Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Chemical, Morphological, and Structural Coating Characterization
2.3. Contact Angle
2.4. Antibacterial Evaluations
2.5. Bacterial Filtration and Culture Test Procedure
3. Results and Discussion
3.1. Chemical, Morphological, and Structural Coating Characterization
3.2. Contact Angle
3.3. Antibacterial Evaluations
3.4. Bacterial Filtration Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- El-Aswar, E.I.; Ramadan, H.; Elkik, H.; Taha, A.G. A Comprehensive Review on Preparation, Functionalization and Recent Applications of Nanofiber Membranes in Wastewater Treatment. J. Environ. Manag. 2022, 301, 113908. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-Based Wastewater Treatment: Mechanisms, Challenges, Recent Advances, and Future Prospects. Environ. Sci. Ecotechnol. 2022, 13, 100205. [Google Scholar] [CrossRef]
- Maciel, P.M.F.; Fava, N.d.M.N.; Lamon, A.W.; Fernandez-Ibañez, P.; Byrne, J.A.; Sabogal-Paz, L.P. Household Water Purification System Comprising Cartridge Filtration, UVC Disinfection and Chlorination to Treat Turbid Raw Water. J. Water Process Eng. 2021, 43, 102203. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking Water Contamination and Treatment Techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef]
- Daschner, F.D.; Rüden, H.; Simon, R.; Clotten, J. Microbiological Contamination of Drinking Water in a Commercial Household Water Filter System. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 1996, 15, 233–237. [Google Scholar] [CrossRef]
- Al-Sudani, H. A Review on Groundwater Pollution. IJRES 2019, 6, 14–22. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; Alamri, S.A. Fertilizers and Their Contaminants in Soils, Surface and Groundwater. In Encyclopedia of the Anthropocene; Elsevier: Amsterdam, The Netherlands, 2018; pp. 225–240. [Google Scholar] [CrossRef]
- Xie, Y. Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- González, Y.; Gómez, G.; Moeller-Chávez, G.E.; Vidal, G. UV Disinfection Systems for Wastewater Treatment: Emphasis on Reactivation of Microorganisms. Sustainability 2023, 15, 11262. [Google Scholar] [CrossRef]
- Ghazal, H.; Sohail, N.; Ghazal, H.; Sohail, N. Sputtering Deposition. In Thin Films—Deposition Methods and Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Bao, W.; Deng, Z.; Zhang, S.; Ji, Z.; Zhang, H. Next-Generation Composite Coating System: Nanocoating. Front. Mater. 2019, 6, 72. [Google Scholar] [CrossRef]
- Szczepańska, E.; Bielicka-Giełdoń, A.; Niska, K.; Strankowska, J.; Żebrowska, J.; Inkielewicz-Stępniak, I.; Łubkowska, B.; Swebocki, T.; Skowron, P.; Grobelna, B. Synthesis of Silver Nanoparticles in Context of Their Cytotoxicity, Antibacterial Activities, Skin Penetration and Application in Skincare Products. Supramol. Chem. 2020, 32, 207–221. [Google Scholar] [CrossRef]
- Lekha, D.; Ramaswamy, S.; Madhuri, K.; Priyanka Dwarampudi, L.; Bhaskaran, M.; Kongara, D.; Jule, L.; Nagaraj, N.; Bhargavi, V.; Ramaswamy, K. Review on Silver Nanoparticle Synthesis Method, Antibacterial Activity, Drug Delivery Vehicles, and Toxicity Pathways: Recent Advances and Future Aspects. J. Nanomater. 2021, 2021, 4401829. [Google Scholar] [CrossRef]
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1566. [Google Scholar] [CrossRef]
- Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms 2023, 11, 629. [Google Scholar] [CrossRef] [PubMed]
- Simbine, E.; Rodrigues, L.; Lapa-Guimarães, J.; Kamimura, E.; Corassin, C.; Oliveira, C. Application of Silver Nanoparticles in Food Packages: A Review. Food Sci. Technol. 2019, 39, 793–802. [Google Scholar] [CrossRef]
- Kumar, S.; Basumatary, I.B.; Sudhani, H.P.K.; Bajpai, V.K.; Chen, L.; Shukla, S.; Mukherjee, A. Plant Extract Mediated Silver Nanoparticles and Their Applications as Antimicrobials and in Sustainable Food Packaging: A State-of-the-Art Review. Trends Food Sci. Technol. 2021, 112, 651–666. [Google Scholar] [CrossRef]
- Agrawal, S.; Bhatt, M.; Rai, S.K.; Bhatt, A.; Dangwal, P.; Agrawal, P.K. Silver Nanoparticles and Its Potential Applications: A Review. J. Pharmacogn. Phytochem. 2018, 7, 930–937. [Google Scholar]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Mihut, D.M.; Afshar, A.; Lackey, L.W.; Le, K.N. Antibacterial Effectiveness of Metallic Nanoparticles Deposited on Water Filter Paper by Magnetron Sputtering. Surf. Coat. Technol. 2019, 368, 59–66. [Google Scholar] [CrossRef]
- Nagendra, J.; Suresh, A.; Aswin, S.M.; Bavan, J.C.; Keerthan, R. Antibacterial Coating on Filtration Membranes for Treatment of Cutting Fluid. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 827–830. [Google Scholar] [CrossRef]
- Wafy, K.R.; El-Aswar, E.I.; Mohamed, W.S.E.; El-Sabbagh, S.M. Water Disinfection Using Durable Ceramic Filter Coated with Silver Nanoparticles Synthesized Using Actinomycetes. Appl. Water Sci. 2023, 13, 140. [Google Scholar] [CrossRef]
- Sciuto, E.L.; Filice, S.; Coniglio, M.A.; Faro, G.; Gradon, L.; Galati, C.; Spinella, N.; Libertino, S.; Scalese, S. Antimicrobial S-PBC Coatings for Innovative Multifunctional Water Filters. Molecules 2020, 25, 5196. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Goswami, S.; Dubey, R.; Dwivedi, S.; Puzari, A. Antimicrobial Activity of Silver-Coated Hollow Poly(Methylmethacrylate) Microspheres for Water Decontamination. Environ. Sci. Eur. 2021, 33, 22. [Google Scholar] [CrossRef]
- Ferraris, M.; Balagna, C.; Perero, S. Method for the Application of an Antiviral Coating to a Substrate and Relative Coating. International Application No. PCT/IB2018/057639, 2 May 2019. [Google Scholar]
- NCCLS M2-A9; Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard. NCCLS: Villanova, PA, USA, 2003.
- ISO 6887-1; Microbiology of Food and Animal Feeding Stuffs—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. International Organization for Standardization: Geneva, Switzerland, 1999.
- Sharma, K.; Guleria, S.; Razdan, V.K. Green Synthesis of Silver Nanoparticles Using Ocimum Gratissimum Leaf Extract: Characterization, Antimicrobial Activity and Toxicity Analysis. J. Plant Biochem. Biotechnol. 2020, 29, 213–224. [Google Scholar] [CrossRef]
- Kuo, D.H.; Chien, C.H.; Huang, C.H. Zirconia and zirconia–silica thin films deposited by magnetron sputtering. Thin Solid Film. 2002, 420–421, 47–53. [Google Scholar] [CrossRef]
- Al-Khedhairy, A.A.; Wahab, R. Silver Nanoparticles: An Instantaneous Solution for Anticancer Activity against Human Liver (HepG2) and Breast (MCF-7) Cancer Cells. Metals 2022, 12, 148. [Google Scholar] [CrossRef]
- Luceri, A.; Perero, S.; Cochis, A.; Scalia, A.C.; Rimondini, L.; Ferraris, M.; Balagna, C. Washing Resistant Antibacterial Composite Coatings on Cotton Textiles. Cellulose 2023, 30, 9877–9897. [Google Scholar] [CrossRef]
- Luceri, A.; Francese, R.; Perero, S.; Lembo, D.; Ferraris, M.; Balagna, C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS Appl. Mater. Interfaces 2024, 16, 3955–3965. [Google Scholar] [CrossRef]
- Balagna, C.; Francese, R.; Perero, S.; Lembo, D.; Ferraris, M. Nanostructured Composite Coating Endowed with Antiviral Activity against Human Respiratory Viruses Deposited on Fibre-Based Air Filters. Surf. Coat. Technol. 2021, 409, 126873. [Google Scholar] [CrossRef]
- Arun, K.L.; Udhayakumar, M.; Radhika, N.A. Comprehensive Review on Various Ceramic Nanomaterial Coatings Over Metallic Substrates: Applications, Challenges and Future Trends. J. Bio-Tribo-Corros. 2023, 9, 11. [Google Scholar] [CrossRef]
- Jarrar, R.A.; Abbas, M.; Al-Ejji, M. Environmental Remediation and the Efficacy of Ceramic Membranes in Wastewater Treatment—A Review. Emergent Mater. 2024, 7, 1295–1327. [Google Scholar] [CrossRef]
- Valerini, D.; Tammaro, L.; Vitali, R.; Guillot, G.; Rinaldi, A. Sputter-Deposited Ag Nanoparticles on Electrospun PCL Scaffolds: Morphology, Wettability and Antibacterial Activity. Coatings 2021, 11, 345. [Google Scholar] [CrossRef]
- Chauhan, K.V.; Subhedar, D.G.; Prajapati, R.; Dave, D. Experimental Investigation of Wettability Properties for Zirconia Based Coatings by RF Magnetron Sputtering. Mater. Today Proc. 2020, 26, 2447–2451. [Google Scholar] [CrossRef]
- Chan, Y.; Wu, X.H.; Chieng, B.W.; Ibrahim, N.A.; Then, Y.Y. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. Nanomaterials 2021, 11, 1046. [Google Scholar] [CrossRef]
- Rodrigues, E.; Miranda, E.J.P., Jr.; Oliveira, M. Silver-Doped Zirconia Nanoparticles as Possible Bactericide in Water Filters. Mater. Sci. Forum 2014, 798–799, 69–74. [Google Scholar] [CrossRef]
- Wehling, J.; Köser, J.; Lindner, P.; Lüder, C.; Beutel, S.; Kroll, S.; Rezwan, K. Silver Nanoparticle-Doped Zirconia Capillaries for Enhanced Bacterial Filtration. Mater. Sci. Eng. 2015, 48, 179–187. [Google Scholar] [CrossRef]
- Abdulla, N.K.; Siddiqui, S.I.; Fatima, B.; Sultana, R.; Tara, N.; Hashmi, A.A.; Ahmad, R.; Mohsin, M.; Nirala, R.K.; Linh, N.T.; et al. Silver Based Hybrid Nanocomposite: A Novel Antibacterial Material for Water Cleansing. J. Clean. Prod. 2021, 284, 124746. [Google Scholar] [CrossRef]
Substrate | Deposition Time | Zr (% at.) | Ag (% at.) |
---|---|---|---|
PCL | 10 min | 4.5 ± 0.4 | 1.1 ± 0.2 |
20 min | 4.8 ± 0.8 | 1.6 ± 0.8 | |
PAN-PCL | 10 min | 4.6 ± 0.1 | 1.4 ± 0.1 |
20 min | 4.1 ± 1.6 | 1.5 ± 0.9 |
Sample | Contact Angle (°) | |
---|---|---|
PCL | Uncoated | 107.9 ± 1.9 |
ZrO2-Ag_10 | 97.4 ± 1.5 | |
ZrO2-Ag_20 | 127.5 ± 2.1 | |
PAN-PCL | Uncoated | / |
ZrO2-Ag_10 | 98.4 ± 1.5 | |
ZrO2-Ag_20 | 88.9 ± 1.4 |
Bacterium | Sample | CFUs Before Filtration | CFUs After Filtration | Growth on Membrane |
---|---|---|---|---|
B. subtilis | Uncoated | 88 | 1 | Yes |
ZrO2_Ag_10 | - | - | No | |
ZrO2_Ag_20 | 86 | 10 | No | |
L. monocytogenes | Uncoated | TM | TM | Yes |
ZrO2_Ag_10 | 27 | 14 | No | |
ZrO2_Ag_20 | 26 | 18 | Non | |
E. coli | Uncoated | 54 | 39 | No |
ZrO2_Ag_10 | 46 | 44 | No | |
ZrO2_Ag_20 | 55 | 54 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luceri, A.; Toppan, M.; Calogero, A.; Rinaldi, A.; Balagna, C. Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application. Nanomaterials 2025, 15, 911. https://doi.org/10.3390/nano15120911
Luceri A, Toppan M, Calogero A, Rinaldi A, Balagna C. Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application. Nanomaterials. 2025; 15(12):911. https://doi.org/10.3390/nano15120911
Chicago/Turabian StyleLuceri, Angelica, Michela Toppan, Alessandro Calogero, Antonio Rinaldi, and Cristina Balagna. 2025. "Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application" Nanomaterials 15, no. 12: 911. https://doi.org/10.3390/nano15120911
APA StyleLuceri, A., Toppan, M., Calogero, A., Rinaldi, A., & Balagna, C. (2025). Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application. Nanomaterials, 15(12), 911. https://doi.org/10.3390/nano15120911