In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Copper Nanoparticles@porous Carbon
2.3. Characterization Methods
2.4. SERS Measurements
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, L.; Zhu, T.; Liu, Z. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Spedalieri, C.; Kneipp, J. Surface enhanced Raman scattering for probing cellular biochemistry. Nanoscale 2022, 14, 5314–5328. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Kuang, C.; Liu, X.; Tang, L. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 4889. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumanova, G.G.; Todorov, N.D.; Russev, S.C.; Abrashev, M.V.; Ivanov, V.G.; Lukoyanov, A.V. Silver Flowerlike Structures for Surface-Enhanced Raman Spectroscopy. Nanomaterials 2021, 11, 3184. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2011, 2, 1817–1821. [Google Scholar] [CrossRef]
- Lang, X.; Qiu, T.; Yin, Y.; Kong, F.; Si, L.; Hao, Q.; Chu, P.K. Silver Nanovoid Arrays for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 8799–8803. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Chakraborty, S.; Awasthi, V.; Bhardwaj, V.; Kumar Dubey, S. Exploring the various aspects of Surface enhanced Raman spectroscopy (SERS) with focus on the recent progress: SERS-active substrate, SERS-instrumentation, SERS-application. Sens. Actuators A Phys. 2024, 376, 115555. [Google Scholar] [CrossRef]
- Markin, A.V.; Markina, N.E.; Popp, J.; Cialla-May, D. Copper nanostructures for chemical analysis using surface-enhanced Raman spectroscopy. TrAC Trends Anal. Chem. 2018, 108, 247–259. [Google Scholar] [CrossRef]
- Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K. Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nat. Commun. 2020, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Huang, J.; Liu, Y.; Wang, T.; Zhang, L.; He, Z. Copper hydroxide nanowires assisted molecule enrichment for highly sensitive SERS detection. Surf. Interfaces 2023, 39, 102903. [Google Scholar] [CrossRef]
- Ying, Y.; Tang, Z.; Liu, Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. Nanoscale 2023, 15, 10860–10881. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Combs, Z.A.; Gupta, M.K.; Davis, R.; Tsukruk, V.V. In situ Growth of Silver Nanoparticles in Porous Membranes for Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2010, 2, 3333–3339. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Erkartal, M.; Ozdemir, M.; Sen, U.; Usta, H.; Demirel, G. Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Appl. Mater. Interfaces 2017, 9, 18199–18206. [Google Scholar] [CrossRef] [PubMed]
- Almaviva, S.; Artuso, F.; Giardina, I.; Lai, A.; Pasquo, A. Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 8338. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wang, Y.; Pan, J.; Chen, Z.; Chen, J.; Lin, J.; Chen, F.; Yang, Y. Trace detection based on quantum dots embedded in the biocarbon with multi-scale pores. Appl. Surf. Sci. 2021, 535, 147758. [Google Scholar] [CrossRef]
- Qian, J.; Wang, Y.; Lin, J.; Yao, C.; Zhang, C.; Wei, J.; Chen, J.; Chen, F.; Ni, C. Growth of Cu-Doped CeO2 Solid Solution Quantum Dots and Their Application for Trace Lead Detection. Cryst. Growth Des. 2023, 23, 8597–8606. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Li, Y.; Luo, J.; Chen, L.; Shi, J. Benzyl alcohol promoted electrocatalytic reduction of carbon dioxide and C2 production by Cu2O/Cu. Chem. Eng. J. 2024, 485, 149800. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhou, Z.; Qian, J.; Wang, Y.; Chen, J.; Sun, Y. In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering. Nanomaterials 2025, 15, 944. https://doi.org/10.3390/nano15120944
Wei J, Zhou Z, Qian J, Wang Y, Chen J, Sun Y. In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering. Nanomaterials. 2025; 15(12):944. https://doi.org/10.3390/nano15120944
Chicago/Turabian StyleWei, Jianqiang, Zelong Zhou, Junchao Qian, Yaping Wang, Jun Chen, and Yunfei Sun. 2025. "In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering" Nanomaterials 15, no. 12: 944. https://doi.org/10.3390/nano15120944
APA StyleWei, J., Zhou, Z., Qian, J., Wang, Y., Chen, J., & Sun, Y. (2025). In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering. Nanomaterials, 15(12), 944. https://doi.org/10.3390/nano15120944