Sepiolite-Based Nanogenerator Driven by Water Evaporation
Abstract
1. Introduction
2. Experiment
2.1. Materials
2.2. S-WEG Fabrication
2.3. Characterizations
3. Results and Discussion
3.1. Characterization of the S-WEG
3.2. Output Performance and Principle of the S-WEG
3.3. Practical Applications of the S-WEG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shrestha, A.; Mustafa, A.A.; Htike, M.M.; You, V.; Kakinaka, M. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy. Renew. Energy 2022, 199, 419–432. [Google Scholar] [CrossRef]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Hu, D.; Yao, M.; Fan, Y.; Ma, C.; Fan, M.; Liu, M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 2019, 55, 288–304. [Google Scholar] [CrossRef]
- Xu, Q.; Wen, J.; Qin, Y. Development and outlook of high output piezoelectric nanogenerators. Nano Energy 2021, 86, 106080. [Google Scholar] [CrossRef]
- Dharmasena, R.D.I.G.; Silva, S.R.P. Towards optimized triboelectric nanogenerators. Nano Energy 2019, 62, 530–549. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wang, Z.L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649. [Google Scholar] [CrossRef]
- Han, J.; Li, J.; Zhang, X.; Zhao, L.; Wang, C. Enhancing the performance of triboelectric nanogenerator via chitosan films surface modification. Chem. Eng. J. 2024, 489, 151493. [Google Scholar] [CrossRef]
- Guan, P.; Zhu, R.; Hu, G.; Patterson, R.; Chen, F.; Liu, C.; Zhang, S.; Feng, Z.; Jiang, Y.; Wan, T.; et al. Recent development of moisture-enabled-electric nanogenerators. Small 2022, 18, 2204603. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wen, X.; Guo, S.; Zhou, M.; Wang, L.; Qin, X.; Tan, S.C. Weavable yarn-shaped moisture-induced electric generator. Nano Energy 2023, 116, 108748. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, K.; Cheng, H.; He, T.; Wang, H.; Bai, J.; Yang, C.; Guang, T.; Yao, H.; Li, F.; et al. Three-dimensional printing of high-performance moisture power generators. Adv. Funct. Mater. 2024, 34, 2308620. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, P.; Wang, J.; Meng, H.; Ge, Y.; Feng, C.; Liu, H.; Meng, Y.; Zhou, Z.; Xuan, N.; et al. Paper-based hydroelectric generators for water evaporation-induced electricity generation. Adv. Sci. 2023, 10, 2304482. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhao, Y.; Jiao, S.; Wang, Z.; Yu, Z.; Sun, C.; Liu, X. Microalgae film-derived water evaporation induced electricity generator with negative carbon emission. Adv. Sci. 2024, 11, 2400856. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chu, W.; Fang, S.; Tan, J.; Wang, X.; Guo, W. Materials for evaporation-driven hydrovoltaic technology. Interdiscip. Mater. 2022, 1, 449–470. [Google Scholar] [CrossRef]
- Yun, T.G.; Bae, J.; Rothschild, A.; Kim, I.-D. Transpiration driven electrokinetic power generator. ACS Nano 2019, 13, 12703–12709. [Google Scholar] [CrossRef]
- Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L.; et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Z.; Lin, X.; Cai, X.; Fu, S.; Fang, X.; Ding, Y.; Wang, X.; Sèbe, G.; Zhou, G. All wood-based water evaporation-induced electricity Ggenerator. Adv. Funct. Mater. 2024, 34, 2314231. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, G.; Zhou, H.; Jiang, Y.; Wang, S.; Ma, J.; Yang, C.; Hu, S. Composite laminar membranes for electricity generation from water evaporation. Nano Res. 2024, 17, 307–311. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Fan, S. Power generation by thermal evaporation based on a button supercapacitor. ACS Appl. Mater. Interfaces 2024, 16, 9980–9988. [Google Scholar] [CrossRef]
- Liu, H.; Cui, P.; Zhang, J.; Wang, J.; Ge, Y.; Zhou, Z.; Meng, Y.; Huang, Z.; Yang, K.; Du, Z.; et al. Harnessing natural evaporation for electricity generation using MOF-based nanochannels. Small 2024, 20, 2400961. [Google Scholar] [CrossRef]
- Han, C.; Bai, Z.; Sun, H.; Mi, L.; Sun, Z. Bioinspired gradient-structured wood interfaces achieving efficient ion diffusion to generate electricity from natural evaporation. J. Mater. Chem. A 2024, 12, 723–730. [Google Scholar] [CrossRef]
- Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551. [Google Scholar] [CrossRef]
- Shao, C.; Ji, B.; Xu, T.; Gao, J.; Gao, X.; Xiao, Y.; Zhao, Y.; Chen, N.; Jiang, L.; Qu, L. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl. Mater. Interfaces 2019, 11, 30927–30935. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ueki, T.; Gao, H.; Woodard, T.L.; Nevin, K.P.; Fu, T.; Fu, S.; Sun, L.; Lovley, D.R.; Yao, J. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat. Commun. 2022, 13, 4369. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Bui-Vinh, D.; Lee, S.-H.; Baek, S.H.; Lee, S.; Yun, J.; Baek, M.; Lee, H.-W.; Park, J.; Kim, M.; et al. Evaporation-drivenenergy generation using an electrospun polyacrylonitrile nanofiber mat with different support substrates. Polymers 2024, 16, 1180. [Google Scholar] [CrossRef]
- Li, S.-M.; Qiu, Y.; Xie, Y.-M.; Wang, X.-T.; Wang, K.; Cheng, H.; Zhang, D.; Zheng, Q.-N.; Wang, Y.-H.; Li, J.-F. Synergistic effects of TiO2 and carbon black for water evaporation-induced electricity generation. ACS Appl. Mater. Interfaces 2024, 16, 24863–24870. [Google Scholar] [CrossRef]
- Yoon, S.G.; Yang, Y.; Yoo, J.; Jin, H.; Lee, W.H.; Park, J.; Kim, Y.S. Natural evaporation-driven ionovoltaic electricity generation. ACS Appl. Electron. Mater. 2019, 1, 1746. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, B.; Wei, Q.; Yuan, Z.; Song, W.; Zhou, L.; Ge, W. A fabric-based hydrovoltaic electricity generator with multi-component carbon black for sustainable energy output. RSC Adv. 2024, 14, 18832–18837. [Google Scholar] [CrossRef]
- Qiang, Z.; Cui, P.; Tian, C.; Liu, R.; Shen, H.; Liu, Z. Enhancing power generation for carbon black film device based on optimization of liquid capillary flow. Appl. Energy 2023, 351, 121874. [Google Scholar] [CrossRef]
- Kumar, R.; Tabrizizadeh, T.; Chaurasia, S.; Liu, G.; Stamplecoskie, K. Hydrovoltaic power generation from multiwalled carbon nanotubes. Sustain. Energy Fuels 2022, 6, 1141–1147. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Xiu, W.; Yang, X.; Yang, Y.; Li, X. Carbon cloth functionalized with carbon nanotubes for hydroelectric power generation. ACS Appl. Nano Mater. 2024, 7, 7327–7336. [Google Scholar] [CrossRef]
- Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972. [Google Scholar] [CrossRef]
- Gao, F.; Yu, Z.; Zang, Y.; Qu, J.; Hua, K.; Sun, Z. Resistance matching materials nanoarchitectonics for better performances in water evaporation-driven generators. Nanotechnology 2022, 33, 195402. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Peng, M.; Liang, Z.; Liu, Y.; Zhao, B.; Li, D.; Wang, Y.; Zhang, J.; Sun, Y.; Jiang, L. Printed honeycomb-structured reduced graphene oxide film for efficient and continuous evaporation-driven electricity generation from salt solution. ACS Appl. Mater. Interfaces 2021, 13, 26989–26997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, J.; Zhang, S.; Chen, H. Carboxylized graphene oxide nanosheet for shale plugging at high temperature. Appl. Surf. Sci. 2021, 558, 149901. [Google Scholar] [CrossRef]
- Zhang, G.; Duan, Z.; Qi, X.; Xu, Y.; Li, L.; Ma, W.; Zhang, H.; Liu, C.; Yao, W. Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon 2019, 148, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Solin, N. Ionovoltaic electricity generation over graphene-nanoplatelets: Protein-nanofibril hybrid materials. Nanoscale Adv. 2023, 5, 820–829. [Google Scholar] [CrossRef]
- Jiao, S.; Liu, M.; Li, Y.; Abrha, H.; Wang, J.; Dai, Y.; Li, J.; Kang, N.; Li, Y.; Liu, X. Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review. Carbon 2022, 193, 339–355. [Google Scholar] [CrossRef]
- Cao, W.; Li, L.; Chen, K.; Huang, X.; Li, F.; Wang, C.; Zheng, J.; Hou, X.; Cheng, Z. Interfacial-Polarization Engineering in BNT-Based Bulk Ceramics for Ultrahigh Energy-Storage Density. Adv. Sci. 2024, 11, 2409113. [Google Scholar] [CrossRef]
- Ruiz, A.I.; Ruiz-García, C.; Ruiz-Hitzky, E. From old to new inorganic materials for advanced applications: The paradigmatic example of the sepiolite clay mineral. Appl. Clay Sci. 2023, 235, 106874. [Google Scholar] [CrossRef]
- Bukas, V.J.; Tsampodimou, M.; Gionis, V.; Chryssikos, G.D. Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying. Vib. Spectrosc. 2013, 68, 51–60. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, L.; Wen, X.; Wang, L.; Qin, X.; Yu, J. Ceramic Nanofiber-Based Water-Induced Electric Generator. ACS Appl. Mater. Interfaces 2021, 13, 56226–56232. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Y.T.; Duan, Z.; Yu, W.; Liu, C.H.; Yao, W. Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Appl. Therm. Eng. 2020, 166, 114623. [Google Scholar] [CrossRef]
- He, H.; Zhao, T.; Guan, H.; Zhong, T.; Zeng, H.; Xing, L.; Zhang, Y.; Xue, X. A water-evaporation-induced self-charging hybrid power unit for application in the Internet of Things. Sci. Bull. 2019, 64, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Li, H.; Zhao, T.; Guan, H.; Xing, L.; Xue, X. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles. J. Mater. Sci. Technol. 2021, 76, 33–40. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Chen, D.; Wan, X.; Wang, X.; Fang, Z.; Peng, X. Polyaniline-Coated MOFs Nanorod Arrays for Efficient Evaporation-Driven Electricity Generation and Solar Steam Desalination. Adv. Sci. 2021, 8, 2004552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Jiang, G.; Zhang, X.; Wang, C. Sepiolite-Based Nanogenerator Driven by Water Evaporation. Nanomaterials 2025, 15, 983. https://doi.org/10.3390/nano15130983
Zhao L, Jiang G, Zhang X, Wang C. Sepiolite-Based Nanogenerator Driven by Water Evaporation. Nanomaterials. 2025; 15(13):983. https://doi.org/10.3390/nano15130983
Chicago/Turabian StyleZhao, Liwei, Guoxing Jiang, Xing Zhang, and Chunchang Wang. 2025. "Sepiolite-Based Nanogenerator Driven by Water Evaporation" Nanomaterials 15, no. 13: 983. https://doi.org/10.3390/nano15130983
APA StyleZhao, L., Jiang, G., Zhang, X., & Wang, C. (2025). Sepiolite-Based Nanogenerator Driven by Water Evaporation. Nanomaterials, 15(13), 983. https://doi.org/10.3390/nano15130983