Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies
Abstract
1. Introduction
2. Supramolecular Assembly of Terminal Alkynes
3. Reactions Regulated by Metal Surfaces
4. Reactions Regulated by the Precursor Design
5. Reactions Regulated by Tip Manipulation
6. Reactions Mediated by Extrinsic Components
7. Conclusions and Outlooks
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirsch, A. The era of carbon allotropes. Nat. Mater. 2010, 9, 868–871. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, H.-Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, R.; Qiu, J.; Liu, R.; Xu, W. On-Surface Synthesis of Carbon Nanostructures. Adv. Mater. 2018, 30, 1705630. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chang, D.W.; Baek, J.B.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef]
- Ni, J.; Li, Y. Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage. Adv. Energy Mater. 2016, 6, 1600278. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Cheng, B.; Yu, J. Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage. Adv. Energy Mater. 2019, 9, 1803900. [Google Scholar] [CrossRef]
- Liu, X.; Hersam, M.C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684. [Google Scholar] [CrossRef]
- Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao, W.; Kono, J. Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. [Google Scholar] [CrossRef]
- Madima, N.; Mishra, S.B.; Inamuddin, I.; Mishra, A.K. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environ. Chem. Lett. 2020, 18, 1169–1191. [Google Scholar] [CrossRef]
- Hegde, V.; Bhat, M.P.; Lee, J.-H.; Kurkuri, M.D.; Kim, C.S.; Lee, K.-H. Carbon-based nanomaterials: Multifaceted role in agrochemical recognition, remediation, and release. Nano Today 2024, 57, 102388. [Google Scholar] [CrossRef]
- Bhadane, P.; Chakraborty, S. Cross-material synergies of carbon nanomaterials, MOFs, and COFs: Innovative approaches for sustainable environmental remediation and resource recovery. Coord. Chem. Rev. 2025, 535, 216669. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, H.; Chi, L. On-Surface Synthesis of Graphyne-Based Nanostructures. Adv. Mater. 2018, 31, 1804087. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586. [Google Scholar] [CrossRef] [PubMed]
- Alonso, F.; Yus, M. Heterogeneous Catalytic Homocoupling of Terminal Alkynes. ACS Catal. 2012, 2, 1441–1451. [Google Scholar] [CrossRef]
- Li, C.-J. The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water. Acc. Chem. Res. 2010, 43, 581–590. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; et al. Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599. [Google Scholar] [CrossRef]
- Klappenberger, F.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J.V. On-Surface Synthesis of Carbon-Based Scaffolds and Nanomaterials Using Terminal Alkynes. Acc. Chem. Res. 2015, 48, 2140–2150. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; et al. Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes. J. Am. Chem. Soc. 2020, 142, 9501–9509. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57–61. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy—From birth to adolescence. Rev. Mod. Phys. 1987, 59, 615–625. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, X.; Zhang, H.; Chi, L. Noncontact atomic force microscopy: Bond imaging and beyond. Surf. Sci. Rep. 2020, 75, 100509. [Google Scholar] [CrossRef]
- Bian, K.; Gerber, C.; Heinrich, A.J.; Müller, D.J.; Scheuring, S.; Jiang, Y. Scanning probe microscopy. Nat. Rev. Methods Primers 2021, 1, 36. [Google Scholar] [CrossRef]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Xiang, W.; Xu, W. On-surface synthesis and characterization of linear and cyclic C6. Nat. Synth. 2025, 4, 940–946. [Google Scholar] [CrossRef]
- Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.-Z.; Francisco, J.S.; Zeng, X.C.; et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577, 60–63. [Google Scholar] [CrossRef]
- Ternes, M.; Heinrich, A.J.; Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys. Condens. Matter 2009, 21, 053001. [Google Scholar] [CrossRef]
- Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length. Science 2009, 323, 1193–1197. [Google Scholar] [CrossRef]
- Lyo, I.-W.; Avouris, P. Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM. Science 1991, 253, 173–176. [Google Scholar] [CrossRef]
- Ternes, M.; Lutz, C.P.; Hirjibehedin, C.F.; Giessibl, F.J.; Heinrich, A.J. The Force Needed to Move an Atom on a Surface. Science 2008, 319, 1066–1069. [Google Scholar] [CrossRef]
- Custance, O.; Perez, R.; Morita, S. Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 2009, 4, 803–810. [Google Scholar] [CrossRef]
- Emmrich, M.; Schneiderbauer, M.; Huber, F.; Weymouth, A.J.; Okabayashi, N.; Giessibl, F.J. Force Field Analysis Suggests a Lowering of Diffusion Barriers in Atomic Manipulation Due to Presence of STM Tip. Phys. Rev. Lett. 2015, 114, 146101. [Google Scholar] [CrossRef]
- Yi, Z.; Guo, Y.; Hou, R.; Zhang, Z.; Gao, Y.; Zhang, C.; Xu, W. Revealing the Orientation Selectivity of Tetrapyridyl-Substituted Porphyrins Constrained in Molecular “Klotski Puzzles”. J. Am. Chem. Soc. 2023, 145, 22366–22373. [Google Scholar] [CrossRef]
- Held, P.A.; Fuchs, H.; Studer, A. Covalent-Bond Formation via On-Surface Chemistry. Chem. Eur. J. 2017, 23, 5874–5892. [Google Scholar] [CrossRef] [PubMed]
- Clair, S.; de Oteyza, D.G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. [Google Scholar] [CrossRef]
- Grill, L.; Hecht, S. Covalent on-surface polymerization. Nat. Chem. 2020, 12, 115–130. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Z.W.; Xu, W. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Mater. Futures 2022, 1, 032301. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, J.; Niu, K.; Zhang, Y.; Zhang, Y.; Deng, C.; Huang, P.; Li, D.; Liu, P.; Lu, J.; et al. Real-space investigations of on-surface intermolecular radical transfer reactions assisted by persistent radicals. Sci. Adv. 2025, 11, eadu9436. [Google Scholar] [CrossRef]
- Wang, J.; Niu, K.; Zhu, H.; Xu, C.; Deng, C.; Zhao, W.; Huang, P.; Lin, H.; Li, D.; Rosen, J.; et al. Universal inter-molecular radical transfer reactions on metal surfaces. Nat. Commun. 2024, 15, 3030. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Liu, P.N.; Lin, N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48, 2765–2774. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.-T.; Zhu, J.-F. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates. Wuli Huaxue Xuebao 2017, 33, 1288–1296. [Google Scholar] [CrossRef]
- Fan, Q.; Dai, J.; Wang, T.; Kuttner, J.; Hilt, G.; Gottfried, J.M.; Zhu, J. Confined Synthesis of Organometallic Chains and Macrocycles by Cu–O Surface Templating. ACS Nano 2016, 10, 3747–3754. [Google Scholar] [CrossRef] [PubMed]
- Cirera, B.; Sánchez-Grande, A.; de la Torre, B.; Santos, J.; Edalatmanesh, S.; Rodríguez-Sánchez, E.; Lauwaet, K.; Mallada, B.; Zbořil, R.; Miranda, R.; et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 2020, 15, 437–443. [Google Scholar] [CrossRef]
- Su, J.; Telychko, M.; Song, S.; Lu, J. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem. Int. Ed. 2020, 59, 7658–7668. [Google Scholar] [CrossRef]
- Cui, W.; Zhang, W.; Tang, K.; Chen, Y.; Cao, K.; Shi, L.; Yang, G. Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons. Small Methods 2024, 9, 2401168. [Google Scholar] [CrossRef] [PubMed]
- Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M.V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691. [Google Scholar] [CrossRef]
- Otero, R.; Gallego, J.M.; de Parga, A.L.V.; Martín, N.; Miranda, R. Molecular Self-Assembly at Solid Surfaces. Adv. Mater. 2011, 23, 5148–5176. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, J.; Wu, K. Steering on-surface reactions with self-assembly strategy. Phys. Chem. Chem. Phys. 2017, 19, 31531–31539. [Google Scholar] [CrossRef]
- Goronzy, D.P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S.L.; Wang, C.; Beton, P.H.; Wee, A.T.S.; et al. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–7481. [Google Scholar] [CrossRef]
- Yang, Z.C.; Fromm, L.; Sander, T.; Gebhardt, J.; Schaub, T.A.; Görling, A.; Kivala, M.; Maier, S. On-Surface Assembly of Hydrogen- and Halogen-Bonded Supramolecular Graphyne-Like Networks. Angew. Chem. Int. Ed. 2020, 59, 9549–9555. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.G.; Perdigão, L.M.A.; Beton, P.H.; Champness, N.R. Surface-Based Supramolecular Chemistry Using Hydrogen Bonds. Acc. Chem. Res. 2014, 47, 3417–3427. [Google Scholar] [CrossRef]
- Shi, Z.; Lin, N. Porphyrin-Based Two-Dimensional Coordination Kagome Lattice Self-Assembled on a Au(111) Surface. J. Am. Chem. Soc. 2009, 131, 5376–5377. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, X.; Peng, Z.; Li, J.; Lin, Y.; Wen, X.; Xing, L.; Zhao, W.; Shang, J.; Wang, Y.; et al. Assembling Surface Molecular Sierpiński Triangle Fractals via K+-Invoked Electrostatic Interaction. J. Am. Chem. Soc. 2023, 145, 13531–13536. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, R.; Xu, W. Surface Organic Nanostructures Mediated by Extrinsic Components: From Assembly to Reaction. Small Methods 2025, 2402118. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, R.; Zhang, C.; Xu, W. Selective C–H Activation Facilitated by the Cooperative Effect of Extrinsic O2 and Na on Ag(111). ACS Catal. 2025, 15, 12085–12093. [Google Scholar] [CrossRef]
- Liu, X.; Matej, A.; Kratky, T.; Mendieta-Moreno, J.I.; Günther, S.; Mutombo, P.; Decurtins, S.; Aschauer, U.; Repp, J.; Jelinek, P.; et al. Exploiting Cooperative Catalysis for the On-Surface Synthesis of Linear Heteroaromatic Polymers via Selective C–H Activation. Angew. Chem. Int. Ed. 2021, 61, e202112798. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Gao, Y.; Guo, Y.; Zhang, C.; Xu, W. Directing Organometallic Ring–Chain Equilibrium by Electrostatic Interactions. ACS Nano 2024, 18, 31478–31484. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, C.J.; Hou, R.J.; Gao, Y.H.; Zhang, Z.Y.; Yi, Z.W.; Zhang, C.; Xu, W. Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate. J. Phys. Chem. Lett. 2024, 15, 11862–11868. [Google Scholar] [CrossRef]
- Hou, R.; Guo, Y.; Yi, Z.; Zhang, Z.; Zhang, C.; Xu, W. Construction and Structural Transformation of Metal–Organic Nanostructures Induced by Alkali Metals and Alkali Metal Salts. J. Phys. Chem. Lett. 2023, 14, 3636–3642. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Yi, Z.; Zhang, C.; Xu, W. Separation of Halogen Atoms by Sodium from Dehalogenative Reactions on a Au(111) Surface. ACS Nano 2024, 18, 9082–9091. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Li, J.; Bai, Y.; Lin, Y.; Xiao, L.; Li, C.; Zhao, D.; Wang, Y.; Chen, Q.; Liu, J.; et al. Surface-confined alternating copolymerization with molecular precision by stoichiometric control. Nat. Commun. 2024, 15, 666. [Google Scholar] [CrossRef]
- Li, Q.; Han, C.; Horton, S.R.; Fuentes-Cabrera, M.; Sumpter, B.G.; Lu, W.; Bernholc, J.; Maksymovych, P.; Pan, M. Supramolecular Self-Assembly of π-Conjugated Hydrocarbons via 2D Cooperative CH/π Interaction. ACS Nano 2011, 6, 566–572. [Google Scholar] [CrossRef]
- Liu, J.; Fu, X.; Chen, Q.; Zhang, Y.; Wang, Y.; Zhao, D.; Chen, W.; Xu, G.Q.; Liao, P.; Wu, K. Stabilizing surface Ag adatoms into tunable single atom arrays by terminal alkyne assembly. Chem. Commun. 2016, 52, 12944–12947. [Google Scholar] [CrossRef]
- Chen, Q.; Cramer, J.R.; Liu, J.; Jin, X.; Liao, P.; Shao, X.; Gothelf, K.V.; Wu, K. Steering On-Surface Reactions by a Self-Assembly Approach. Angew. Chem., Int. Ed. 2017, 56, 5026–5030. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, T.; Li, H.; Cheng, F.; Su, C.; Loh, K.P. Hydrogen bond guided synthesis of close-packed one-dimensional graphdiyne on the Ag(111) surface. Chem. Sci. 2019, 10, 10849–10852. [Google Scholar] [CrossRef]
- Li, Q.; Gao, J.; Li, Y.; Fuentes-Cabrera, M.; Liu, M.; Qiu, X.; Lin, H.; Chi, L.; Pan, M. Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces. Nat. Commun. 2018, 9, 3113. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Zhang, C.; Xu, L.; Ding, Y.; Xu, W. Construction of metal–organic nanostructures and their structural transformations on metal surfaces. Phys. Chem. Chem. Phys. 2025, 27, 8635–8655. [Google Scholar] [CrossRef]
- Li, Q.; Yang, B.; Lin, H.; Aghdassi, N.; Miao, K.; Zhang, J.; Zhang, H.; Li, Y.; Duhm, S.; Fan, J.; et al. Surface-Controlled Mono/Diselective ortho C–H Bond Activation. J. Am. Chem. Soc. 2016, 138, 2809–2814. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, T.; Zhang, L.; Zhang, L.; Xiang, B.; Xu, H.; Klappenberger, F.; Barth, J.V.; Klyatskaya, S.; Ruben, M. Surface-Dependent Chemoselectivity in C−C Coupling Reactions. Angew. Chem. Int. Ed. 2019, 58, 8356–8361. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; Xiao, L.; Shang, J.; Zhou, X.; Zhang, Y.; Wang, Y.; Shao, X.; Li, J.; Chen, W.; et al. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. ACS Nano 2015, 9, 6305–6314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jaculbia, R.B.; Tanaka, Y.; Kazuma, E.; Imada, H.; Hayazawa, N.; Muranaka, A.; Uchiyama, M.; Kim, Y. Chemical Identification and Bond Control of π-Skeletons in a Coupling Reaction. J. Am. Chem. Soc. 2021, 143, 9461–9467. [Google Scholar] [CrossRef]
- Lyu, Y.; Gao, F.; Cheng, P.; Chen, L.; Klyatskaya, S.; Ruben, M.; Rosen, J.; Barth, J.V.; Björk, J.; Wu, K.; et al. Unraveling Enyne Bonding via Dehydrogenation–Hydrogenation Processes in On-Surface Synthesis with Terminal Alkynes. Adv. Mater. Interfaces 2024, 11, 2400222. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Q.-W.; Wu, K. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies. Chin. Chem. Lett. 2017, 28, 1631–1639. [Google Scholar] [CrossRef]
- Hu, T.; Deng, H.; Chen, Q.; Liu, J.; Wu, K. Low-Dimensional Metal–Alkynyls: On-Surface Synthesis and Properties. J. Phys. Chem. Lett. 2024, 15, 12584–12593. [Google Scholar] [CrossRef]
- Lawrence, J.; Mohammed, M.S.G.; Rey, D.; Aguilar-Galindo, F.; Berdonces-Layunta, A.; Peña, D.; de Oteyza, D.G. Reassessing Alkyne Coupling Reactions While Studying the Electronic Properties of Diverse Pyrene Linkages at Surfaces. ACS Nano 2021, 15, 4937–4946. [Google Scholar] [CrossRef]
- Cirera, B.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J.V.; Klappenberger, F. Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating. Nano Lett. 2014, 14, 1891–1897. [Google Scholar] [CrossRef]
- de Oteyza, D.G.; Gorman, P.; Chen, Y.-C.; Wickenburg, S.; Riss, A.; Mowbray, D.J.; Etkin, G.; Pedramrazi, Z.; Tsai, H.-Z.; Rubio, A.; et al. Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions. Science 2013, 340, 1434–1437. [Google Scholar] [CrossRef]
- Liu, J.; Ruffieux, P.; Feng, X.; Müllen, K.; Fasel, R. Cyclotrimerization of arylalkynes on Au(111). Chem. Commun. 2014, 50, 11200–11203. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Du, S.; Zhang, L.; Li, G.; Zhang, Y.; Tang, B.Z.; Gao, H.-J. Direct Visualization of Surface-Assisted Two-Dimensional Diyne Polycyclotrimerization. J. Am. Chem. Soc. 2014, 136, 5567–5570. [Google Scholar] [CrossRef] [PubMed]
- Riss, A.; Wickenburg, S.; Gorman, P.; Tan, L.Z.; Tsai, H.-Z.; de Oteyza, D.G.; Chen, Y.-C.; Bradley, A.J.; Ugeda, M.M.; Etkin, G.; et al. Local Electronic and Chemical Structure of Oligo-acetylene Derivatives Formed Through Radical Cyclizations at a Surface. Nano Lett. 2014, 14, 2251–2255. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, L.; Björk, J.; Chen, Z.; Ruben, M.; Barth, J.V.; Klappenberger, F. Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions. Chem. Eur. J. 2017, 23, 15588–15593. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, J. Confined on-surface organic synthesis: Strategies and mechanisms. Surf. Sci. Rep. 2019, 74, 97–140. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Ou, Z.; Liu, H.; Zhou, J.; Hu, P.; Wang, Y.; Zhong, D.; Ji, H. On-Surface Synthesis of 2D Porphyrin-Based Covalent Organic Frameworks Using Terminal Alkynes. Chem. Mater. 2021, 33, 8677–8684. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Zhang, L.; Chen, Z.; Barth, J.V.; Li, J.; Lin, T. On-Surface Synthesis of Five-Membered Copper Metallacycles Using Terminal Alkynes. Langmuir 2024, 40, 15214–15219. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lv, H.; Fan, Q.; Feng, L.; Wu, X.; Zhu, J. Highly Selective Synthesis of cis-Enediynes on a Ag(111) Surface. Angew. Chem. Int. Ed. 2017, 56, 4762–4766. [Google Scholar] [CrossRef]
- Zhang, H.; Song, C.; Lyu, Y.; Cheng, P.; Chen, L.; Zhang, C.; Meng, S.; Wu, K.; Zhang, Y.-Q. Radical-promoted room-temperature terminal alkyne activation on Au(111). Surf. Sci. 2023, 727, 122180. [Google Scholar] [CrossRef]
- Wang, T.; Lv, H.; Huang, J.; Shan, H.; Feng, L.; Mao, Y.; Wang, J.; Zhang, W.; Han, D.; Xu, Q.; et al. Reaction selectivity of homochiral versus heterochiral intermolecular reactions of prochiral terminal alkynes on surfaces. Nat. Commun. 2019, 10, 4122. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Yang, B.; Riss, A.; Rosen, J.; Björk, J.; Barth, J.V. On-surface synthesis of enetriynes. Nat. Commun. 2023, 14, 1255. [Google Scholar] [CrossRef] [PubMed]
- Díaz Arado, O.; Mönig, H.; Wagner, H.; Franke, J.-H.; Langewisch, G.; Held, P.A.; Studer, A.; Fuchs, H. On-Surface Azide–Alkyne Cycloaddition on Au(111). ACS Nano 2013, 7, 8509–8515. [Google Scholar] [CrossRef]
- Li, X.; Niu, K.; Duan, S.; Tang, Y.; Hao, Z.; Xu, Z.; Ge, H.; Rosen, J.; Björk, J.; Zhang, H.; et al. Pyridinic Nitrogen Modification for Selective Acetylenic Homocoupling on Au(111). J. Am. Chem. Soc. 2023, 145, 4545–4552. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wu, Z.; Lin, Y.; Hu, T.; Deng, H.; Zhu, Y.; Wang, Y.; Zhang, Y.; Chen, Q.; Liu, J.; et al. Using Achiral Monomers to Synthesize Organometallic Chiral Copolymers on an Achiral Surface. ACS Nano 2025, 19, 11111–11119. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; Cai, K.; Li, J.; Li, Y.; Yang, X.; Zhang, Y.; Wang, Y.; Tang, H.; Zhao, D.; et al. Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nat. Commun. 2019, 10, 2545. [Google Scholar] [CrossRef]
- Pavliček, N.; Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017, 1, 0005. [Google Scholar] [CrossRef]
- Zhong, Q.; Ihle, A.; Ahles, S.; Wegner, H.A.; Schirmeisen, A.; Ebeling, D. Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation. Nat. Chem. 2021, 13, 1133–1139. [Google Scholar] [CrossRef]
- Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H. Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Phys. Rev. Lett. 2000, 85, 2777–2780. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, W.; Gao, W.; Kang, F.; Zhao, M.; Xu, W. On-surface synthesis of aromatic cyclo[10]carbon and cyclo[14]carbon. Nature 2023, 623, 972–976. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, W.; Kang, F.; Gao, W.; Wang, T.; Gao, G.; Xu, W. On-surface synthesis and characterization of anti-aromatic cyclo[12]carbon and cyclo[20]carbon. Nat. Commun. 2024, 15, 7649. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Lu, Y.; Liu, X.; Wang, L. Conformation-based signal transfer and processing at the single-molecule level. Nat. Nanotechnol. 2017, 12, 1071–1076. [Google Scholar] [CrossRef]
- Lee, H.J.; Ho, W. Single-Bond Formation and Characterization with a Scanning Tunneling Microscope. Science 1999, 286, 1719–1722. [Google Scholar] [CrossRef]
- Klappenberger, F.; Hellwig, R.; Du, P.; Paintner, T.; Uphoff, M.; Zhang, L.; Lin, T.; Moghanaki, B.A.; Paszkiewicz, M.; Vobornik, I.; et al. Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential. Small 2018, 14, 1704321. [Google Scholar] [CrossRef]
- Albrecht, F.; Rey, D.; Fatayer, S.; Schulz, F.; Pérez, D.; Peña, D.; Gross, L. Intramolecular Coupling of Terminal Alkynes by Atom Manipulation. Angew. Chem. Int. Ed. 2020, 59, 22989–22993. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, Z.; Fei, X.; Zhao, W.; Zhang, R.; Lin, T.; Zhao, D.; Ju, H.; Xu, H.; Fan, J.; et al. Selective on-surface covalent coupling based on metal-organic coordination template. Nat. Commun. 2019, 10, 70. [Google Scholar] [CrossRef]
- Fan, Q.; Luy, J.-N.; Liebold, M.; Greulich, K.; Zugermeier, M.; Sundermeyer, J.; Tonner, R.; Gottfried, J.M. Template-controlled on-surface synthesis of a lanthanide supernaphthalocyanine and its open-chain polycyanine counterpart. Nat. Commun. 2019, 10, 5049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kazuma, E.; Kim, Y. Steering the Reaction Pathways of Terminal Alkynes by Introducing Oxygen Species: From C–C Coupling to C–H Activation. J. Am. Chem. Soc. 2022, 144, 10282–10290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q.; Paintner, T.; Hellwig, R.; Haag, F.; Allegretti, F.; Feulner, P.; Klyatskaya, S.; Ruben, M.; Seitsonen, A.P.; Barth, J.V.; et al. Synthesizing Highly Regular Single-Layer Alkynyl–Silver Networks at the Micrometer Scale via Gas-Mediated Surface Reaction. J. Am. Chem. Soc. 2019, 141, 5087–5091. [Google Scholar] [CrossRef]
- Zhao, W.; Haag, F.; Piquero-Zulaica, I.; Abd El-Fattah, Z.M.; Pendem, P.; Vezzoni Vicente, P.; Zhang, Y.-Q.; Cao, N.; Seitsonen, A.P.; Allegretti, F.; et al. Transmetalation in Surface-Confined Single-Layer Organometallic Networks with Alkynyl–Metal–Alkynyl Linkages. ACS Nano 2024, 18, 20157–20166. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; He, Q.; Zhang, Y.; Fu, X.; Wang, Y.; Zhao, D.; Chen, W.; Xu, G.Q.; Wu, K. Bromine adatom promoted C–H bond activation in terminal alkynes at room temperature on Ag(111). Phys. Chem. Chem. Phys. 2018, 20, 11081–11088. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, L.; Li, J.; Zhang, C. Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies. Nanomaterials 2025, 15, 1271. https://doi.org/10.3390/nano15161271
Wu Y, Xu L, Li J, Zhang C. Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies. Nanomaterials. 2025; 15(16):1271. https://doi.org/10.3390/nano15161271
Chicago/Turabian StyleWu, Yun, Lei Xu, Junxi Li, and Chi Zhang. 2025. "Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies" Nanomaterials 15, no. 16: 1271. https://doi.org/10.3390/nano15161271
APA StyleWu, Y., Xu, L., Li, J., & Zhang, C. (2025). Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies. Nanomaterials, 15(16), 1271. https://doi.org/10.3390/nano15161271