Phase Evolution and Mechanical Performance of Zirconia Ceramics Synthesized Under High Temperature and High Pressure
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Surface Morphology
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Minh, N.Q. Ceramic fuel cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- Suk, M.O.; Park, J.H. Corrosion behaviors of zirconia refractory by CaO–SiO2–MgO–CaF2 slag. J. Am. Ceram. Soc. 2009, 92, 717–723. [Google Scholar] [CrossRef]
- Basu, B.; Vleugels, J.; Van Der Biest, O. Transformation behaviour of tetragonal zirconia: Role of dopant content and distribution. Mater. Sci. Eng. A 2004, 366, 338–347. [Google Scholar] [CrossRef]
- Bocanegra-Bernal, M.; De La Torre, S.D. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J. Mater. Sci. 2002, 37, 4947–4971. [Google Scholar] [CrossRef]
- Kisi, E.H.; Howard, C. Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater. 1998, 153, 1–36. [Google Scholar] [CrossRef]
- Basu, B. Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 2005, 50, 239–256. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Lee, K. From superhard to hard: A review of transition metal dioxides TiO2, ZrO2, and HfO2 hardness. J. Superhard Mater. 2014, 36, 231–245. [Google Scholar] [CrossRef]
- Borik, M.; Bublik, V.; Kulebyakin, A.; Lomonova, E.; Milovich, F.; Myzina, V.; Osiko, V.; Tabachkova, N.Y. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. J. Alloys Compd. 2014, 586, S231–S235. [Google Scholar] [CrossRef]
- Liao, S.C.; Colaizzi, J.; Chen, Y.; Kear, B.H.; Mayo, W.E. Refinement of Nanoscale Grain Structure in Bulk Titania via a Transformation-Assisted Consolidation (TAC) Method. J. Am. Ceram. Soc. 2000, 83, 2163–2169. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Tel, H.; Altaş, Y.; Eral, M.; Sert, Ş.; Çetinkaya, B.; İnan, S. Preparation of ZrO2 and ZrO2–TiO2 microspheres by the sol–gel method and an experimental design approach to their strontium adsorption behaviours. Chem. Eng. J. 2010, 161, 151–160. [Google Scholar] [CrossRef]
- Wang, J.; Chu, D.; Ma, H.; Fang, S.; Chen, Q.; Liu, B.; Ji, G.; Zhang, Z.; Jia, X. Effect of sintering temperature on phase transformation behavior and hardness of high-pressure high-temperature sintered 10 mol% Mg-PSZ. Ceram. Int. 2021, 47, 15180–15185. [Google Scholar] [CrossRef]
- Xia, Y.; Mou, J.; Deng, G.; Wan, S.; Tieu, K.; Zhu, H.; Xue, Q. Sintered ZrO2–TiO2 ceramic composite and its mechanical appraisal. Ceram. Int. 2020, 46, 775–785. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, C.; Liu, Q.; Li, J. Research progress and prospects of colored zirconia ceramics: A review. J. Adv. Ceram. 2024, 13, 1505–1522. [Google Scholar] [CrossRef]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, A.; Yilmaz, B.; Weber, A.; Babaier, R.; Bourauel, C.; Fouda, A.M. Effect of artificial aging on fracture toughness and hardness of 3D-printed and milled 3Y-TZP zirconia. J. Prosthodont. 2024. online ahead of print. [Google Scholar]
- Tovar-Vargas, D.; Roitero, E.; Anglada, M.; Jiménez-Piqué, E.; Reveron, H. Mechanical properties of ceria-calcia stabilized zirconia ceramics with alumina additions. J. Eur. Ceram. Soc. 2021, 41, 5602–5612. [Google Scholar] [CrossRef]
- Kambale, K.; Mahajan, A.; Butee, S. Effect of grain size on the properties of ceramics. Met. Powder Rep. 2019, 74, 130–136. [Google Scholar] [CrossRef]
- Lu, K.; Lei, Z.; Deng, S.; Li, J.; Feng, T.; Luo, Z.; Ma, X. Synergistic effects of grain sizes on the corrosion behavior and mechanical properties in a metastable high-entropy alloy. Corros. Sci. 2023, 225, 111588. [Google Scholar] [CrossRef]
- Raj, R. Analysis of the sintering pressure. J. Am. Ceram. Soc. 1987, 70, C-210–C-211. [Google Scholar] [CrossRef]
- Wilkinson, D.S.; Ashby, M. Pressure sintering by power law creep. Acta Metall. 1975, 23, 1277–1285. [Google Scholar] [CrossRef]
- Gao, L.; Li, W.; Wang, H.; Zhou, J.; Chao, Z.; Zai, Q. Fabrication of nano Y–TZP materials by superhigh pressure compaction. J. Eur. Ceram. Soc. 2001, 21, 135–138. [Google Scholar] [CrossRef]
- Munoz-Saldana, J.; Balmori-Ramirez, H.; Jaramillo-Vigueras, D.; Iga, T.; Schneider, G. Mechanical properties and low-temperature aging of tetragonal zirconia polycrystals processed by hot isostatic pressing. J. Mater. Res. 2003, 18, 2415–2426. [Google Scholar] [CrossRef]
- Vahldiek, F.; Robinson, L.; Lynch, C. Tetragonal zirconium oxide prepared under high pressure. Science 1963, 142, 1059–1060. [Google Scholar] [CrossRef]
- Kulcinski, G. High-Pressure Induced Phase Transition in ZrO2. J. Am. Ceram. Soc. 1968, 51, 582–583. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, F.; Liang, A. Ta2O5 in-situ composite Ta-based nanocrystalline coating with wonderful wear resistance and related wear mechanisms. Mater. Lett. 2021, 298, 130000. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J. Am. Ceram. Soc. 1984, 67, C-119–C-121. [Google Scholar] [CrossRef]
- Brito-Chaparro, J.; Reyes-Rojas, A.; Bocanegra-Bernal, M.; Aguilar-Elguezabal, A.; Echeberria, J. Elucidating of the microstructure of ZrO2 ceramics with additions of 1200° C heat treated ultrafine MgO powders: Aging at 1420 °C. Mater. Chem. Phys. 2007, 106, 45–53. [Google Scholar] [CrossRef]
- Feinberg, A.; Perry, C. Structural disorder and phase transitions in ZrO2-Y2O3 system. J. Phys. Chem. Solids 1981, 42, 513–518. [Google Scholar] [CrossRef]
- Michel, D.; Collongues, R. Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures. J. Raman Spectrosc. 1976, 5, 163–180. [Google Scholar] [CrossRef]
- Calderon-Moreno, J.M.; Yoshimura, M. Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ion. 2002, 154, 125–133. [Google Scholar] [CrossRef]
- Sekulić, A.; Furić, K.; Stubičar, M. Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam. J. Mol. Struct. 1997, 410, 275–279. [Google Scholar] [CrossRef]
- Dunstan, D.; Bushby, A. Grain size dependence of the strength of metals: The Hall–Petch effect does not scale as the inverse square root of grain size. Int. J. Plast. 2014, 53, 56–65. [Google Scholar] [CrossRef]
- Chee, H.A.; Singh, R.; Lee, K.S. Effects of pressureless two-step sintering on the densification and properties of tetragonal zirconia. J. Ceram. Process. Res. 2021, 22, 289–295. [Google Scholar]
Pressure (GPa) | Temperature (°C) | Time (min) | Phase | Phase Content |
---|---|---|---|---|
5 | 400 | 10 | m | m: 100% |
600 | m | m: 100% | ||
800 | m + t | m: 68% t: 32% | ||
1000 | m + t | m: 61% t: 39% | ||
1200 | m + t | m: 38% t: 62% | ||
1500 | m + t | m: 38% t: 62% | ||
1700 | m + t + c | m: 52% t + c: 47% | ||
2000 | m + t + c | m: 30% t + c: 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, J.; Guo, W.; Li, Y.; Pan, Y.; Cui, T. Phase Evolution and Mechanical Performance of Zirconia Ceramics Synthesized Under High Temperature and High Pressure. Nanomaterials 2025, 15, 1235. https://doi.org/10.3390/nano15161235
You J, Guo W, Li Y, Pan Y, Cui T. Phase Evolution and Mechanical Performance of Zirconia Ceramics Synthesized Under High Temperature and High Pressure. Nanomaterials. 2025; 15(16):1235. https://doi.org/10.3390/nano15161235
Chicago/Turabian StyleYou, Jin, Wenjie Guo, Yangyang Li, Yilong Pan, and Tian Cui. 2025. "Phase Evolution and Mechanical Performance of Zirconia Ceramics Synthesized Under High Temperature and High Pressure" Nanomaterials 15, no. 16: 1235. https://doi.org/10.3390/nano15161235
APA StyleYou, J., Guo, W., Li, Y., Pan, Y., & Cui, T. (2025). Phase Evolution and Mechanical Performance of Zirconia Ceramics Synthesized Under High Temperature and High Pressure. Nanomaterials, 15(16), 1235. https://doi.org/10.3390/nano15161235