Impact of Four-Phonon Scattering on Thermal Transport and Thermoelectric Performance of Penta-XP2 (X = Pd, Pt) Monolayers
Abstract
1. Introduction
2. Computational Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vining, C.B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85. [Google Scholar] [CrossRef]
- Heremans, J.P.; Dresselhaus, M.S.; Bell, L.E.; Morelli, D.T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471–473. [Google Scholar] [CrossRef]
- He, Q.-W.; Wang, J.-H.; Zhu, D.-Y.; Tang, D.-S.; Lv, Z.; Guo, F.; Wang, X.-C. Strong Vertical Piezoelectricity and Broad-pH-Value Photocatalyst in Ferroelastic Y2Se2BrF Monolayer. Nano Lett. 2024, 24, 8979–8987. [Google Scholar] [CrossRef]
- Tang, D.-S.; Luo, Y.-Q.; Zhu, D.-Y.; Wang, J.-H.; Shao, X.-T.; Cui, S.-X.; Wang, X.-C. Enhanced piezoelectricity in TiSXY monolayers based on electronegative polar moments effect. Appl. Phys. Lett. 2025, 126, 062901. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, H.-N.; Liu, S.-T.; Tang, D.-S.; He, Q.-W.; Wang, J.-H.; Zhu, D.-Y.; Liu, F.-C.; Wang, X.-C. Enhanced vertical piezoelectricity in nano-switch diamane structures by super-dipole-moment effect. Appl. Phys. Lett. 2024, 124, 172901. [Google Scholar] [CrossRef]
- Zhang, H.-N.; Shang, X.; He, Q.-W.; Tang, D.-S.; Wang, J.-H.; Zhu, D.-Y.; Wang, X.-C. Intrinsic Coupling between Piezoelectric and Electronic Transport Properties in Janus γ-GeSnXO (X = S, Se) Monolayers with Vertical Piezoelectricity. ACS Appl. Nano Mater. 2024, 7, 8969–8977. [Google Scholar] [CrossRef]
- Qin, B.; Wang, D.; Liu, X.; Qin, Y.; Dong, J.-F.; Luo, J.; Li, J.-W.; Liu, W.; Tan, G.; Tang, X.; et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021, 373, 556–561. [Google Scholar] [CrossRef]
- Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.; Wang, W.; Feng, S.-P.; Chen, G.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091–1098. [Google Scholar] [CrossRef]
- Bankston, C.P.; Cole, T.; Jones, R.; Ewell, R. Experimental and Systems Studies of the Alkali Metal Thermoelectric Converter for Aerospace Power. J. Energy 1983, 7, 442–448. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.-L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.-G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Tan, G.; Shi, F.; Doak, J.W.; Sun, H.; Zhao, L.-D.; Wang, P.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 2015, 8, 267–277. [Google Scholar] [CrossRef]
- Li, D.; He, J.; Ding, G.; Tang, Q.; Ying, Y.; He, J.; Zhong, C.; Liu, Y.; Feng, C.; Sun, Q.; et al. Stretch-Driven Increase in Ultrahigh Thermal Conductance of Hydrogenated Borophene and Dimensionality Crossover in Phonon Transmission. Adv. Funct. Mater. 2018, 28, 1801685. [Google Scholar] [CrossRef]
- Ghosh, T.; Dutta, M.; Sarkar, D.; Biswas, K. Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics. J. Am. Chem. Soc. 2022, 144, 10099–10118. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Wang, D.; Zhao, M.; Lv, J.; Jiang, H.; Lu, C.; Tang, Z. Interface Engineering in Solution-Processed Nanocrystal Thin Films for Improved Thermoelectric Performance. Adv. Mater. 2017, 29, 1603444. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.-i.; Kim, H.-S.; Kim, S.W. Band Convergence in Thermoelectric Materials: Theoretical Background and Consideration on Bi–Sb–Te Alloys. ACS Appl. Energy Mater. 2020, 3, 2214–2223. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, C.; Xie, Y. Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Appl. Phys. Rev. 2022, 9, 011303. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Q. Pentagon-based 2D materials: Classification, properties and applications. Phys. Rep. 2022, 964, 1–42. [Google Scholar] [CrossRef]
- Nazir, M.A.; Hassan, A.; Shen, Y.; Wang, Q. Research progress on penta-graphene and its related materials: Properties and applications. Nano Today 2022, 44, 101501. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, J.; Cheng, Q.; Han, L.; Li, Y.; Meng, X.; Ibarlucea, B.; Zhao, H.; Yang, F.; Liu, H.; et al. Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. Nano-Micro Lett. 2021, 13, 143. [Google Scholar] [CrossRef]
- Lan, Y.-S.; Chen, X.-R.; Hu, C.-E.; Cheng, Y.; Chen, Q.-F. Penta-PdX2 (X = S, Se, Te) monolayers: Promising anisotropic thermoelectric materials. J. Mater. Chem. A 2019, 7, 11134–11142. [Google Scholar] [CrossRef]
- Tao, W.-L.; Zhao, Y.-Q.; Zeng, Z.-Y.; Chen, X.-R.; Geng, H.-Y. Anisotropic Thermoelectric Materials: Pentagonal PtM2 (M = S, Se, Te). ACS Appl. Mater. Interfaces 2021, 13, 8700–8709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, P.; Zhang, G.; Sun, M.; Chi, D.; Hippalgaonkar, K.; Thong, J.T.L.; Wu, J. Low-Symmetry PdSe2 for High Performance Thermoelectric Applications. Adv. Funct. Mater. 2020, 30, 2004896. [Google Scholar] [CrossRef]
- Zala, V.B.; Shukla, R.S.; Bhuyan, P.D.; Gupta, S.K.; Gajjar, P.N. Highly selective and reversible 2D PtX2 (X = P, As) hazardous gas sensors: Ab-initio study. Appl. Surf. Sci. 2021, 563, 150391. [Google Scholar] [CrossRef]
- Pu, C.; Yu, J.; Yu, R.; Tang, X.; Zhou, D. Hydrogenated PtP2 monolayer: Theoretical predictions on the structure and charge carrier mobility. J. Mater. Chem. C 2019, 7, 12231–12239. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, X.; Xu, X.; Wu, Y.; Lu, N.; Qin, Z.; Wang, J.; Zhang, C.; Feng, E.; Huang, W.; et al. Penta-MX2 (M = Ni, Pd and Pt; X = P and As) monolayers: Direct band-gap semiconductors with high carrier mobility. J. Mater. Chem. C 2019, 7, 3569–3575. [Google Scholar] [CrossRef]
- Raval, D.; Babariya, B.; Gupta, S.K.; Gajjar, P.N.; Ahuja, R. Ultrahigh carrier mobility and light-harvesting performance of 2D penta-PdX2 monolayer. J. Mater. Sci. 2020, 56, 3846–3860. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Z.; Yang, J. Atomically thin semiconducting penta-PdP2 and PdAs2 with ultrahigh carrier mobility. J. Mater. Chem. C 2018, 6, 9055–9059. [Google Scholar] [CrossRef]
- Bhuyan, P.D.; Sonvane, Y.; Gajjar, P.N.; Ahuja, R.; Gupta, S.K. Ultrathin nanowire PdX2 (X = P, As): Stability, electronic transport and thermoelectric properties. New J. Chem. 2020, 44, 15617–15624. [Google Scholar] [CrossRef]
- Sheng, X.-F.; Rao, X.-X.; Ke, C.; Kang, W.-B. 2D plane XP2 (X = Ni, Pd, Pt) with narrow band gaps, ultrahigh carrier mobility and high electrical transport performance. Appl. Surf. Sci. 2022, 601, 154166. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Xie, G.; Zhu, X.-L.; Zhou, W.-X.; Xu, N. First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2 (M = Ni, Pd, Pt). J. Electron. Mater. 2021, 50, 2510–2520. [Google Scholar] [CrossRef]
- Kang, J.S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 2018, 361, 575–578. [Google Scholar] [CrossRef]
- Tian, F.; Song, B.; Chen, X.; Ravichandran, N.K.; Lv, Y.; Chen, K.; Sullivan, S.; Kim, J.; Zhou, Y.; Liu, T.-H.; et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 2018, 361, 582–585. [Google Scholar] [CrossRef]
- He, X.; Cai, X.; Yuan, H.; Chen, H. Thermoelectric Performance of Janus Monolayer ZnGeSTe from First-Principles Based Self-Consistent Transport Theory. J. Phys. Chem. C 2025, 129, 6584–6593. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, Y.; Sun, Y.; Ni, J.; Dai, Z. Prediction of Thermoelectric Properties of PtSnX (X = Ti, Zr) Based on First-Principles Calculations. ACS Appl. Energy Mater. 2025, 8, 8388–8398. [Google Scholar] [CrossRef]
- Wan, Y.-L.; Yang, Q.; Zhang, T.; Zeng, Z.-Y.; Chen, X.-R. High thermoelectric performance in Ti2OX2 (X = F, Cl) MOene: A first-principles study incorporating electron–phonon coupling. J. Appl. Phys. 2024, 135, 125106. [Google Scholar] [CrossRef]
- Rosul, M.G.; Zebarjadi, M. Effect of Electron–Phonon Interaction and Ionized Impurity Scattering on the Room-Temperature Thermoelectric Properties of Bulk MoSe2. J. Phys. Chem. C 2022, 126, 15011–15018. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Han, Z.; Yang, X.; Li, W.; Feng, T.; Ruan, X. FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 2022, 270, 108179. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type andCaCl2-typeSiO2at high pressures. Phys. Rev. B 2008, 78, 134106. [Google Scholar] [CrossRef]
- Chaput, L. Direct Solution to the Linearized Phonon Boltzmann Equation. Phys. Rev. Lett. 2013, 110, 265506. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 2016, 93, 045202. [Google Scholar] [CrossRef]
- Feng, T.; Lindsay, L.; Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 2017, 96, 161201. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Park, J.; Lu, I.T.; Maliyov, I.; Tong, X.; Bernardi, M. Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 2021, 264, 107970. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Chen, X.-K.; Zhang, E.-M.; Wu, D.; Chen, K.-Q. Strain-Induced Medium-Temperature Thermoelectric Performance of Cu4TiSe4: The Role of Four-Phonon Scattering. Phys. Rev. Appl. 2023, 19, 044052. [Google Scholar] [CrossRef]
- Ressouche, E.; Simonet, V.; Canals, B.; Gospodinov, M.; Skumryev, V. Magnetic Frustration in an Iron-Based Cairo Pentagonal Lattice. Phys. Rev. Lett. 2009, 103, 267204. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Ouyang, T.; Germaneau, É.; Qin, G.; Hu, M.; Bao, H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 2016, 93, 075404. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 2018, 97, 045202. [Google Scholar] [CrossRef]
- Thomas, I.O.; Srivastava, G.P. Anharmonic, dimensionality and size effects in phonon transport. J. Phys. Condens. Matter 2017, 29, 505703. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, C.; Chen, S.; Dai, Q.; Wei, J.; Liao, Y.; Wang, X.; Lv, B.; Wang, W. Understanding the origins of low lattice thermal conductivity in a novel two-dimensional monolayer NaCuS for achieving medium-temperature thermoelectric applications. Appl. Surf. Sci. 2023, 614, 156167. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Y.; Ni, J.; Meng, S.; Dai, Z. High thermoelectric performance in XAgSe2 (X = Sc, Y) from strong quartic anharmonicity and multi-valley band structure. J. Mater. Chem. A 2023, 11, 17138–17144. [Google Scholar] [CrossRef]
- Yue, T.; Zhao, Y.; Ni, J.; Meng, S.; Dai, Z. Strong quartic anharmonicity, ultralow thermal conductivity, high band degeneracy and good thermoelectric performance in Na2TlSb. npj Comput. Mater. 2023, 9, 17. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Hu, Y.; Shao, H. Remarkable intrinsic ZT in the 2D PtX2(X = O, S, Se, Te) monolayers at room temperature. Appl. Surf. Sci. 2020, 532, 147387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, Y.; Zhang, Y.; Zhang, H.; Wang, P.; Wang, N.; Yan, Y.; Zha, X.; Ding, C.; Li, Y.; Li, C.; et al. Impact of Four-Phonon Scattering on Thermal Transport and Thermoelectric Performance of Penta-XP2 (X = Pd, Pt) Monolayers. Nanomaterials 2025, 15, 1396. https://doi.org/10.3390/nano15181396
Lan Y, Zhang Y, Zhang H, Wang P, Wang N, Yan Y, Zha X, Ding C, Li Y, Li C, et al. Impact of Four-Phonon Scattering on Thermal Transport and Thermoelectric Performance of Penta-XP2 (X = Pd, Pt) Monolayers. Nanomaterials. 2025; 15(18):1396. https://doi.org/10.3390/nano15181396
Chicago/Turabian StyleLan, Yangshun, Yueyu Zhang, Honggang Zhang, Ping Wang, Ning Wang, Yangjun Yan, Xiaoting Zha, Changchun Ding, Yuzhi Li, Chuanfu Li, and et al. 2025. "Impact of Four-Phonon Scattering on Thermal Transport and Thermoelectric Performance of Penta-XP2 (X = Pd, Pt) Monolayers" Nanomaterials 15, no. 18: 1396. https://doi.org/10.3390/nano15181396
APA StyleLan, Y., Zhang, Y., Zhang, H., Wang, P., Wang, N., Yan, Y., Zha, X., Ding, C., Li, Y., Li, C., Gu, Y., & Chen, Q. (2025). Impact of Four-Phonon Scattering on Thermal Transport and Thermoelectric Performance of Penta-XP2 (X = Pd, Pt) Monolayers. Nanomaterials, 15(18), 1396. https://doi.org/10.3390/nano15181396