, 129055. [Google Scholar] [CrossRef]
- Halloub, A.; Nekhlaoui, S.; Raji, M.; Essabir, H.; Bensalah, M.-O.; Bouhfid, R.; Qaiss, A.E.K. UV-activated self-healing food packaging: ω-3 based microcapsules in hemicellulose/chitosan blend film for cashew nut preservation. Food Biosci. 2024, 60, 104313. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Shafiei-Hematabad, Z.; Kennedy, J.F. Advancements in coating technologies: Unveiling the potential of chitosan for the preservation of fruits and vegetables. Int. J. Biol. Macromol. 2024, 254, 127677. [Google Scholar] [CrossRef]
- Hoa, V.B.; Song, D.H.; Seol, K.H.; Kang, S.M.; Kim, H.W.; Kim, J.H.; Moon, S.S.; Cho, S.H. Application of a Newly Developed Chitosan/Oleic Acid Edible Coating for Extending Shelf-Life of Fresh Pork. Foods 2022, 11, 1978. [Google Scholar] [CrossRef] [PubMed]
- Ananda, B.; Radha Krushna, B.R.; Gagana, M.; Sharma, S.C.; Ray, S.; Subha, V.J.; Kumari, B.N.; Manjunatha, K.; Wu, S.Y.; Nagabhushana, H. Biodegradable chitosan-based carbon dot-infused intelligent films with UV-blocking and shape memory properties for shrimp preservation and milk freshness monitoring. J. Ind. Eng. Chem. 2025. [Google Scholar] [CrossRef]
- Luo, F.; Wang, X.; Tian, W.; Zhu, B.; Hu, J. Multifunctional CuTax nanozyme-based chitosan edible coatings for fruit preservation. Int. J. Biol. Macromol. 2025, 310, 143204. [Google Scholar] [CrossRef]
- Sun, J.; Wang, T.; Liu, L.; Li, Q.; Liu, H.; Wang, X.; Liu, M.; Zhang, H. Preparation and Application of Edible Chitosan Coating Incorporating Natamycin. Polymers 2025, 17, 1062. [Google Scholar] [CrossRef] [PubMed]
- Bist, N.S.; Bist, P. Role of Microorganisms in Post-Harvest Loss of Agricultural Products: A Review. Sustain. Food Agric. 2020, 2, 01–04. [Google Scholar] [CrossRef]
- Gomes, B.A.F.; Alexandre, A.C.S.; de Andrade, G.A.V.; Zanzini, A.P.; de Barros, H.E.A.; Ferraz e Silva, L.M.D.S.; Costa, P.A.; Boas, E.V.D.B.V. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review—Part 2: Physical methods and global market outlook. Food Chem. Adv. 2023, 2, 100340. [Google Scholar] [CrossRef]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Mahin, M.I.; Rashid, M.H.-A.; Mredul, A.R. Effects of shrimp chitosan based edible coating on the shelf life of selected vegetables in context of attaining SDGs. Appl. Food Res. 2025, 5, 100682. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Q.; Yang, G.; Zhang, X.; Jiang, X.; He, B.; Chen, J. TEMPO-oxidized nanocellulose immobilized AgNPs modified chitosan composite film with durable antibacterial and preservative properties for fruits and vegetables package. Ind. Crops Prod. 2023, 205, 117430. [Google Scholar] [CrossRef]
- Khaliq, G.; Muda Mohamed, M.T.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci. Hortic. 2015, 190, 187–194. [Google Scholar] [CrossRef]
- Jongsri, P.; Wangsomboondee, T.; Rojsitthisak, P.; Seraypheap, K. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT 2016, 73, 28–36. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Tavaria, F.K.; Soares, J.C.; Ramos, O.S.; Joao Monteiro, M.; Pintado, M.E.; Xavier Malcata, F. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008, 25, 922–928. [Google Scholar] [CrossRef]
- Divya, K.; Vijayan, S.; George, T.K.; Jisha, M.S. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 2017, 18, 221–230. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, L.L.P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Sang, H.-D.; Kim, U.; Oh, S.-W. Simultaneous capture of Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium using arginine-modified chitosan-coated magnetic nanoparticles in fresh-cut salad. Food Control 2025, 171, 111122. [Google Scholar] [CrossRef]
- Nasiri, H.; Abbasian, K. High-sensitive surface plasmon resonance sensor for melamine detection in dairy products based on graphene oxide /chitosan nanocomposite. Food Control 2024, 166, 110761. [Google Scholar] [CrossRef]
- Feng, N.; Zhang, J.; Li, W. Chitosan/Graphene Oxide Nanocomposite-Based Electrochemical Sensor For ppb Level Detection of Melamine. J. Electrochem. Soc. 2019, 166, B1364–B1369. [Google Scholar] [CrossRef]
- Ezhilan, M.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Babu, K.J.; Krishnan, U.M.; Rayappan, J.B.B. Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sens. Actuators B Chem. 2017, 238, 1283–1292. [Google Scholar] [CrossRef]
- Yue, X.; Sun, J.; Yang, T.; Dong, Q.; Li, T.; Ding, S.; Liang, X.; Feng, K.; Gao, X.; Yang, M.; et al. Rapid detection of Salmonella in milk by a nuclear magnetic resonance biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium probe. J. Dairy Sci. 2021, 104, 11486–11498. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, J.; Yu, S.; Niu, R.; Yang, Z.; Wang, H.; Cheng, H.; Ye, X.; Liu, D.; Wang, W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll. 2023, 134, 108094. [Google Scholar] [CrossRef]
- Karydis-Messinis, A.; Kyriakaki, C.; Triantafyllou, E.; Tsirka, K.; Gioti, C.; Gkikas, D.; Nesseris, K.; Exarchos, D.A.; Farmaki, S.; Giannakas, A.E.; et al. Development and Physicochemical Characterization of Edible Chitosan-Casein Hydrogel Membranes for Potential Use in Food Packaging. Gels 2024, 10, 254. [Google Scholar] [CrossRef]
- Chen, D.; Lv, J.; Wang, A.; Yong, H.; Liu, J. Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring. Foods 2024, 13, 2237. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, G.; Wang, H.; Jin, M.C.; Dang, H.; Zhang, J.; Guo, R.; Yan, H.; Niu, B.; Wang, H. Development of smart packaging film incorporated with sodium alginate-chitosan quaternary ammonium salt nanocomplexes encapsulating anthocyanins for monitoring milk freshness. Int. J. Biol. Macromol. 2024, 263, 130336. [Google Scholar] [CrossRef]
- Ebrahimi Tirtashi, F.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. Int. J. Biol. Macromol. 2019, 136, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.D.; Phung, D.N.D.; Nguyen, T.T.T.; Le, O.T.K.; Cao, T.N.M.; Truong, T.T.C.; Phan, N.T.T.; Le Thi, A.P. Colorimetric chitosan/polyvinyl alcohol composite membrane incorporated with anthocyanins as pH indicator for monitoring fish freshness. J. Appl. Polym. Sci. 2024, 142, e56333. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Ren, B.; Wu, W.; Soladoye, O.P.; Bak, K.H.; Fu, Y.; Zhang, Y. Application of biopreservatives in meat preservation: A review. Int. J. Food Sci. Technol. 2021, 56, 6124–6141. [Google Scholar] [CrossRef]
- Lotfy, T.M.R.; Shawir, S.M.S.; Badawy, M.E.I. The impacts of chitosan-essential oil nanoemulsions on the microbial diversity and chemical composition of refrigerated minced meat. Int. J. Biol. Macromol. 2023, 239, 124237. [Google Scholar] [CrossRef]
- Juneja, V.K.; Thippareddi, H.; Bari, L.; Inatsu, Y.; Kawamoto, S.; Friedman, M. Chitosan Protects Cooked Ground Beef and Turkey Against Clostridium perfringens Spores During Chilling. J. Food Sci. 2006, 71, M236–M240. [Google Scholar] [CrossRef]
- Soultos, N.; Tzikas, Z.; Abrahim, A.; Georgantelis, D.; Ambrosiadis, I. Chitosan effects on quality properties of Greek style fresh pork sausages. Meat Sci. 2008, 80, 1150–1156. [Google Scholar] [CrossRef]
- Esmaeili, M.; Ariaii, P.; Nasiraie, L.R.; Pour, M.Y. Comparison of coating and nano-coating of chitosan- Lepidium sativum seed gum composites on quality and shelf life of beef. J. Food Meas. Charact. 2020, 15, 341–352. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Zheng, K.; Li, B.; Liu, Y.; Wu, D.; Bai, Y.; Xiang, Q. Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. LWT 2023, 176, 114547. [Google Scholar] [CrossRef]
- El Bayomi, R.M.; Shata, R.H.M.; Mahmoud, A.F.A. Effects of edible chitosan coating containing Salvia rosmarinus essential oil on quality characteristics and shelf life extension of rabbit meat during chilled storage. J. Food Meas. Charact. 2023, 17, 2464–2474. [Google Scholar] [CrossRef]
- Tsitsos, A.; Economou, V.; Chouliara, E.; Koutouzidou, G.; Arsenos, G.; Ambrosiadis, I. Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms 2023, 11, 507. [Google Scholar] [CrossRef] [PubMed]
- Gaba, A.B.M.; Hassan, M.A.; Abd El-Tawab, A.A.; Abdelmonem, M.A.; Morsy, M.K. Protective Impact of Chitosan Film Loaded Oregano and Thyme Essential Oil on the Microbial Profile and Quality Attributes of Beef Meat. Antibiotics 2022, 11, 583. [Google Scholar] [CrossRef]
- Sree, S.; Patra, A.; Arun Prasath, V.; Kambhampati, V.; Xiao, H.-W. Innovations in Electrospinning Techniques for Nanomaterial Synthesis and its applications in the field of Active Food Packaging. J. Future Foods 2025, in press. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Sun, W.; Dong, T.; Saldana, M.D.A.; Sun, W. Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. Int. J. Biol. Macromol. 2022, 208, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Xu, J.; Raman Pillai, S.K.; Eitzer, B.D.; Xu, T.; Vaze, N.; Ng, K.W.; White, J.C.; Chan-Park, M.B.; Luo, Y.; et al. Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Appl. Mater. Interfaces 2021, 13, 50298–50308. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, C.; Zhou, Y.; Lu, Z.; Zhao, H.; Bie, X.; Lu, F. Preparation of Gallic Acid-Grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation. Front. Microbiol. 2018, 9, 1729. [Google Scholar] [CrossRef] [PubMed]
- Al-Bachir, M. Microbiological, sensorial and chemical quality of gamma irradiated pistachio nut (Pistacia vera L.). Ann. Univ. Dunarea De Jos Galati Fascicle VI Food Technol. 2014, 38, 57–68. [Google Scholar]
- Kazemian-Bazkiaee, F.; Ebrahimi, A.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Farhoodi, M.; Rahmatzadeh, B.; Sheikhi, Z. Evaluating the protective effect of edible coatings on lipid oxidation, fatty acid composition, aflatoxins levels of roasted peanut kernels. J. Food Meas. Charact. 2020, 14, 1025–1038. [Google Scholar] [CrossRef]
- Akhavan-Mahdavi, S.; Mirzazadeh, M.; Alam, Z.; Solaimanimehr, S. The effect of chitosan coating combined with cold plasma on the quality and safety of pistachio during storage. Food Sci. Nutr. 2023, 11, 4296–4307. [Google Scholar] [CrossRef]
- Gartner, T.E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Xie, J.; Cheng, M.; Sun, L.; Zhang, S.; Xin, J.; Zhang, N. A review on application of molecular simulation technology in food molecules interaction. Curr. Res. Food Sci. 2022, 5, 1873–1881. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, L.; Jiang, J. Atomistic insight into micro-phase separation and gas diffusion in PEO–PBT multiblock copolymers. Mol. Simul. 2013, 39, 902–907. [Google Scholar] [CrossRef]
- Vergelati, T.S.A.C. A Molecular Modeling Study of Binary Blend Compatibility of Polyamide 6 and Poly(vinyl acetate) with Different Degrees of Hydrolysis: An Atomistic and Mesoscopic Approach. Macromolecules 2001, 34, 5306–5316. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Yang, Z.; Dai, L.; Choi, H.; Meng, Z. Unveiling the Nanoconfinement Effect on Crystallization of Semicrystalline Polymers Using Coarse-Grained Molecular Dynamics Simulations. Polymers 2024, 16, 1155. [Google Scholar] [CrossRef]
- Yang, Z.; Chiang, C.C.; Meng, Z. Investigation of Dynamic Impact Responses of Layered Polymer-Graphene Nanocomposite Films Using Coarse-Grained Molecular Dynamics Simulations. Carbon 2023, 203, 202–210. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z. Mechanical and Viscoelastic Properties of Wrinkled Graphene Reinforced Polymer Nanocomposites—Effect of Interlayer Sliding within Graphene Sheets. Carbon 2021, 177, 128–137. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Kremer, K. Predicting polymer dynamics at multiple length and time scales. Soft Matter 2009, 5, 3920–3926. [Google Scholar] [CrossRef]
- Siewert, J.; Marrink, H.J.R.; Serge Yefimov, D.; Tieleman, P.; de Vries Alex, H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef]
- Heinz, H.; Lin, T.J.; Mishra, R.K.; Emami, F.S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.H. Relaxation processes in crystalline polymers: Experimental behaviour—A review. Polymer 1985, 26, 323–347. [Google Scholar] [CrossRef]
- Yang, J.; Custer, D.; Chun Chiang, C.; Meng, Z.; Yao, X.H. Understanding the Mechanical and Viscoelastic Properties of Graphene Reinforced Polycarbonate Nanocomposites Using Coarse-Grained Molecular Dynamics Simulations. Comput. Mater. Sci. 2021, 191, 110339. [Google Scholar] [CrossRef]
- Caviness, C.; Chen, Y.; Yang, Z.; Wang, H.; Wu, Y.; Meng, Z. Improved Ballistic Impact Resistance of Nanofibrillar Cellulose Films with Discontinuous Fibrous Bouligand Architecture. J. Appl. Mech. 2024, 91, 021003. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Dieng, A.B.; Webb, M.A. Property-guided generation of complex polymer topologies using variational autoencoders. NPJ Comput. Mater. 2024, 10, 139. [Google Scholar] [CrossRef]
- Quezada, G.R.; Toro, N.; Saavedra, J.; Robles, P.; Salazar, I.; Navarra, A.; Jeldres, R.I. Molecular Dynamics Study of the Conformation, Ion Adsorption, Diffusion, and Water Structure of Soluble Polymers in Saline Solutions. Polymers 2021, 13, 3550. [Google Scholar] [CrossRef]
- Haydukivska, K.; Blavatska, V.; Paturej, J. Universal size ratios of Gaussian polymers with complex architecture: Radius of gyration vs hydrodynamic radius. Sci. Rep. 2020, 10, 14127. [Google Scholar] [CrossRef]
- Tejuosho, T.; Kollipara, S.; Patankar, S.; Sampath, J. Dynamics of Polymer Chains in Disperse Melts: Insights from Coarse-Grained Molecular Dynamics Simulations. J. Phys. Chem. B 2024, 128, 11846–11854. [Google Scholar] [CrossRef] [PubMed]
- Escanuela-Copado, A.; Martin-Molina, A.; Patti, A. Molecular simulation of hybrid polymer nanocomposites with organic nanodimers and inorganic nanorods: From structure and dynamics to viscosity. J. Chem. Phys. 2025, 162, 174906. [Google Scholar] [CrossRef]
- Mohamed, A.M.O.; Economou, I.G.; Jeong, H.K. Polyimide Polymer Simulations through Coarse-Grained Modeling: Prediction of Structure, Physical Properties, and Gas Separation Properties. J. Phys. Chem. B 2025, 129, 4765–4780. [Google Scholar] [CrossRef]
- Xia, N.; Zhao, P.; Xie, J.; Zhang, C.; Fu, J. Density measurement for polymers by magneto-Archimedes levitation: Simulation and experiments. Polym. Test. 2017, 63, 455–461. [Google Scholar] [CrossRef]
- Tejedor, A.R.; Carracedo, R.; Ramírez, J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. Polymer 2023, 268, 125677. [Google Scholar] [CrossRef]
- Phillies, G.D.J. Review: Mean-Square Displacements of Simulated Polymers. Polymers 2025, 17, 1193. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, D.; Song, M.; Jiao, M.; Wang, H. Molecular dynamics simulation of effects of three accelerators on the microstructure of polyesters in non-aqueous solvents. Mater. Today Commun. 2022, 33, 104404. [Google Scholar] [CrossRef]
- Lin, K.; Wang, Z. Multiscale mechanics and molecular dynamics simulations of the durability of fiber-reinforced polymer composites. Commun. Mater. 2023, 4, 66. [Google Scholar] [CrossRef]
- Fu, H.; Pan, Y.; Song, H.; Xing, C.; Bao, R.; Song, K.; Fu, X. Molecular Dynamics Simulation of the Viscosity Enhancement Mechanism of P-n Series Vinyl Acetate Polymer-CO (2). Polymers 2024, 16, 3034. [Google Scholar] [CrossRef]
- Zhang, J.; Searles, D.J.; Duignan, T. A Method for Efficiently Predicting the Radial Distribution Function and Osmotic Coefficients of Aqueous Electrolyte Solutions. J. Chem. Theory Comput. 2024, 20, 6957–6970. [Google Scholar] [CrossRef]
- Taşseven, Ç.; Akdere, U.; Günay, S.D.; Aksakal, B. Molecular dynamics modelling of the stress–strain response of β-sheet nanocrystals. Comput. Mater. Sci. 2025, 246, 113367. [Google Scholar] [CrossRef]
- Yang, Q.; Li, W.; Stober, S.T.; Burns, A.B.; Gopinadhan, M.; Martini, A. Molecular Dynamics Simulation of the Stress–Strain Behavior of Polyamide Crystals. Macromolecules 2021, 54, 8289–8302. [Google Scholar] [CrossRef]
- Fang, Q.; Tian, Y.; Wu, H.; Li, J. Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading via molecular dynamics simulations. RSC Adv. 2018, 8, 32377–32386. [Google Scholar] [CrossRef]
- Fiallos-Nunez, J.; Cardero, Y.; Cabrera-Barjas, G.; Garcia-Herrera, C.M.; Inostroza, M.; Estevez, M.; Espana-Sanchez, B.L.; Valenzuela, L.M. Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers 2024, 16, 2471. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J.F. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr. Polym. 2023, 309, 120666. [Google Scholar] [CrossRef]
- Chowdhury, S.C.; Gillespie, J.W. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar® crystal. Comput. Mater. Sci. 2018, 148, 286–300. [Google Scholar] [CrossRef]
- Salavati, M. Mechanical Properties of α-Chitin and Chitosan Biocomposite: A Molecular Dynamic Study. J. Compos. Sci. 2023, 7, 464. [Google Scholar] [CrossRef]
- Singhal, A.; Schneible, J.D.; Lilova, R.L.; Hall, C.K.; Menegatti, S.; Grafmuller, A. A multiscale coarse-grained model to predict the molecular architecture and drug transport properties of modified chitosan hydrogels. Soft Matter 2020, 16, 10591–10610. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, P.; Zubair, M.; Roopesh, M.S.; Ullah, A. An Overview of Advanced Antimicrobial Food Packaging: Emphasizing Antimicrobial Agents and Polymer-Based Films. Polymers 2024, 16, 2007. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef]
- Giacinti Baschetti, M.; Minelli, M. Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polym. Test. 2020, 89, 106606. [Google Scholar] [CrossRef]
- Hudek, M.; Johnston, K.; Kubiak-Ossowska, K.; Ferro, V.A.; Mulheran, P.A. Molecular Dynamics Study of Chitosan Adsorption at a Silica Surface. J. Phys. Chem. C Nanomater. Interfaces 2024, 128, 21531–21538. [Google Scholar] [CrossRef]
- Kritchenkov, A.S.; Egorov, A.R.; Dysin, A.P.; Volkova, O.V.; Zabodalova, L.A.; Suchkova, E.P.; Kurliuk, A.V.; Shakola, T.V. Ultrasound-assisted Cu(I)-catalyzed azide-alkyne click cycloaddition as polymer-analogous transformation in chitosan chemistry. High antibacterial and transfection activity of novel triazol betaine chitosan derivatives and their nanoparticles. Int. J. Biol. Macromol. 2019, 137, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, U.; Basharat, S.; Javed, U.; Bibi, A.; Yu, X.B. Chitosan: A multipurpose polymer in food industry. Polym. Bull. 2022, 80, 3547–3569. [Google Scholar] [CrossRef]
- Fuster, M.G.; Montalban, M.G.; Carissimi, G.; Lima, B.; Feresin, G.E.; Cano, M.; Giner-Casares, J.J.; Lopez-Cascales, J.J.; Enriz, R.D.; Villora, G. Antibacterial Effect of Chitosan-Gold Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model. Nanomaterials 2020, 10, 2340. [Google Scholar] [CrossRef]
- Arisoy, S.; Bux, K.; Herwig, R.; Salva, E. Development, Evaluation, and Molecular Dynamics Study of Ampicillin-Loaded Chitosan-Hyaluronic Acid Films as a Drug Delivery System. ACS Omega 2024, 9, 19805–19815. [Google Scholar] [CrossRef]
- Mohammed, L.; Nourddine, H.; Saad, E.F.; Abdelali, D.; Hamid, R. Chitosan-covered liposomes as a promising drug transporter: Nanoscale investigations. RSC Adv. 2021, 11, 1503–1516. [Google Scholar] [CrossRef]
- Cambiaso, S.; Bochicchio, D.; Shrestha, R.; Rossi, G.; Monticelli, L. Martini 3 coarse-grained model for chitosan with tunable acetylation. Phys. Chem. 2025. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef]
- Roman, D.L.; Ostafe, V.; Isvoran, A. Deeper inside the specificity of lysozyme when degrading chitosan. A structural bioinformatics study. J. Mol. Graph. Model. 2020, 100, 107676. [Google Scholar] [CrossRef]
- Romany, A.; Payne, G.F.; Shen, J. Effect of Acetylation on the Nanofibril Formation of Chitosan from All-Atom De Novo Self-Assembly Simulations. Molecules 2024, 29, 561. [Google Scholar] [CrossRef]
- Schopmans, H.; Utesch, T.; Theato, P.; Mroginski, M.A.; Kozlowska, M. Side-chain-induced changes in aminated chitosan: Insights from molecular dynamics simulations. Int. J. Biol. Macromol. 2024, 282, 136159. [Google Scholar] [CrossRef]
- Yu, Y.; Song, X.; Yang, X.; Wang, C.; Wu, X.; Wang, Y.; Xiang, W.; Zhao, S.; Liu, H. Optimization of chitosan-based demulsifiers via interfacial displacement: A molecular dynamics and principal component analysis approach. Sep. Purif. Technol. 2025, 365, 132693. [Google Scholar] [CrossRef]
- Letizia Tavagnacco, E.C.; Severini, L.; Franco, S.; Buratti, E.; Capocefalo, A.; Brasili, F.; Mosca Conte, A.; Missori, M.; Angelini, R.; Sennato, S.; et al. Molecular origin of the two-step mechanism of gellan aggregation. Sci. Adv. 2023, 9, eadg4392. [Google Scholar] [CrossRef]
- Severini, L.; Tavagnacco, L.; Sennato, S.; Celi, E.; Chiessi, E.; Mazzuca, C.; Zaccarelli, E. Unveiling the self-assembly process of gellan-chitosan complexes through a combination of atomistic simulations and experiments. Int. J. Biol. Macromol. 2025, 292, 139098. [Google Scholar] [CrossRef]
- Deng, B.; Chen, J.; Li, S.; Liu, J.; Zhou, Z.; Qin, Z.; Wang, H.; Su, M.; Li, L.; Bai, Z. An antibacterial packaging film based on amylose starch with quaternary ammonium salt chitosan and its application for meat preservation. Int. J. Biol. Macromol. 2024, 261, 129706. [Google Scholar] [CrossRef] [PubMed]
- Bateni, A.; Salahshoori, I.; Namayandeh Jorabchi, M.; Moayed Mohseni, M.; Raji Asadabadi, M.; Khonakdar, H.A. Molecular simulation-based assessing of a novel metal-organic framework modified with alginate and chitosan biopolymers for anionic reactive black 5 and cationic crystal violet pollutants capture. Sep. Purif. Technol. 2025, 354, 128986. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Q.; Pan, K.; Liu, L.; Niu, X. Enhancing Botrytis cinerea resistance in strawberry preservation with non-contact functionalized chitosan-Cinnamaldehyde composite films. Food Chem. 2025, 476, 143488. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Chen, S.; Li, J.; Zheng, C.; Liu, Y.; Hao, C. Molecular studies between chitosan and graphene oxide-chitosan nanocomposites with β-galactosidase: From interaction mechanism to structural and functional changes. J. Mol. Struct. 2025, 1325, 140992. [Google Scholar] [CrossRef]
- Rissouli, L.; Berradi, M.; Chabbi, M.; Eddaoukhi, A.; Chaer, I.; El-Aouni, N.; Berradi, O.; El Yacoubi, A.; Zaki, S.; Berisha, A.; et al. Adsorption of Linuron by the chitosan-bentonite composite: Kinetic, thermodynamic, and theoretical studies. Comput. Theor. Chem. 2025, 1248, 115160. [Google Scholar] [CrossRef]
- Glushak, A.A.; Tararushkin, E.V.; Smirnov, G.S. A classical force field for selenium oxyanions in aqueous solutions and minerals. J. Mol. Liq. 2025, 422, 126904. [Google Scholar] [CrossRef]
- Guo, R.; Chen, Q.; Wang, F.; Fang, M.; Li, L.; Niu, H.; Wang, B.; Wang, N.; Wang, K.; Mo, Z. Selenium-contaminated water: Recent advances in material function and adsorption performance. J. Environ. Chem. Eng. 2023, 11, 110468. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, T.; Lei, W.; Feng, Y.; Tang, X.; Ding, Z.; Liu, X.; Qi, P.; Wang, Y. A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater. Carbohydr. Polym. 2025, 352, 123238. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H.; Bu, Q.; Wang, Z.; Jiang, N.; Chen, J.; Sun, R.; Liu, Q.; Xu, J.; Fu, J. Supramolecular interaction-enhanced green active packaging films: Design and performance of Ca(2+)-crosslinked carboxymethyl chitosan composite films. Int. J. Biol. Macromol. 2025, 309, 143002. [Google Scholar] [CrossRef] [PubMed]
- Uwaya, G.E.; Bisetty, K. Eco-friendly nickel-ferrite/chitosan composite for electrochemical sensing of Erythrosine, B. Inorg. Chem. Commun. 2025, 178, 114512. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, X.; Zhou, C.; Cheng, J.-H. Insight into the effects of chitosan on the gelling properties of tilapia surimi gel under microwave heating treatment. Food Biosci. 2024, 58, 103619. [Google Scholar] [CrossRef]
- Michna, A.; Pomorska, A.; Płaziński, W.; Lupa, D.; Lutsyk, V.; Odrobińska-Baliś, J.; Zapotoczny, S.; Adamczyk, Z. Formation of modified chitosan/carrageenan multilayers at silica: Molecular dynamics modeling and experiments. Food Hydrocoll. 2024, 146, 109222. [Google Scholar] [CrossRef]
- Vass, P.; Szabo, E.; Domokos, A.; Hirsch, E.; Galata, D.; Farkas, B.; Demuth, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; et al. Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1611. [Google Scholar] [CrossRef]
- Soti, P.L.; Bocz, K.; Pataki, H.; Eke, Z.; Farkas, A.; Verreck, G.; Kiss, E.; Fekete, P.; Vigh, T.; Wagner, I.; et al. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. Int. J. Pharm. 2015, 494, 23–30. [Google Scholar] [CrossRef]
- Singh, R.; Shitiz, K.; Singh, A. Chitin and chitosan: Biopolymers for wound management. Int. Wound J. 2017, 14, 1276–1289. [Google Scholar] [CrossRef]
- Tan, S.X.; Ong, H.C.; Andriyana, A.; Lim, S.; Pang, Y.L.; Kusumo, F.; Ngoh, G.C. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers 2022, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.A.; Arumainathan, S. Crosslinked Chitosan-Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier. ACS Omega 2022, 7, 18732–18744. [Google Scholar] [CrossRef] [PubMed]
- Cuahuizo-Huitzil, G.; Olivares-Xometl, O.; Eugenia Castro, M.; Arellanes-Lozada, P.; Melendez-Bustamante, F.J.; Pineda Torres, I.H.; Santacruz-Vazquez, C.; Santacruz-Vazquez, V. Artificial Neural Networks for Predicting the Diameter of Electrospun Nanofibers Synthesized from Solutions/Emulsions of Biopolymers and Oils. Materials 2023, 16, 5720. [Google Scholar] [CrossRef] [PubMed]
- Fatahian, R.; Erfani, R. Surrogate modeling of electrospun PVA/PLA nanofibers using artificial neural network for biomedical applications. Sci. Rep. 2025, 15, 12886. [Google Scholar] [CrossRef]
- Roldan, E.; Reeves, N.D.; Cooper, G.; Andrews, K. Machine learning to predict morphology, topography and mechanical properties of sustainable gelatin-based electrospun scaffolds. Sci. Rep. 2024, 14, 21017. [Google Scholar] [CrossRef]
Factor Category | Specific Parameter | Typical Range | Effect on Electrospinning Process | Resulting Fiber Morphology | Refs. |
---|---|---|---|---|---|
Solution Parameters | Polymer Concentration/MW | 7–10 wt% CS in acetic acid is considered high. Below ~3 wt%, fibers cannot form properly. CS (e.g., low Mw ~50–190 kDa vs. medium ~300–400 kDa vs. very high ~800+ kDa) | ↑ concentration or MW→ ↑ viscosity and chain entanglement | The transition from beads to uniform fibers; ↑ fiber diameter | [70] |
Viscosity | 100–3000 cP depending on the system | Too low→ beads. optimal→ uniform fibers; too high → jet blockage or ribbon fibers | Fiber diameter positively correlated with viscosity | [71] | |
Surface Tension | 30–50 mN/m | High tension → bead formation; Low tension → stable jet | Bead suppression with optimized tension | [72] | |
Solution Conductivity | 100–2000 μS/cm | ↑ conductivity→ ↑ charge density and elongation | ↓ fiber diameter; possible instability if excessive | [73] | |
Processing Variables | Needle Diameter | 21–25 G (0.3–0.5 mm ID) | ↑ diameter → thicker fibers due to larger initial jet | ↑ fiber diameter | [74] |
Flow Rate | 0.1–1.5 mL/h | Low → unstable cone; High → beads and thicker fibers | Optimal flow yields uniform thin fibers | [75] | |
Applied Voltage | 10–25 kV | ↑ voltage → ↑ stretching force (to a limit) | ↓ fiber diameter up to optimum; excessive → thicker fibers and beads | [76] | |
Tip-to-Collector Distance (TCD) | 10–25 cm | Short TCD → insufficient drying; Long TCD → weak stretching | Optimal distance yields thin, uniform fibers | [75] | |
Environmental Factors | Temperature | 20–25 °C | ↑ temperature → ↓ viscosity & ↑ evaporation | Often ↓ fiber diameter. excessive heating risks defects | [77] |
Humidity | 30–50% RH | ↑ RH → slower evaporation; possible porosity or bead formation | Fiber diameter decreases with moderate RH; excessive RH causes beads | [78] | |
Air Flow | <0.5 m/s (laminar preferred) | Gentle airflow → enhanced elongation; Turbulent → instability | Thin, aligned fibers under controlled airflow | [79] |
Natural Polymer | Characteristics and Challenges | Notable Examples | Refs. |
---|---|---|---|
Sodium Alginate | Edible, biodegradable; blending with CS may cause precipitation, mitigated by pH control or coaxial spinning. | CS (5% w/v in acetic acid) and alginate (2% w/v in water) with PEO (4%). Electrospun mats with CS: alginate: PEO volume ratios of 20:80:100 or 80:20:100 for biomedical uses (e.g., drug-delivery/wound healing). | [108] |
Starch | Poor spinnability alone; CS–starch blends enhance tensile and thermal properties via hydrogen bonding. | Blends of 7 wt% CS and 7 wt% starch (with 1% sorbitol); typical weight ratios: 85:15 or 70:30 (CS: starch); electrospun with PET for bio-based composites. | [109] |
Gelatin | Enhances flexibility and adhesion; reduces viscosity/surface tension, aiding fiber formation. | 30:70 (w/w) CS: gelatin blend yields uniform fibers with good cell compatibility; used in biomedical scaffolds. | [110] |
Zein (Corn Protein) | Hydrophobic, lowers water vapor permeability (WVP); strengthens fibers via protein network formation. | Zein: PEO: CS = 87.5:10:2.5 (w/w); fibers loaded with α-tocopherol for antioxidant release in gastrointestinal patches. | [111] |
Pectin | Edible, pH-responsive swelling; blending with CS often requires a mediator due to charge interactions. | CS: PVA and pectin: PVA blends (50:50 w/w); fibers exhibit antimicrobial activity for edible/active packaging films. | [112] |
Composition | Tensile Strength (TS) (MPa) | Elongation at Break (EB) (%) | Relative Change (vs. Base) | Refs. |
---|---|---|---|---|
CS (electrospun film)—surrogate cast film | 25.4 ± 2.1 | 32.9 ± 1.7 | – | [105] |
CS + CAP + ZnO NPs | 97.6 ± 4.3 | 23.4 ± 1.1 | TS ↑ ~285%, EB ↓ ~29% (vs. pure CS) | [105] |
CS (cast film) | 60.5 ± 3.1 | 13.3 ± 0.2 | (base CS reference) | [198] |
CS + TiO2 NPs | 127 ± 8 | 13 ± 1 | TS ↑ ~110%, EB ≈ same to slightly increased | [199] |
CS (high stiffness/low elongation) | 118.6 ± 5.5 | 6.1 ± 2.5 | TS ↑ ~96%, EB ↓ ~54% (vs. cast CS) | [198] |
CS + TiO2 NPs + EO | 62.3 ± 3.7 | 2.9 ± 0.4 | TS ↑ ~34%, EB ↓ ~78% (vs. cast CS) | [200] |
Material Systems | Insights from Simulations | Simulation Methods | Refs. |
---|---|---|---|
Carboxymethyl CS (CMCS) | Atomic-scale understanding of CMCS aggregation for tuning interactions for desired aggregation structures. | MD: GROMACS package. Force Field: standard GROMACS. | [45] |
CS + ethylene oxide + zwitterion | Molecular-level mechanistic understanding of CS-based demulsification for oil/water systems, a versatile framework for the rational design of CS-based demulsification materials. | MD: GROMACS (2019.6). Force Field: GAFF; TIP3P for water molecules. | [335] |
CS + Gellan | Mechanisms of aggregation and structure in Gellan-CS complexes for food applications | MD: GROMACS (2018). Force Field: CHARMM36 for CS. The newly developed force field [336] for Gellan. | [337] |
2-hydroxypropyl-trimethylammonium chloride CS (HTCC) + amylose starch | Interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA), contributing to bacteriostatic performance, cytotoxicity, and transmittance. | MD: BIOVIA Materials Studio (MS) 2019. Interface modeling | [338] |
CS + biodegradable polymers alginate (ALG) | Efficient absorbent design for dye removal of crystal violet (CRVT) and reactive black 5 (RBC 5) relevant to food safety | MD: MS 2021. Force Field: UFF. Optimization: package. | [339] |
Functionalized N-succinyl CS (NSC) + cinnamaldehyde | Molecular-level non-contact mechanisms of CIN-NSC antimicrobial preservation film. | Model: I-TASSER Online Server for B. cinerea CYP51 protein; AutoDock Vina 1.2.0 software for CYP51-CIN. MD: Amber20 | [340] |
CS + graphene oxide (GO-CS) + β-galactosidase | Stability and activity of β-galactosidase were enhanced upon interaction with CS and GO-CS nanocomposites, correlating positively with the increasing ratio of GO. | Model: RCSB database for PDB structure of β-galactosidase (sequence code 5MGC). PubChem for CS (Pubchem CID:71853) and graphene oxide (Pubchem CID:163320950) MD: GROMACS 2022.3 Force Field: OPLS-AA/L. | [341] |
CS + bentonite | Complex interaction between the linuron molecule and the simulated bentonite-CS surface. | Model: polarized continuum model (PCM) of solution. Optimization: DFT method with the B3LYP functional and the 6–311+g(d,p) basis set. | [342] |
CS + Cellulose nanofibrils (CNF) + Iron oxyhydroxide (FeOOH) | Confirm the stability and effectiveness of Se (IV) absorption at the molecular level. | Model: MS 2010. MD: LAMMPS Force Field: SPC/E parameters for H2O, previous studies [343,344] for HSeO3−1, OPLS force field for CNFs and CS. | [345] |
carboxymethyl CS (CMCS) + CaCl2 + 3-PLA (antibacterial agent) | CaCl2 improves the O2 and H2O barrier properties of composite films at the molecular level. | Model: Amorphous Cell module in MS. Force Field: COMPASS | [346] |
Glassy carbon electrode (GCE) + NiFe2O4 and CS | DFT calculations supported the electrochemical oxidation of ERT-B as an additive in food. MC simulations indicate strong stability and interactions between ERT-B and the sensing catalyst (NiFe2O4-CS). | Simulation: DFT + MC. Model: PUBCHEM for the 3D structure of ERT-B. PUBCHEM for CS. DFT calculations: DMol3 module in MS with the DNP basis set. MC simulations: Absorption Locator module in MS with UNIVERSAL force field. | [347] |
CS + Tilapia surimi gels | Mechanisms and interactions between surimi MPs with CS under MW treatment. | Homology modeling: Swiss model by ChemDraw software (Cambridge Soft Co., Ltd., Cambridge, MA, USA) MD: GROMACS (Version 2019.6 GPU). | [348] |
CS + Carrageenan multilayers | Devise efficient biocompatible macroion film formation. | Model: GROMACS MD: GROMACS 2016.4 package. Force Field: CHARMM36 for CS molecules; TIP3P for water. | [349] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, H.; Lou, L.; Meng, Z. A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights. Nanomaterials 2025, 15, 1274. https://doi.org/10.3390/nano15161274
Yang J, Wang H, Lou L, Meng Z. A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights. Nanomaterials. 2025; 15(16):1274. https://doi.org/10.3390/nano15161274
Chicago/Turabian StyleYang, Ji, Haoyu Wang, Lihua Lou, and Zhaoxu Meng. 2025. "A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights" Nanomaterials 15, no. 16: 1274. https://doi.org/10.3390/nano15161274
APA StyleYang, J., Wang, H., Lou, L., & Meng, Z. (2025). A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights. Nanomaterials, 15(16), 1274. https://doi.org/10.3390/nano15161274