Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Graphene/MoS2 Composite Thin Films on PET Substrates
2.2. Design of IDEs Electrode Geometry
2.3. Laser Ablation Process Optimization for Patterning Graphene/MoS2 Composite IDEs
2.4. Electrochemical Configuration for pH Measurement
2.5. Characterization of Graphene/MoS2 Composite Film Properties
3. Results and Discussion
3.1. Laser Ablation Characteristics and Surface Morphology
3.2. Materials Analysis and Surface Characterization
3.3. Electrical Characteristics Analysis and pH Detection Sensitivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frykberg, R.G.; Banks, J. challenges in the treatment of chronic wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Astaneh, M.E.; Fereydouni, N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024, 10, e38481. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Yang, F.; Jiang, Z.; Wu, K.; Hou, R.; Zhu, Y. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater. Des. 2023, 229, 111917. [Google Scholar] [CrossRef]
- Lu, S.H.; Samandari, M.; Li, C.; Li, H.; Song, D.; Zhang, Y.; Tamayol, A.; Wang, X. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sens. Actuators Rep. 2022, 4, 100075. [Google Scholar] [CrossRef]
- Chen, M.Y.; Cao, M.Q.; Xu, T.Y.; Wang, X. Progress in the application of artificial intelligence in skin wound assessment and prediction of healing time. Am. J. Transl. Res. 2024, 16, 2765–2776. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, M.A.; Tov, H.A.L.; Canic, M.T.; Lee, W.D.; Williams, R.; Strasfeld, D.; Kirsner, R.S.; Herman, I.M. Advanced wound diagnostics: Toward transforming wound care into precision medicine. Adv. Wound Care 2022, 11, 330–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, X.; Liao, M.; Ke, G.; Zhang, X.B. Point-of-care biosensors and devices for diagnostics of chronic kidney disease. Sens. Diagn. 2024, 3, 1789–1806. [Google Scholar] [CrossRef]
- Moeinfard, T.; Zadeh, E.G.; Magierowski, S. CMOS point-of-care diagnostics technologies: Recent advances and future prospects. Micromachines 2024, 15, 1320. [Google Scholar] [CrossRef] [PubMed]
- Zdrachek, E.; Forrest, T.; Bakker, E. Symmetric cell for improving solid-contact pH electrodes. Anal. Chim. Acta 2023, 1239, 340652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, J.; Pan, D.; Wei, H.; Wang, C.C.; Pan, F.; Xia, J.J.; Ma, S. pH electrodes based on iridium oxide films for marine monitoring. Trends Environ. Anal. Chem. 2020, 25, e00083. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Silva, A.P.; Pereira, J.N. Current on-skin flexible sensors, materials, manufacturing approaches, and study trends for health monitoring: A review. ACS Sens. 2024, 9, 1104–1133. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Y.; Yu, Y.; Hu, Q.; Du, W.; Lin, D. Recent progress in flexible piezoelectric tactile sensors: Materials, structures, fabrication, and application. Sensors 2025, 25, 964. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dou, Y.; Wang, J.H.; Zhao, Y.; Kong, W.W.; Ma, C.Y.; He, D.L.; Wang, H.G.; Zhang, H.M.; Chang, A.M.; et al. Recent advances in flexible temperature sensors: Materials, mechanism, fabrication, and applications. Adv. Sci. 2024, 11, 2405003. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, J.; Wang, H. Chronic wound management: A liquid diode-based smart bandage with ultrasensitive pH sensing ability. Microsyst. Nanoeng. 2024, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, S.; Song, J.; Gong, R.; Abbas, G. Electrochemical pH sensor incorporated wearables for state-of-the-art wound care. ACS Sens. 2025, 10, 1690–1708. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.R.; Júnior, E.J.M.R. Graphene-Based electrochemical sensors for detection of environmental pollutants. Curr. Opin. Environ. Sci. Health 2022, 29, 100381. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Kumar, N.; Panda, H.S.; Panigrahy, B.; Sahoo, N.K.; Soam, A.; Mahanto, B.S.; Sahoo, P.K. Self-assembled 3D graphene-based aerogel with Au nanoparticles as high-performance supercapacitor electrode. J. Energy Storage 2021, 43, 103157. [Google Scholar] [CrossRef]
- Ozbey, S.; Keles, G.; Kurbanoglu, S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Mikrochim. Acta 2025, 192, 290. [Google Scholar] [CrossRef] [PubMed]
- Kammarchedu, V.; Asgharian, H.; Zhou, K.; Khamsi, P.S.; Ebrahimi, A. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale 2024, 16, 12857–12882. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.Y.; Wang, S.; Liang, Y.B.; Wang, C.; Zhang, Y.H.; Liu, H.; Zhang, Y.; Han, L. Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 2025, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Z.; He, W.Y.; Jiang, C.; Li, J.; Liu, J.L.; Liu, M.J. Wearable biodevices based on two-dimensional materials: From flexible sensors to smart integrated systems. Nano-Micro Lett. 2025, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Zhua, X.X.; Sun, H.; Yu, B.; Xu, L.; Xiao, H.; Fu, Z.; Gao, T.; Yang, X.D. A flexible pH sensor based on polyaniline@oily polyurethane/polypropylene spunbonded nonwoven fabric. RSC Adv. 2024, 14, 5627–5637. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.; Dahiya, R. Influence of degradable substrates on the performance of screen-printed pH sensors. IEEE Sens. Lett. 2025, 9, 7. [Google Scholar] [CrossRef]
- Tade, R.S.; Kalkal, A.; Patil, P.O. Functionalized graphene quantum dots (GQDs) based label-free optical fluorescence sensor for CD59 antigen detection and cellular bioimaging. J. Fluoresc. 2025, 35, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Kumar, A.; Majumder, S. Fabrication of ssDNA functionalized MoS nanoflakes based label-free electrochemical biosensor for explicit silver ion detection at sub-pico molar level. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130241. [Google Scholar] [CrossRef]
- Viet, N.N.; Thong, L.V.; Dang, T.K.; Phuoc, P.H.; Chien, N.H.; Hung, C.M.; Hoa, N.D.; Duy, N.V.; Toan, N.V.; Son, N.T.; et al. MoS2 nanosheets-decorated SnO2 nanofibers for enhanced SO2 gas sensing performance and classification of CO, NH3 and H2 gases. Anal. Chim. Acta 2021, 1167, 338576. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors. Coord. Chem. Rev. 2024, 503, 215657. [Google Scholar] [CrossRef]
- Kudr, J.; Adam, V.; Zitka, O. Fabrication of graphene/molybdenum disulfide composites and their usage as actuators for electrochemical sensors and biosensors. Molecules 2019, 24, 3374. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhao, P.; Zeng, X.; Young, C.W.D.; Hu, W. High-stability pH sensing with a few-layer MoS2 field-effect transistor. J. Fluoresc. 2019, 30, 375203. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, D.; Pathania, D.; Awasthi, A.; Singh, K. Molybdenum disulphide-nitrogen doped reduced graphene oxide heterostructure based electrochemical sensing of epinephrine. Mater. Chem. Phys. 2023, 297, 127446. [Google Scholar] [CrossRef]
- Sakthivel, R.; Geetha, A.; Anandh, B.A.; Jagadeesan, V.; Ganesh, A.S.; Dineshkumar, J. Design of MoS2/graphene heterostructure thin film sensors for high performance NO2 gas sensor applications. J. Phys. Conf. Ser. 2021, 2070, 012131. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Li, W.; Gou, C.; Zheng, M.; Zhang, Y.; Chen, Z.; Hong, Y. High-sensitive humidity sensor based on MoS2/graphene oxide quantum dot nanocomposite. Mater. Chem. Phys. 2022, 287, 126146. [Google Scholar] [CrossRef]
- Houeix, Y.; Romero, F.J.; Moraila, C.L.; Rivadeneyra, A.; Rodriguez, N.; Morales, D.P.; Castillo, A.S. Laser-synthesis of conductive carbon-based materials from two flexible commercial substrates: A comparison. Appl. Surf. Sci. 2023, 634, 157629. [Google Scholar] [CrossRef]
- Hwang, J.S.; Park, J.E.; Kim, G.W.; Nam, H.; Yu, S.; Jeon, J.S.; Kim, S.; Lee, H.; Yang, M. Recycling silver nanoparticle debris from laser ablation of silver nanowire in liquid media toward minimum material waste. Sci. Rep. 2021, 11, 2262. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, S.J.; Park, S.J.; Kim, I.; Park, B.; Kim, S.H.; Jeong, U.; Kim, J.K.; Yang, C. Deformable micro-supercapacitor fabricated via laser ablation patterning of Graphene/liquid metal. npj Flex. Electron. 2024, 8, 18. [Google Scholar] [CrossRef]
- Žutautas, V.; Trusovas, R.; Sartanavičius, A.; Ratautas, K.; Selskis, A.; Pauliukaite, R. A sensor for electrochemical pH monitoring based on laser-induced graphene modified with polyfolate. Chemosensors 2023, 11, 329. [Google Scholar] [CrossRef]
- Massaglia, G.; Spisni, G.; Serra, T.; Quaglio, M. Laser-induced graphene electrodes for flexible pH sensors. Nanomaterials 2024, 14, 2008. [Google Scholar] [CrossRef] [PubMed]
- Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park., J.Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.J.; Hyeong, S.K.; Jang, H.Y.; Mun, J.; Kim, T.W.; Bae, S.; Lee, S.K. Selective laser-assisted direct synthesis of MoS2 for graphene/MoS2 schottky junction. Nanomaterials 2023, 13, 2937. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yun, W.; Zhang, H.; Chen, L.; Ho, H.P.; Pu, X.Y.; Huang, Y.; Shen, Y.; Cao, H. MoS2 nanosheets based label-free colorimetric aptasensor for Escherichia coli O157: H7 detection. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131955. [Google Scholar] [CrossRef]
- Ahsan, U.; Sattar, A.; Irfan, M.; Mustafa, H.; Latif, H.; Sabar, M.A.; Mustafa, M.; Amjad, R.J.; Wadood, A.; Ali, Z. Performance improvement of MoS2/graphene heterostructures based FET by tuning mobility and threshold voltage using APTES. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2025, 311, 117797. [Google Scholar] [CrossRef]
- Youssef, K.; Ullah, A.; Rezai, P.; Hasan, A.; Amirfazli, A. Recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds. Mater. Today Bio 2023, 22, 100764. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Roy, S.; Nagabooshanam, S.; Wadhwa, S.; Dubey, S. Effect of gap size of gold interdigitated electrodes on the electrochemical immunosensing of cardiac troponin-I for point-of-care applications. Sens. Actuators Rep. 2022, 4, 100114. [Google Scholar] [CrossRef]
- Sherif, S.; Ghallab, Y.H.; Raheem, O.A.; Ziko, L.; Siam, R.; Ismail, Y. Optimization design of interdigitated microelectrodes with an insulation layer on the connection tracks to enhance efficiency of assessment of the cell viability. BMC Biomed. Eng. 2023, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Durmus, C.; Bukhamsin, A.; Filho, J.I.D.O.; Salama, K.N. Advancing sensitivity with laser-scribed graphene interdigitated electrodes in water quality monitoring. Sens. Bio-Sens. Res. 2025, 47, 100731. [Google Scholar] [CrossRef]
- Žemaitis, A.; Gaidys, M.; Brikas, M.; Gečys, P.; Račiukaitis, G.; Gedvilas, M. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: Experiment and model. Sci. Rep. 2018, 8, 17376. [Google Scholar] [CrossRef] [PubMed]
- Palo, R.D.; Volpe, A.; Gaudiuso, C.; Patimisco, P.; Spagnolo, V.; Ancona, A. Threshold fluence and incubation during multi-pulse ultrafast laser ablation of quartz. Opt. Express. 2022, 30, 44908–44917. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Dong, X.; Mei, X.; Meng Gao, M.; Wang, K.; Zhao, D. General fabrication of metal oxide nanoparticles modified graphene for supercapacitors by laser ablation. Appl. Surf. Sci. 2021, 568, 150978. [Google Scholar] [CrossRef]
- Yao, Y.; He, J.; Zhu, X.; Mu, L.; Li, J.; Li, K.; Qu, M. Wettability and heterojunction synergistic interface optimization guided Co doped MoS2/Ni3S2-GO/NF catalytic electrode to boost overall water splitting. Int. J. Hydrogen Energy 2024, 51, 207–221. [Google Scholar] [CrossRef]
- Mensah, S.A.; Bab, A.M.R.F.E.; Tominaga, Y.; Khalil, A.S.G. Precisely engineered interface of laser-induced graphene and MoS2 nanosheets for enhanced supercapacitor electrode performance. Appl. Surf. Sci. 2025, 688, 162230. [Google Scholar] [CrossRef]
- Lampinen, A.; See, E.; Emelianov, A.; Myllyperkiö, P.; Johansson, A.; Pettersson, M. Laser-induced tuning of graphene field-effect transistors for pH sensing. Phys. Chem. Chem. Phys. 2023, 25, 10778–10784. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, G.Q.; Li, L.; Wu, Y. Highly fluorescent green carbon dots as a fluorescent probe for detecting mineral water pH. Sensors 2019, 19, 3801. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, N.E.; Azize, M.; Bishop, D.J. Non-linear pH responses of passivated graphene-based field-effect transistors. J. Appl. Phys. 2023, 134, 104301. [Google Scholar] [CrossRef]
Type | Active Sensing Area (mm2) | IDE Width (μm) | IDE Pairs | IDE Pitch (mm) |
---|---|---|---|---|
I | 30 × 30 | 80 | 10 | 0.62 |
II | 25 | 0.18 | ||
III | 50 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, C.; Tran, M.-Q. Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes. Nanomaterials 2025, 15, 1115. https://doi.org/10.3390/nano15141115
Chen Z, Liu C, Tran M-Q. Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes. Nanomaterials. 2025; 15(14):1115. https://doi.org/10.3390/nano15141115
Chicago/Turabian StyleChen, Zhaochi, Chengche Liu, and Minh-Quang Tran. 2025. "Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes" Nanomaterials 15, no. 14: 1115. https://doi.org/10.3390/nano15141115
APA StyleChen, Z., Liu, C., & Tran, M.-Q. (2025). Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes. Nanomaterials, 15(14), 1115. https://doi.org/10.3390/nano15141115