Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural and Crystallographic Features of Spin-Coated ZnO NPs Thin Films
3.2. Optical Properties and Defect-Level Analysis of ZnO NPs Films
3.3. Photocurrent Behavior and PPC Mechanism in ZnO Nanoparticle Devices
3.4. Gate-Tunable Electrical and Photoresponsive Behavior of ZnO NP-Based Three-Terminal Devices
3.5. Short-Term Synaptic Plasticity in Al/ZnO NPs/SiO2/Si 3-Terminal Optoelectronic Synaptic Devices
3.6. Enhanced Short-Term Synaptic Plasticity via Gate-Controlled Optical Stimulation
3.7. Enhanced Learning and Memory Retention in ZnO NPs-Based 3-Terminal Optoelectronic Synaptic Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J. Neuromorphic Computing: Mimicking the Brain for Advanced Computing Capabilities. J. Comput. Eng. Inf. Technol. 2024, 13, 6. [Google Scholar]
- Li, N.; Zhang, S.; Peng, Y.; Li, X.; Zhang, Y.; He, C.; Zhang, G. 2D Semiconductor-Based Optoelectronics for Artificial Vision. Adv. Funct. Mater. 2023, 33, 2305589. [Google Scholar] [CrossRef]
- Kim, Y.; Baek, J.H.; Im, I.H.; Lee, D.H.; Park, M.H.; Jang, H.W. Two-Terminal Neuromorphic Devices for Spiking Neural Networks: Neurons, Synapses, and Array Integration. ACS Nano 2024, 18, 34531–34571. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.E.; Vishwanath, S.K.; Yang, J.; Periyal, S.S.; Nirmal, A.; Jamaludin, N.F.; John, R.A.; Mathews, N. Advances in Multi-Terminal Transistors as Reconfigurable Interconnections for Neuromorphic Sensing and Processing. Adv. Electron. Mater. 2024, 10, 2300540. [Google Scholar] [CrossRef]
- Han, H.; Yu, H.; Wei, H.; Gong, J.; Xu, W. Recent Progress in Three-Terminal Artificial Synapses: From Device to System. Small 2019, 15, 1900695. [Google Scholar] [CrossRef]
- Ilyas, N.; Wang, J.; Li, C.; Li, D.; Fu, H.; Gu, D.; Jiang, X.; Liu, F.; Jiang, Y.; Li, W. Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices. Adv. Funct. Mater. 2022, 32, 2110976. [Google Scholar] [CrossRef]
- Xie, C.; Liu, C.-K.; Loi, H.-L.; Yan, F. Perovskite-Based Phototransistors and Hybrid Photodetectors. Adv. Funct. Mater. 2020, 30, 1903907. [Google Scholar] [CrossRef]
- Yue, Y.; Yu, Z.; Li, F.; Peng, W.; Zhu, Q.; He, Y. A Low-Cost Flexible Optoelectronic Synapse Based on ZnO Nanowires for Neuromorphic Computing. Sensors 2024, 24, 7788. [Google Scholar] [CrossRef]
- Oh, J.-H.; Kim, J.-H.; Kim, H.-J.; Kim, Y.-H.; Kim, K.-K.; Lee, S.-N. Enhanced Long-Term Memory Properties of ZnO Nanoparticle-Based Optical Synaptic Devices for Neuromorphic Computing. Adv. Intell. Syst. 2023, 5, 2300350. [Google Scholar] [CrossRef]
- Pham, Q.P.; Guyen, Q.N.L.; Nguyen, N.H.; Doan, U.T.; Ung, T.D.T.; Tran, V.C.; Phan, T.B.; Pham, A.T.T.; Pham, N.K. Calcination-dependent Microstructural and Optical Characteristics of Eco-Friendly Synthesized ZnO Nanoparticles and Their Implementation in Analog Memristor Application. Ceram. Int. 2023, 49, 20742. [Google Scholar] [CrossRef]
- Sumanth, A.; Ganapathi, K.L.; Rao, M.S.R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D Appl. Phys. 2022, 55, 393001. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.H.; Jeon, D.B.; Lee, S.-N. High-Performance Sol–Gel-Derived CNT–ZnO Nanocomposite-Based Photodetectors with Controlled Surface Wrinkles. Materials 2024, 17, 5325. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.H.; Ci, W.J.; Xu, X.H.; Gang, L. Optoelectronic Memristor for Neuromorphic Computing. Chin. Phys. B 2020, 4, 048401. [Google Scholar] [CrossRef]
- Drummond, T.J.; Morkoç, H.; Lee, K.; Shur, M. Model for Modulation Doped Field Effect Transistor. IEEE Electron Device Lett. 1982, 3, 292–294. [Google Scholar] [CrossRef]
- Jeon, D.; Lee, S.H.; Lee, S.N. Enhanced Long-Term In-Sensing Memory in ZnO Nanoparticle-Based Optoelectronic Synaptic Devices Through Thermal Treatment. Materials 2025, 18, 1321. [Google Scholar] [CrossRef]
- Gupta, G.; Rajasekharan, B.; Hueting, R.J.E. Electrostatic Doping in Semiconductor Devices. IEEE Trans. Electron Devices. 2017, 64, 3044–3055. [Google Scholar] [CrossRef]
- Pillai, P.B.; De Souza, M.M. Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Appl. Mater. Interface 2017, 9, 1609–1618. [Google Scholar] [CrossRef]
- Elsayed, I.A.; Afify, A.S. Controlling the Surface Morphology of ZnO Nano-Thin Film Using the Spin Coating Technique. Materials 2022, 15, 6178. [Google Scholar] [CrossRef]
- Sendi, R.K.; Mahmud, S. Effects of High-Oxygen Thermal Annealing on Structural, Electrical and Optical Properties of Undoped ZnO Discs Made from 40-nm ZnO Nanoparticles. Indian J. Phys. 2013, 87, 523–531. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, A.; Deepak; Kaur, D. ZnO Nanocrystalline Powder Synthesized by Ultrasonic Mist-Chemical Vapour Deposition. Opt. Mater. 2008, 30, 1316–1322. [Google Scholar] [CrossRef]
- Kalbac, M.; Hsieh, Y.-P.; Farhat, H.; Kavan, L.; Hofmann, M.; Kong, J.; Dresselhaus, M.S. Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and In Situ Raman Spectroelectrochemical Study. Nano Lett. 2010, 10, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Zhang, J.; Liu, Y.; Chen, H. High-Quality Hexagonal ZnO Crystals Grown by Chemical Vapor Deposition. Mater. Lett. 2010, 64, 1950–1953. [Google Scholar] [CrossRef]
- Mondal, P. Effect of Oxygen vacancy induced defect on the optical emission and excitonic lifetime of intrinsic ZnO. Opt. Mater. 2019, 98, 109476. [Google Scholar] [CrossRef]
- Kolb, M. UV-Visible Reflectance Spectroscopy. In Spectroelectrochemistry; Springer: Boston, MA, USA, 1988; pp. 87–188. [Google Scholar]
- Winiarski, J.; Tylus, W.; Winiarska, K.; Szczygieł, I.; Szczygieł, B. XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions. J. Spectrosc. 2018, 2018, 2079278. [Google Scholar] [CrossRef]
- Valtiner, M.; Borodin, S.; Grundmeier, G. Preparation and Characterisation of Hydroxide Stabilized ZnO(0001)–Zn–OH Surfaces. Phys. Chem. Chem. Phys. 2007, 9, 19. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, M.; You, B.; Zhang, Q.; Yuan, H.; Ostrikov, K.K. Oxygen Vacancy-Mediated ZnO Nanoparticle Photocatalyst for Degradation of Methylene Blue. Appl. Sci. 2018, 8, 3. [Google Scholar] [CrossRef]
- Huang, L.; Ge, Z.; Zhang, X.; Zhu, Y. Oxygen-Induced Defect-Healing and Photo-Brightening of Halide Perovskite Semiconductors: Science and Application. J. Mater. Chem. A 2021, 9, 4379–4414. [Google Scholar] [CrossRef]
- Le Gressus, C.; Blaise, G. Breakdown Phenomena Related to Trapping/Detrapping Processes in Wide Band Gap Insulators. IEEE Trans. Electr. Insul. 2022, 27, 472–481. [Google Scholar] [CrossRef]
- Lakshmi Prasanna, V.; Vijayaraghavan, R. Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark. Langmuir 2015, 31, 9155–9162. [Google Scholar] [CrossRef]
- Bao, J.; Shalish, I.; Su, Z.; Gurwitz, R.; Capasso, F.; Wang, X.; Ren, Z. Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowire. Nanoscale Res. Lett. 2011, 6, 404. [Google Scholar] [CrossRef]
- Lee, J.; Lim, K.H.; Kim, Y.S. Effects of Unusual Gate Current on the Electrical Properties of Oxide Thin-Film Transistors. Sci. Rep. 2018, 8, 13905. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.; Hablitz, J.J. Paired-pulse facilitation in the dentate gyrus: A patch-clamp study in rat hippocampus in vitro. J. Neurophysiol. 1994, 72, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.S.; Kundu, S.; Bannur, B.; George, S.J.; Kulkarni, G.U. Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on 1D supramolecular nanofibres. Nanoscale 2023, 15, 14767–14775. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, H.-J.; Kim, H.-J.; Choi, J.; Oh, J.-H.; Choi, D.-C.; Byun, J.; Ann, S.-E.; Lee, S.-N. Oxide Semiconductor Memristor-based Optoelectronic Synaptic Devices with Quaternary Memory Storage. Adv. Electron. Mater. 2024, 10, 2300863. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Q.; He, A.; Yan, Y.; Cao, X.; Liu, P.; Jiang, Y. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Discover Nano 2023, 19, 116. [Google Scholar] [CrossRef]
- Sung, J.; Kim, Y.; Park, M.; Kim, J.; Lee, D.; Lee, H.; Yoo, S.; Lee, W. Unveiling the role of side chain for improving nonvolatile characteristics of conjugated polymers-based artificial synapse. Adv. Electron. Mater. 2023, 9, 2201164. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, M.F.; Nasim, M.; Elahi, E.; Rabeel, M.; Asim, M.; Rehmat, A.; Pervez, M.H.; Rehman, S.; Kim, H.; et al. Photonic Synapse of CrSBr/PtS2 Transistor for Neuromorphic Computing and Light Decoding. Adv. Funct. Mater. 2024, 34, 2401991. [Google Scholar] [CrossRef]
- Pyo, J.; Bae, J.-H.; Kim, S.; Cho, S. Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices. Materials 2023, 16, 1249. [Google Scholar] [CrossRef]
- Xi, F.; Grenmyr, A.; Zhang, J.; Han, Y.; Bae, J.H.; Grützmacher, D.; Zhao, Q.-T. Heterosynaptic Plasticity and Neuromorphic Boolean Logic Enabled by Ferroelectric Polarization Modulated Schottky Diodes. Adv. Electron. Mater. 2024, 10, 2301397. [Google Scholar] [CrossRef]
- Lian, Q.; Liu, Y.; Zhang, X.; Shan, L.; Wu, X.; Chen, H.; Guo, T. Noise Detection System Based on Noise Triboelectric Nanogenerator and Synaptic Transistors. Nano Energy 2023, 116, 108805. [Google Scholar] [CrossRef]
Modified Device Structure | Device Structure | Functionalities | EPSC (nA) | PPF (%) | Decay Time (s) | Refs. |
---|---|---|---|---|---|---|
2-terminal | A-ZnO Microtube/Graphite | EPSC, PPF, LTP | 5 nA | 180% | 33s | [36] |
Bottom gate | PDPP3T/SiO2/Si | EPSC, PPF | 101 µA | 71% | 25s | [37] |
Bottom gate | CrSbₓ/PtS2/Al2O3/Si | EPSC, PPF, LTM, STM | 25 nA | 150% | 24s | [38] |
Bottom gate | W/IGZO/HfAlOx/CeOx/W | EPSC, PPF, STP | 4.5 µA | 107% | 12s | [39] |
Top gate | TiN/HZO/NiSi2/Si | EPSC, PPF, LTP, STP | 70 nA | 80% | 50µs | [40] |
Bottom gate | ITO/Ta2O5/Si | EPSC, PPF | 9 µA | 150% | 40ms | [41] |
Bottom gate | Al/ZnO NPs/SiO2/P-Si | EPSC, PPF | 60 nA | 185% | 26s | Our Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, D.; Lee, S.H.; Lee, S.-N. Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications. Nanomaterials 2025, 15, 908. https://doi.org/10.3390/nano15120908
Jeon D, Lee SH, Lee S-N. Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications. Nanomaterials. 2025; 15(12):908. https://doi.org/10.3390/nano15120908
Chicago/Turabian StyleJeon, Dabin, Seung Hun Lee, and Sung-Nam Lee. 2025. "Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications" Nanomaterials 15, no. 12: 908. https://doi.org/10.3390/nano15120908
APA StyleJeon, D., Lee, S. H., & Lee, S.-N. (2025). Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications. Nanomaterials, 15(12), 908. https://doi.org/10.3390/nano15120908