Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of MWCNTs on Aluminum Foil
2.2. Synthesis of Fe2O3/MWCNT/Al Composite Material
- (a)
- Synthesis of MWCNTs on the surface of aluminum foil, electrochemical oxidation of MWCNTs;
- (b)
- Synthesis of MWCNTs on the surface of aluminum foil, electrochemical oxidation of MWCNTs, formation of an iron hydroxide layer on the surface of MWCNTs at a voltage sweep rate of 2 mV/s, calcinations at a temperature of 200 °C;
- (c)
- Synthesis of MWCNTs on the surface of aluminum foil, electrochemical oxidation of MWCNTs, formation of an iron hydroxide layer on the surface of MWCNTs at a voltage sweep rate of 2 mV/s, calcinations at a temperature of 300 °C;
- (d)
- Synthesis of MWCNTs on the surface of aluminum foil, electrochemical oxidation of MWCNTs, formation of an iron hydroxide layer on the surface of MWCNTs at a voltage sweep rate of 2 mV/s, calcinations at a temperature of 400 °C.
2.3. Structural Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Comparison of Particle Size and Morphology Based on the SEM Images and Discussion of the Influence of Temperature
3.2. Study of the Electrochemical Properties of Fe2O3/MWCNT/Al Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dissanayake, K.; Kularatna-Abeywardana, D. A review of supercapacitors: Materials, technology, challenges, and renewable energy applications. J. Energy Storage 2024, 96, 112563. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ionel, D.M. Renewable energy devices and systems–state-of-the-art technology, research and development, challenges and future trends. Electr. Power Compon. Syst. 2015, 43, 1319–1328. [Google Scholar] [CrossRef]
- Zeng, T.; Meng, L.; Cheng, L.; Wang, R.; Ran, Z.; Liu, D.; Fu, J.; He, J.; Zhou, Q.; Li, Q.; et al. Scalable Hybrid Films of Polyimidesdle.; Ch Quantum Dots for Hightume.; Cheng Capacitive Energy Storage Utilizing Quantum Confinement Effect. Adv. Funct. Mater. 2024, 35, 2419278. [Google Scholar] [CrossRef]
- Zhan, Y.; Ren, X.; Zhao, S.; Guo, Z. Enhancing prediction of electron affinity and ionization energy in liquid organic electrolytes for lithium-ion batteries using machine learning. J. Power Sources 2025, 629, 235992. [Google Scholar] [CrossRef]
- Chen, X.; Wei, S.; Wang, J.; Tong, F.; Söhnel, T.; Waterhouse, G.I.; Zhang, W.; Kennedy, J.; Taylor, M.P. Lithium insertion/extraction mechanism in Mg2Sn anode for lithium-ion batteries. Intermetallics 2024, 169, 108306. [Google Scholar] [CrossRef]
- Cao, M.; Chen, W.; Ma, Y.; Huang, H.; Luo, S.; Zhang, C. Cross-linked K2Ti4O9 nanoribbon arrays with superior rate capability and cyclability for lithium-ion batteries. Mater. Lett. 2020, 279, 128495. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, M.; Chen, X. Supercapacitors for renewable energy applications: A review. Micro Nano Eng. 2023, 21, 100229. [Google Scholar] [CrossRef]
- Ariyarathna, T.; Kularatna, N.; Gunawardane, K.; Jayananda, D.; Steyn-Ross, D.A. Development of supercapacitor technology and its potential impact on new power converter techniques for renewable energy. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 267–276. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- Attia, S.Y.; Mohamed, S.G.; Barakat, Y.F.; Hassan, H.H.; Zoubi, W.A. Supercapacitor electrode materials: Addressing challenges in mechanism and charge storage. Rev. Inorg. Chem. 2022, 42, 53–88. [Google Scholar] [CrossRef]
- Gao, L.; Cao, M.; Zhang, C.; Li, J.; Zhu, X.; Guo, X.; Toktarbay, Z. Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors. Adv. Compos. Hybrid Mater. 2024, 7, 144. [Google Scholar] [CrossRef]
- Yadav, M.S. Metal oxides nanostructure-based electrode materials for supercapacitor application. J. Nanoparticle Res. 2020, 22, 367. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Seo, K.M.; Kim, S.H.; Ansari, S.A. Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: A review. Nanomaterials 2022, 12, 1873. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, M.; Liu, J.; Li, X.; Liu, J. Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode. Chin. Chem. Lett. 2018, 30, 750–756. [Google Scholar] [CrossRef]
- Phakkhawan, A.; Suksangrat, P.; Srepusharawoot, P.; Ruangchai, S.; Klangtakai, P.; Pimanpang, S.; Amornkitbamrung, V. Reagent-and solvent-mediated Fe2O3 morphologies and electrochemical mechanism of Fe2O3 supercapacitors. J. Alloys Compd. 2022, 919, 165702. [Google Scholar] [CrossRef]
- Shivakumara, S.; Penki, T.R.; Munichandraiah, N. High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 2014, 131, 100–103. [Google Scholar] [CrossRef]
- Azimov, F.; Kim, J.; Choi, S.M.; Jung, H.M. Synergistic Effects of Fe2O3 Nanotube/Polyaniline Composites for an Electrochemical Supercapacitor with Enhanced Capacitance. Nanomaterials 2021, 11, 1557. [Google Scholar] [CrossRef]
- Nithya, V.D.; Arul, N.S. Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 10767–10778. [Google Scholar] [CrossRef]
- Barik, R.; Jena, B.K.; Mohapatra, M. Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Adv. 2017, 7, 49083–49090. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, D.; Ran, G.; Song, Q.; Masson, J.F. Controllable design of polycrystalline synergies: Hybrid FeOx nanoparticles applicable to electrochemical sensing antineoplastic drug in mammalian cells. Sens. Actuators B Chem. 2018, 275, 1–9. [Google Scholar] [CrossRef]
- Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 2012, 259, 39–43. [Google Scholar] [CrossRef]
- Owusu, K.A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K.M.; Lin, C.; Shi, C.; Wei, Q.; et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264. [Google Scholar] [CrossRef] [PubMed]
- Lorkit, P.; Panapoy, M.; Ksapabutr, B. Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process. Energy Procedia 2014, 56, 466–473. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Ko, S.; Kang, S.W. Chemically synthesized iron-oxide-based pure negative electrode for solid-state asymmetric supercapacitor devices. Materials 2022, 15, 6133. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, M.; Meng, Y.; Fang, P.; Lu, X.; Tong, Y. Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 2016, 6, 1601053. [Google Scholar] [CrossRef]
- Xu, B.; Zheng, M.; Tang, H.; Chen, Z.; Chi, Y.; Wang, L.; Zhang, L.; Chen, Y.; Pang, H. Iron oxide-based nanomaterials for supercapacitors. Nanotechnology 2019, 30, 204002. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, B.; Han, D.; Gong, Z.; Li, X. Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. Nanomaterial 2022, 12, 3819. [Google Scholar] [CrossRef]
- Jiang, S.H.; Ding, J.; Wang, R.H.; Chen, F.Y.; Sun, J.; Deng, Y.X.; Li, X.L. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021, 40, 3520–3530. [Google Scholar] [CrossRef]
- Xia, Q.; Xia, T.; Wu, X. PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Met. 2022, 41, 1195–1201. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 2022, 48, 18374–18383. [Google Scholar] [CrossRef]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One step strategy for reduced graphene oxide/cobalt-iron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Hsiao, C.; Lee, C.; Tai, N. Reduced graphene oxide/oyster shell powers/iron oxide composite electrode for high performance supercapacitors. Electrochim. Acta 2021, 391, 138868. [Google Scholar] [CrossRef]
- Tundwal, A.; Kumar, H.; Binoj, B.J.; Sharma, R.; Kumar, G.; Kumari, R.; Dhayal, A.; Yadav, A.; Singh, D.; Kumar, P. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: A review. RSC Adv. 2024, 14, 9406–9439. [Google Scholar] [CrossRef]
- Baby, A.; Vigneswaran, J.; Jose, S.P.; Davis, D.; PB, S. Hybrid architecture of Multiwalled carbon nanotubes/nickel sulphide/polypyrrole electrodes for supercapacitor. Mater. Today Sustain. 2024, 26, 100727. [Google Scholar] [CrossRef]
- Gerard, O.; Ramesh, S.; Ramesh, K.; Numan, A.; Khalid, M.; Tiong, S.K. Fast and green synthesis of battery-type nickel-cobalt phosphate (NxCyP) binder-free electrode for supercapattery. Chem. Eng. J. 2024, 497, 154842. [Google Scholar] [CrossRef]
- Kumbhar, M.B.; Patil, V.V.; Chandak, V.S.; Gunjakar, J.L.; Kulal, P.M. Enhancing energy storage with binder-free nickel oxide cathodes in flexible hybrid asymmetric solid-state supercapacitors. J. Alloys Compd. 2025, 1010, 177311. [Google Scholar] [CrossRef]
- Avasthi, P.; Kumar, A.; Balakrishnan, V. Aligned CNT forests on stainless steel mesh for flexible supercapacitor electrode with high capacitance and power density. ACS Appl. Nano Mater. 2019, 2, 1484–1495. [Google Scholar] [CrossRef]
- Hussain, S.; Amade, R.; Moreno, H.; Bertran, E. RF-PECVD growth and nitrogen plasma functionalization of CNTs on copper foil for electrochemical applications. Diam. Relat. Mater 2014, 49, 55–61. [Google Scholar] [CrossRef]
- Vicentini, R.; Costa, L.H.; Nunes, W.; Vilas Boas, O.; Soares, D.M.; Alves, T.A.; Real, C.; Bueno, C.; Peterlevitz, A.C.; Zanin, H. Direct growth of mesoporous Carbon on aluminum foil for supercapacitors devices. J. Mater. Sci. Mater. Electron. 2018, 29, 10573–10582. [Google Scholar] [CrossRef]
- Ghai, V.; Chatterjee, K.; Agnihotri, P.K. Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications. Carbon Lett. 2021, 31, 473–481. [Google Scholar] [CrossRef]
- Das, H.T.; Dutta, S.; Balaji, T.E.; Das, N.; Das, P.; Dheer, N.; Kanojia, R.; Ahuja, P.; Ujjain, S.K. Recent trends in carbon nanotube electrodes for flexible supercapacitors: A review of smart energy storage device assembly and performance. Chemosensors 2022, 10, 223. [Google Scholar] [CrossRef]
- Kanwade, A.; Shirage, P.M. A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes. J. Energy Storage 2022, 55, 105692. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, A.; Zhang, X.; Mu, J.; Che, H.; Wang, Y.; Wang, T.T.; Zhang, Z.; Kou, Z. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem. Eng. J. 2021, 412, 128611. [Google Scholar] [CrossRef]
- Greenwood, D.; Lim, K.; Patsios, C.; Lyons, P.; Lim, Y.; Taylor, P. Frequency response services designed for energy storage. Appl. Energy 2017, 203, 115–127. [Google Scholar] [CrossRef]
- Tian, Y.; Cai, Y.; Chen, Y.; Jia, M.; Hu, H.; Xie, W.; Li, D.; Song, H.; Guo, S.; Zhang, X. Accessing the O Vacancy with Anionic Redox Chemistry Toward Superior Electrochemical Performance in O3 type Na-Ion Oxide Cathode. Adv. Funct. Mater. 2024, 34, 2316342. [Google Scholar] [CrossRef]
- Li, X.; Xiong, S.; Li, G.; Xiao, S.; Zhang, C.; Ma, Y. Effect of microstructure on electrochemical performance of electrode materials for microsupercapacitor. Mater. Lett. 2023, 346, 134481. [Google Scholar] [CrossRef]
- Minakshi, M.; Aughterson, R.; Sharma, P.; Sunda, A.P.; Ariga, K.; Shrestha, L.K. Micelle-Assisted Electrodeposition of γ-MnO2 on Lead Anodes: Structural and Electrochemical Insights. ChemNanoMat, 2025; in press. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Xiao, J.; Tian, X.; Yuan, S. Enhancing electrochemical performance of ultrasmall Fe2O3-embedded carbon nanotubes via combusting-induced high-valence dopants. J. Mater. Sci. Technol. 2023, 134, 142–150. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, W.; Wang, R.; Sun, J.; Gao, L. Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 12530–12538. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Yang, Z.; Chen, D. Chemical vapor deposition-assisted fabrication of a graphene-wrapped MnO/carbon nanofibers membrane as a high-rate and long-life anode for lithium ion batteries. RSC Adv. 2017, 7, 50973–50980. [Google Scholar] [CrossRef]
- Redkin, A.N.; Mitina, A.A.; Yakimov, E.E. Simple technique of multiwalled carbon nanotubes growth on aluminum foil for supercapacitors. Mater. Sci. Eng. B 2021, 272, 115342. [Google Scholar] [CrossRef]
- Redkin, A.N.; Mitina, A.A.; Yakimov, E.E.; Kabachkov, E.N. Electrochemical Improvement of the MWCNT/Al Electrodes for Supercapacitors. Materials 2021, 14, 7612. [Google Scholar] [CrossRef]
- Meng, X.; Huang, J.; Zhu, G.; Xu, Y.; Zhu, S.; Li, Q.; Chen, M.; Lin, M.C. Fe2O3 nanoparticles anchored on thermally oxidized MWCNTs as anode material for lithium-ion battery. Nanotechnology 2022, 34, 015602. [Google Scholar] [CrossRef]
- Rokade, A.; Jadhav, Y.; Jathar, S.; Rahane, S.; Barma, S.; Rahane, G.; Thawarkar, S.; Vairale, P.; Punde, A.; Shah, S.; et al. Realization of electrochemically grown a-Fe2O3 thin films for photoelectrochemical water splitting application. Eng. Sci. 2021, 17, 242–255. [Google Scholar] [CrossRef]
- Roy, D.; Kanojia, S.; Mukhopadhyay, K.; Eswara Prasad, N. Analysis of carbon-based nanomaterials using Raman spectroscopy: Principles and case studies. Bull. Mater. Sci. 2021, 44, 31. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Wang, C.; Zhang, Y.; Xu, L.; Zhu, K.; Xie, S. Raman Characterization of Aligned Carbon Nanotubes Produced by Thermal Decomposition of Hydrocarbon Vapor. Appl. Phys. Lett 1997, 70, 2684. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Lohaus, C.; Steinert, C.; Brötz, J.; Klein, A.; Jaegermann, W. Systematic investigation of the electronic structure of hematite thin films. Adv. Mater. Interfaces 2017, 4, 1700542. [Google Scholar] [CrossRef]
- Marshall, C.P.; Stockdale, G.; Carr, C.A. Raman Spectroscopy of Geological Varieties of Hematite of Varying Crystallinity and Morphology. J. Raman Spectrosc. 2025, 56, 590–597. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Orisekeh, K.; Singh, B.; Olanrewaju, Y.; Kigozi, M.; Ihekweme, G.; Umar, S.; Anye, V.; Bello, A.; Parida, S.; Soboyejo, W.O. Processing of α-Fe2O3 nanoparticles on activated carbon cloth as binder-free electrode material for supercapacitor energy storage. J. Energy Storage 2021, 33, 102042. [Google Scholar] [CrossRef]
- Li, M.; He, H. Study on electrochemical performance of multi-wall carbon nanotubes coated by iron oxide nanoparticles as advanced electrode materials for supercapacitors. Vacuum 2017, 143, 371–379. [Google Scholar] [CrossRef]
- Stoller, M.D.; Ruoff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301. [Google Scholar] [CrossRef]
- Abdi, A.; Trari, M. Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite α-Fe2O3 elaborated by sol–gel. Electrochim. Acta 2013, 111, 869–875. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Samuel, E.; Alotaibi, B.S.; El-Hamshary, H.; Yoon, S.S. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications. J. Mater. Sci. Technol. 2021, 82, 47–56. [Google Scholar] [CrossRef]
- Anjana, R.; Hanamantrao, D.P.; Banu, G.N.; Raja, V.; Isaac, R.R.; John, J.S.; Vediappan, K.; Jose, S.P.; Neppolian, B.; Sajan, D. Hydrothermal synthesis of graphitic carbon nitride/Ce doped Fe2O3 heterostructures for supercapattery device and hydrogen evolution reaction. J. Energy Storage 2025, 116, 116021. [Google Scholar] [CrossRef]
- Moya, A.A. Identification of characteristic time constants in the initial dynamic response of electric double layer capacitors from high-frequency electrochemical impedance. J. Power Sources 2018, 397, 124–133. [Google Scholar] [CrossRef]
- Devillers, N.; Jemei, S.; Péra, M.C.; Bienaimé, D.; Gustin, F. Review of characterization methods for supercapacitor modeling. J. Power Sources 2014, 246, 596–608. [Google Scholar] [CrossRef]
- Mainka, J.; Gao, W.; He, N.; Dillet, J.; Lottin, O. A General Equivalent Electrical Circuit Model for the characterization of MXene/graphene oxide hybrid-fiber supercapacitors by electrochemical impedance spectroscopy–Impact of fiber length. Electrochim. Acta 2022, 404, 139740. [Google Scholar] [CrossRef]
- Perdana, M.Y.; Johan, B.A.; Abdallah, M.; Hossain, M.E.; Aziz, M.A.; Baroud, T.N.; Drmosh, Q.A. Understanding the Behavior of Supercapacitor Materials via Electrochemical Impedance Spectroscopy: A Review. Chem. Rec. 2024, 24, e202400007. [Google Scholar] [CrossRef] [PubMed]
Voltage Sweep Rate, mV/s | C, Mass.% | O, Mass.% | Fe, Mass.% |
---|---|---|---|
2 | 34.6 | 39.9 | 25.2 |
10 | 83.6 | 13.38 | 3.02 |
100 | 61.5 | 29.3 | 9.2 |
Substrate | Material Source; Deposition Method | Electrode Materials | Electrolyte Composition | CNT Specific Capacity, F/g | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|
- | Fe(CO)5; evaporation | 70% active materials, 20% carbon black, and 10% polyvinylidene fluoride | 1 M Na2SO4 | 185 | 3000 (90.1%) | [17] |
- | FeCl3·6H2O; hydrothermal synthesis | α-Fe2O3, HPS | 1 M Na2SO4 | 465 | 4000 (88.4%) | [27] |
Ni foam | solvothermal | a-Fe2O3, PPy | PVA/Na2SO4 | 1050 mF/cm2 | 10,000 (87.5%) | [29] |
carbon fabric (CF) | solvothermal | Fe2O3-CF-6 | 1 M Na2SO4, PVA/LiCl | 119 | 5000 (82.3%) | [14] |
rGO-coated fabric | Fe(NO3)3, hydrothermal synthesis | Fe2O3/rGO | 2 M KOH | 360 | 8500 (89%) | [67] |
Ni foam | Fe(NO3)3_9H2O, solvothermal | Fe2O3/rGO | 2 M KOH | 1090 (195 for electrode) | 5000 (67.3%) | [28] |
Carbon Cloth (CC) | carbon cloth (CC), Ferric acetylacetonate, ethanol; flame synthesis | Ti-Fe2O3-CNT | 1 M Na2SO4 | 1.25 F/cm2 | 3000 | [48] |
Al | (Fe(NH4)2(SO4)2 0.1 M and CH3COONa 0.08 M) electrochemical deposition | Fe2O3/MWCNT/Al | 0.5 M Na2SO4 | 175 | 10,000 (75%) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitina, A.A.; Yakimov, E.E.; Knyazev, M.A.; Korotitsky, V.I.; Redkin, A.N. Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors. Nanomaterials 2025, 15, 1222. https://doi.org/10.3390/nano15161222
Mitina AA, Yakimov EE, Knyazev MA, Korotitsky VI, Redkin AN. Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors. Nanomaterials. 2025; 15(16):1222. https://doi.org/10.3390/nano15161222
Chicago/Turabian StyleMitina, Alena A., Evgene E. Yakimov, Maxim A. Knyazev, Victor I. Korotitsky, and Arkady N. Redkin. 2025. "Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors" Nanomaterials 15, no. 16: 1222. https://doi.org/10.3390/nano15161222
APA StyleMitina, A. A., Yakimov, E. E., Knyazev, M. A., Korotitsky, V. I., & Redkin, A. N. (2025). Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors. Nanomaterials, 15(16), 1222. https://doi.org/10.3390/nano15161222