The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of UiO-66
2.3. Synthesis of UiO-66-Based Catalysts
2.4. Desulfurization Procedure
3. Results and Discussion
3.1. The Characterization of the Synthesized UiO-66-Based Catalysts
3.2. Sulfur Removal with Different Reaction Systems
3.3. Sulfur Removal with Different UiO-66 Catalysts
Catalyst | Temp. | Time | O/S Ratio | DBT | 4,6-DMDBT | Ref. |
---|---|---|---|---|---|---|
D-UiO-66-NO2 | 60 °C | 100 min | 7/1 | 99.8% | 93.7% | This work |
UiO-66 | 60 °C | 150 min | 12/1 | 100% | 72.9% | [69] |
UiO-66-NO2 | 60 °C | 120 min | 12/1 | 97% | — | [70] |
UiO-66-free | 60 °C | 120 min | 6/1 | 99.6% | — | [71] |
UiO-66-MW | 50 °C | 180 min | 13/1 | 95% | — | [72] |
3.4. The Optimization of Oxidative Desulfurization Parameters
3.5. Sulfur Removal for Oils with Different Substrates or Sulfur Concentrations
3.6. The Recycling Performance of the Reaction System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, T.; Wang, Y.; Wang, L.; Liang, L.; Kong, X.; Wang, H. Controllable Synthesis of Titanium Silicon Molecular Zeolite Nanosheet with Short b-Axis Thickness and Application in Oxidative Desulfurization. Nanomaterials 2024, 14, 953. [Google Scholar] [CrossRef] [PubMed]
- Fayyazbakhsh, A.; Bell, M.L.; Zhu, X.; Mei, X.; Koutný, M.; Hajinajaf, N.; Zhang, Y. Engine emissions with air pollutants and greenhouse gases and their control technologies. J. Clean. Prod. 2022, 376, 134260. [Google Scholar] [CrossRef]
- Kopelias, P.; Demiridi, E.; Vogiatzis, K.; Skabardonis, A.; Zafiropoulou, V. Connected & autonomous vehicles—Environmental impacts—A review. Sci. Total Environ. 2020, 712, 135237. [Google Scholar] [PubMed]
- Xia, D.; Li, H.; Huang, P.; Zhou, W.; Kulak, A.; Luo, N.; Li, Q. Flash Joule-heating synthesis of MoO2 nanocatalysts in graphene aerogel for deep catalytic oxidative desulfurization. AIChE J. 2024, 70, e18357. [Google Scholar] [CrossRef]
- Xu, L.; Yin, J.; He, J.; Li, H.; Zhu, L.; Ning, H.; Jie, K.; Zhu, W.; Li, H.; Dai, S. Completely Inorganic Deep Eutectic Solvents for Efficient and Recyclable Liquid-Liquid Interface Catalysis. Adv. Mater. 2024, 36, 2313853. [Google Scholar] [CrossRef]
- Ma, L.; Zhong, Y.; Qu, L.; Feng, X.; Zhang, Y.; Hou, H.; Yang, G. Conformational flexibility of a novel Cu(I)-based adsorbent enhancing the selectivity of adsorptive desulfurization. Sep. Purif. Technol. 2025, 358, 130324. [Google Scholar] [CrossRef]
- Omar, R.A.; Bhaduri, B.; Verma, N. Graphitic carbon nitride-immobilized bacterial endospores: Combined adsorptive-and bio-desulfurization of liquid fuels. Mater. Lett. 2024, 361, 136117. [Google Scholar] [CrossRef]
- Syntyhaki, E.; Karonis, D. Synthesis of Surrogate Blends Corresponding to Petroleum Middle Distillates, Oxidative and Extractive Desulfurization Using Imidazole Ionic Liquids. Fuels 2022, 3, 44–74. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, X.; Liu, J.; Lin, J.; Zhang, X.; Kasemchainan, J.; Gao, H.; Wang, G.; Shu, X. Coordination environment dependent stability of Cu-based MOFs towards selective adsorption desulfurization. Chem. Eng. J. 2023, 464, 142670. [Google Scholar] [CrossRef]
- Xing, X.-X.; Guo, H.-L.; He, T.-M.; An, X.; Li, H.-P.; Zhu, W.-S.; Li, H.-M.; Pang, J.-Y.; Dang, D.-B.; Bai, Y. Tungstovanadate-based ionic liquid catalyst [C2(MIM)2]2VW12O40 used in deep desulfurization for ultraclean fuel with simultaneous recovery of the sulfone product. ACS Sustain. Chem. Eng. 2022, 10, 11533–11543. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, L.; Li, Z.; Xin, F. Preparation of hollow niobium oxide nanospheres with enhanced catalytic activity for oxidative desulfurization. Nanomaterials 2022, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Fu, W.; Zhang, J.; Zhang, X.; Qiu, W.; Jiang, W.; Zhu, L.; Li, H.; Li, H. Bifunctional pyridinium-based Brønsted acidic porous ionic liquid for deep oxidative desulfurization. Chem. Eng. J. 2024, 492, 152349. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, W.; Chen, H.; Zhu, L.; Luo, J.; Yang, W.; Chen, G.; Chen, Z.; Zhu, W.; Li, H. Pt nanoparticles encapsulated on V2O5 nanosheets carriers as efficient catalysts for promoted aerobic oxidative desulfurization performance. Chin. J. Catal. 2021, 42, 557–562. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Wang, T.; Xie, X.; Li, D.; Wang, J.; Huang, H.; Ao, Z. A versatile route to fabricate Metal/UiO-66 (Metal = Pt, Pd, Ru) with high activity and stability for the catalytic oxidation of various volatile organic compounds. Chem. Eng. J. 2022, 448, 136900. [Google Scholar] [CrossRef]
- Fernandes, S.; Flores, D.; Silva, D.; Santos-Vieira, I.; Mirante, F.; Granadeiro, C.M.; Balula, S.S. Lindqvist@nanoporous MOF-based catalyst for effective desulfurization of fuels. Nanomaterials 2022, 12, 2887. [Google Scholar] [CrossRef]
- Xing, H.; Shi, J.; Li, Y.; Wu, J. Visible light driven generation of dual active oxygen species on Zr-MOF/g-C3N4 photocatalyst for highly selective photocatalytic oxidation of sulfides to sulfoxides. Inorg. Chem. Commun. 2024, 162, 112129. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef]
- Piscopo, C.; Granadeiro, C.; Balula, S.S.; Bošković, D. Metal-organic framework-based catalysts for oxidative desulfurization. ChemCatChem 2020, 12, 4721–4731. [Google Scholar] [CrossRef]
- Hou, G.; Liu, Y.; Gai, Y.; Han, G.; Ji, Y.; Hou, G.; Wang, A.; Liu, Y.; Van Der Voort, P.; Feng, X. Catalytic open metal sites in Ti-MOFs obtained through plasma treatment for oxidative desulfurization. Chem. Eng. J. 2024, 492, 152139. [Google Scholar] [CrossRef]
- Saleh, H.A.M.; Khan, S.; Kumar, M.; Ansari, A.; Shahid, M.; Sama, F.; Qasem, K.M.A.; Khan, M.Y.; Mehtab, M.; Ahmad, M.; et al. Fabrication of Unique Mixed-Valent CoICoII and CuICuII Metal-Organic Frameworks (MOFs) for Desulfurization of Fuels: A Combined Experimental and Theoretical Approach toward Green Fuel. Inorg. Chem. 2023, 63, 329–345. [Google Scholar] [CrossRef]
- Heng, J.Z.X.; Tan, T.T.Y.; Li, X.; Loh, W.W.; Chen, Y.; Xing, Z.; Lim, Z.; Ong, J.L.Y.; Lin, K.S.; Nishiyama, Y.; et al. Pyrolytic Depolymerization of Polyolefins Catalysed by Zirconium-based UiO-66 Metal-Organic Frameworks. Angew. Chem. Int. Edit. 2024, 63, e202408718. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A.M.; Garcia, H. Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 2019, 11, 899–923. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Sun, J.; Yang, X.; Li, H.; Li, X.; Wang, R.; He, S.; Zhou, C. Defective UiO-66 metal–organic gels for optimizing gaseous toluene capture. J. Colloid Interface Sci. 2024, 655, 23–31. [Google Scholar] [CrossRef]
- Kim, M.; Njaramba, L.K.; Yoon, Y.; Jang, M.; Park, C.M. Thermally-activated gelatin–chitosan–MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr. Polym. 2024, 324, 121436. [Google Scholar] [CrossRef]
- Li, S.; Han, W.; An, Q.F.; Yong, K.T.; Yin, M.J. Defect engineering of MOF-based membrane for gas separation. Adv. Funct. Mater. 2023, 33, 2303447. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Lei, S.; Cui, J.z. Boosting Catalytic Efficiency of Metal-Organic Frameworks with Electron-Withdrawing Effect for Lewis-Acid Catalysis. ChemistrySelect 2021, 6, 7732–7735. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, X.; Li, X.; Kong, Y.; Fu, J.; Shaban, A.K.; Sun, Y.; Li, D. Solvent-Free Synthesis of Ce-Doped UiO-66 (Zr) and Its Catalytic Performance in the Oxidative Desulfurization of Dibenzothiophene. ChemistrySelect 2025, 10, e202500721. [Google Scholar] [CrossRef]
- Shen, J.; Lv, G.; Deng, J.; Su, S.; Wang, F.; Xu, S.; Oussama, L.; Liu, Z. Room-temperature efficient oxidative desulfurization over tungsten doped defective UiO-66 catalyst. Sep. Purif. Technol. 2025, 364, 132299. [Google Scholar] [CrossRef]
- Shi, G.; Liang, Y.; Nie, L.; Huang, R.; Yang, Z.; Liu, X.; Zhou, J.; Zhang, Q.; Ye, G. One-Pot Preparation of Nitro-Functionalized Bimetallic UiO-66 (Zr-Hf) with Hierarchical Porosity for Oxidative Desulfurization Performance. Inorg. Chem. 2024, 63, 16554–16564. [Google Scholar] [CrossRef]
- Beshtar, M.; Larimi, A.; Asgharinezhad, A.A.; Khorasheh, F. Ultra-deep photocatalytic oxidative desulfurization of model fuel using Ti-UiO-66 (Zr) metal–organic framework. Catal. Lett. 2024, 154, 2633–2647. [Google Scholar] [CrossRef]
- Dadashi, H.; Halladj, R.; Karimi, A.; Sharifi, K. Enhancing oxidative desulfurization catalytic performance of metal–organic frameworks UiO-66 (Zr) by post-synthetic with the creation of active sites. Inorg. Chem. Commun. 2024, 170, 113340. [Google Scholar] [CrossRef]
- Viana, A.M.; Julião, D.; Mirante, F.; Faria, R.G.; de Castro, B.; Balula, S.S.; Cunha-Silva, L. Straightforward activation of metal-organic framework UiO-66 for oxidative desulfurization processes. Catal. Today 2021, 362, 28–34. [Google Scholar] [CrossRef]
- Piscopo, C.; Voellinger, L.; Schwarzer, M.; Polyzoidis, A.; Bošković, D.; Loebbecke, S. Continuous flow desulfurization of a model fuel catalysed by titanium functionalized UiO-66. ChemistrySelect 2019, 4, 2806–2809. [Google Scholar] [CrossRef]
- Ye, G.; Qi, H.; Li, X.; Leng, K.; Sun, Y.; Xu, W. Enhancement of oxidative desulfurization performance over UiO-66 (Zr) by titanium ion exchange. ChemPhysChem 2017, 18, 1903–1908. [Google Scholar] [CrossRef]
- Gao, S.; Yu, Y.; Li, Y.-h.; Zhang, J.-r.; Zou, J.-c.; Yao, S.-y.; Chen, X.-l. Efficient oxidative desulfurization of dibenzothiophene using molybdenum-based catalysts loaded the functionalized UiO-66. J. Solid State Chem. 2024, 332, 124587. [Google Scholar] [CrossRef]
- He, F.; Zhang, H.; Li, X.; Yang, J.; Ma, W.; Zhang, H. Size-matched polyoxometalate encapsulated in UiO-66 (Zr): An extraordinary catalyst with double active sites for the highly efficient ultra-deep oxidative desulfurization of fuel oil. New J. Chem. 2021, 45, 19432–19438. [Google Scholar] [CrossRef]
- Wang, C.; Li, A.-R.; Ma, Y.-L. Phosphomolybdic acid niched in the metal-organic framework UiO-66 with defects: An efficient and stable catalyst for oxidative desulfurization. Fuel Process. Technol. 2021, 212, 106629. [Google Scholar] [CrossRef]
- Qi, Z.; Huang, Z.; Wang, H.; Li, L.; Ye, C.; Qiu, T. In situ bridging encapsulation of a carboxyl-functionalized phosphotungstic acid ionic liquid in UiO-66: A remarkable catalyst for oxidative desulfurization. Chem. Eng. Sci. 2020, 225, 115818. [Google Scholar] [CrossRef]
- Ye, G.; Hu, L.; Gu, Y.; Lancelot, C.; Rives, A.; Lamonier, C.; Nuns, N.; Marinova, M.; Xu, W.; Sun, Y. Synthesis of polyoxometalate encapsulated in UiO-66 (Zr) with hierarchical porosity and double active sites for oxidation desulfurization of fuel oil at room temperature. J. Mater. Chem. A 2020, 8, 19396–19404. [Google Scholar] [CrossRef]
- Qi, Z.; Qiu, T.; Wang, H.; Ye, C. Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic ligand exchange for the ultra-deep desulfurization. Fuel 2020, 268, 117336. [Google Scholar] [CrossRef]
- Subhan, S.; Yaseen, M.; Ahmad, B.; Tong, Z.; Subhan, F.; Ahmad, W.; Sahibzada, M. Fabrication of MnO2 NPs incorporated UiO-66 for the green and efficient oxidative desulfurization and denitrogenation of fuel oils. J. Environ. Chem. Eng. 2021, 9, 105179. [Google Scholar] [CrossRef]
- Vo, T.K.; Yoo, K.S.; Kim, J. Enhanced CO2 adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as the defective linker. Sep. Purif. Technol. 2021, 274, 119079. [Google Scholar]
- Shearer, G.C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K.P. Defect engineering: Tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761. [Google Scholar] [CrossRef]
- Fu, G.; Wu, P.; Yang, J.; Zhang, S.; Wang, L.; Xu, M.; Huai, X. Enhanced Water Adsorption Performance of UiO-66 Modulated with p-Nitrobenzoic or p-Hydroxybenzoic Acid: Introduced Defects and Functional Groups. Inorg. Chem. 2022, 61, 17943–17950. [Google Scholar] [CrossRef]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Wei, R.; Gaggioli, C.A.; Li, G.; Islamoglu, T.; Zhang, Z.; Yu, P.; Farha, O.K.; Cramer, C.J.; Gagliardi, L.; Yang, D. Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers. Chem. Mater. 2019, 31, 1655–1663. [Google Scholar] [CrossRef]
- Shearer, G.C.; Chavan, S.; Ethiraj, J.; Vitillo, J.G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. Tuned to perfection: Ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 2014, 26, 4068–4071. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Q.; Jiang, M.; Yao, J. Tailoring the properties of UiO-66 through defect engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 17646–17659. [Google Scholar] [CrossRef]
- Li, C.; Li, C.; Sun, L.; Xing, P.; Zhang, R. Three-layer coated composite materials PMoV2@UiO-66-X@mSiO2: Efficient oxidative desulfurization catalysts. J. Ind. Eng. Chem. 2024, 132, 561–571. [Google Scholar] [CrossRef]
- Jia, M.; Feng, Y.; Liu, S.; Qiu, J.; Yao, J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci. 2017, 539, 172–177. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal–organic frameworks: From nano to single crystals. Chem.–A Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Sommer, S.; Broge, N.L.N.; Gao, J.; Iversen, B.B. The chemistry of nucleation: In situ pair distribution function analysis of secondary building units during UiO-66 MOF formation. Chem.–A Eur. J. 2019, 25, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Forgan, R.S. Modulated self-assembly of metal–organic frameworks. Chem. Sci. 2020, 11, 4546–4562. [Google Scholar] [CrossRef]
- Wong, D.; Kim, S.; Abuzalat, O. In situ encapsulation of ZrQ in UiO-66 (Zr-BDC) for pore size control to enhance detection of a nerve agent simulant dimethyl methyl phosphonate. Appl. Organomet. Chem. 2022, 36, e6769. [Google Scholar] [CrossRef]
- Guo, Z.; Li, N.; Zuo, S.; Qiang, C.; Zhan, W.; Li, Z.; Ma, J. Construction of a novel metal-organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal. Sep. Purif. Technol. 2022, 289, 120743. [Google Scholar] [CrossRef]
- Yost, B.T.; Gibbons, B.; Wilson, A.; Morris, A.J.; McNeil, L. Vibrational spectroscopy investigation of defects in Zr-and Hf-UiO-66. RSC Adv. 2022, 12, 22440–22447. [Google Scholar] [CrossRef]
- Atzori, C.; Shearer, G.C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K.P.; Bordiga, S. Effect of benzoic acid as a modulator in the structure of UiO-66: An experimental and computational study. J. Phys. Chem. C 2017, 121, 9312–9324. [Google Scholar] [CrossRef]
- Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. Adsorption behaviors of organic micropollutants on zirconium metal–organic framework UiO-66: Analysis of surface interactions. ACS Appl. Mater. Interfaces 2017, 9, 41043–41054. [Google Scholar] [CrossRef]
- Ma, T.; Liu, D.; Liu, Z.; Xu, J.; Dong, Y.; Chen, G.; Yun, Z. 12-Tungstophosphoric acid-encapsulated metal-organic framework UiO-66: A promising catalyst for the esterification of acetic acid with n-butanol. J. Taiwan Inst. Chem. Eng. 2022, 133, 104277. [Google Scholar] [CrossRef]
- Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M.H.; Jakobsen, S.; Lillerud, K.P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718. [Google Scholar] [CrossRef]
- Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: The role of hydrofluoric acid in crystallization. CrystEngComm 2015, 17, 6434–6440. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Q.; Liu, J.; Zhang, H.; Li, Z.; Li, R.; Liu, L.; Wang, J. Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium (VI). J. Mater. Chem. A 2017, 5, 17933–17942. [Google Scholar] [CrossRef]
- An, P.; Zhu, F.; Liu, S.; Zhou, X.; Wang, C.; Liu, Y.; Meng, H.; Zhang, X. Immobilization of Cytochrome C by Benzoic Acid (BA)-Functional UiO-66-NO2 and the Enzyme Activity Assay. Appl. Biochem. Biotechnol. 2022, 194, 5167–5184. [Google Scholar] [CrossRef]
- Hong, M.; Jo, W.; Jo, S.A.; Jin, H.; Kim, M.; Lee, C.Y.; Park, Y.D. Enhanced Gas Sensing Characteristics of a Polythiophene Gas Sensor Blended with UiO-66 via Ligand Functionalization. Adv. Electron. Mater. 2024, 10, 2300901. [Google Scholar] [CrossRef]
- Guo, J.; Li, B.; Zhao, D.; Chu, L.; Yang, H.; Huang, Z.; Liu, Z.; Yang, M.; Wang, G. Preparation of porous hollow spherical MoOX/C catalyst for efficient extraction and oxidative desulfurization. Chem. Eng. J. 2023, 474, 145853. [Google Scholar] [CrossRef]
- Ye, G.; Qi, H.; Zhou, W.; Xu, W.; Sun, Y. Green and scalable synthesis of nitro-and amino-functionalized UiO-66 (Zr) and the effect of functional groups on the oxidative desulfurization performance. Inorg. Chem. Front. 2019, 6, 1267–1274. [Google Scholar] [CrossRef]
- Xiao, W.; Dong, Q.; Wang, Y.; Li, Y.; Deng, S.; Zhang, N. Time modulation of defects in UiO-66 and application in oxidative desulfurization. CrystEngComm 2018, 20, 5658–5662. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Liu, A.; Zhu, M. A metal–organic framework for oxidative desulfurization: UIO-66 (Zr) as a catalyst. Fuel 2017, 209, 417–423. [Google Scholar] [CrossRef]
- Liao, X.; Wang, X.; Wang, F.; Yao, Y.; Lu, S. Ligand modified metal organic framework UiO-66: A highly efficient and stable catalyst for oxidative desulfurization. J. Inorg. Organomet. Polym. Mater. 2021, 31, 756–762. [Google Scholar] [CrossRef]
- Ye, G.; Zhang, D.; Li, X.; Leng, K.; Zhang, W.; Ma, J.; Sun, Y.; Xu, W.; Ma, S. Boosting catalytic performance of metal–organic framework by increasing the defects via a facile and green approach. ACS Appl. Mater. Interfaces 2017, 9, 34937–34943. [Google Scholar] [CrossRef] [PubMed]
- Viana, A.M.; Ribeiro, S.O.; de Castro, B.; Balula, S.S.; Cunha-Silva, L. Influence of UiO-66 (Zr) preparation strategies in its catalytic efficiency for desulfurization process. Materials 2019, 12, 3009. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, W.; Zhu, S.; Xia, J.; Chang, Y.; Jiang, W.; Zhang, M.; Zhou, Y.; Li, H. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE J. 2016, 62, 2087–2100. [Google Scholar] [CrossRef]
- Zhou, S.; He, J.; Wu, P.; He, L.; Tao, D.; Lu, L.; Yu, Z.; Zhu, L.; Chao, Y.; Zhu, W. Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4, 6-dimethyldibenzothiophene. Fuel 2022, 309, 122143. [Google Scholar] [CrossRef]
- Liu, R.; Wang, C.; Yang, J.; Liu, C.; Mguni, L.; Liu, X.; Yao, Y.; Li, F. Exceptional functionalized ionic liquid@metal-organic framework: A high-efficiency desulfurization platform for organic sulfide oxidation by reactive oxygen species. Fuel 2024, 369, 131760. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Yesire, Y.; Zhang, Y.; Ding, J.; Fan, Y.; Zhang, M.; Wang, C.; Li, H. Amphiphilic Catalysts Comprising Phosphomolybdic Acid Fastened on MIL-101(Cr): Enabling Efficient Oxidative Desulfurization under Solvent-Free and Moderate Reaction Conditions. Energy Fuels 2024, 38, 8553–8563. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Ding, J.; Wu, H.; Zhang, J.; Xu, J.; Zhang, Y.; Ma, M.; Zhang, M.; Li, H. The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance. Nanomaterials 2025, 15, 931. https://doi.org/10.3390/nano15120931
Wang C, Ding J, Wu H, Zhang J, Xu J, Zhang Y, Ma M, Zhang M, Li H. The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance. Nanomaterials. 2025; 15(12):931. https://doi.org/10.3390/nano15120931
Chicago/Turabian StyleWang, Chao, Junchao Ding, Haoyu Wu, Jiaxuan Zhang, Jing Xu, Ying Zhang, Mindan Ma, Ming Zhang, and Hongping Li. 2025. "The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance" Nanomaterials 15, no. 12: 931. https://doi.org/10.3390/nano15120931
APA StyleWang, C., Ding, J., Wu, H., Zhang, J., Xu, J., Zhang, Y., Ma, M., Zhang, M., & Li, H. (2025). The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance. Nanomaterials, 15(12), 931. https://doi.org/10.3390/nano15120931