Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
Abstract
:1. Introduction
2. Memristive Characteristics of Perovskite QDs
3. Synthetic Approaches
3.1. Hot Injection Method
3.2. LARP Method
3.3. Alternative Synthetic Strategies
4. Fabrication
5. Switching Mechanisms
5.1. Ionic Migration Mechanism
5.2. Interface-Type Mechanism
6. Memory Applications
Device Structure | Organic/ Inorganic | Vset/VreSet (V) | Ion/Ioff Ratio | Endurance (Cycles) | Retention (s) | Mechanism (Proposed) | Flexible (Bending Cycles) | Ref. |
---|---|---|---|---|---|---|---|---|
ITO/PMMA/CH3NH3PbBr3/PMMA/PMMA/Ag | Organic | 1/−1 | 103 | – | 4 × 103 | Trap-assisted SCLC | 10 | [137] |
ITO/CsPbCl3: PMMA/Al | Inorganic | −0.3/2.6 | 2 × 104 | 100 | 104 | Trap-assisted SCLC | No | [138] |
PET/ITO/PMMA/CsPbBr3/PMMA/Ag | Inorganic | 2.6/−2.7 | 6 × 105 | 5 × 103 | 4 × 105 | ECM and VCM | 100 | [139] |
ITO/CsPbBr3/Au | Inorganic | −2.4/1.55 | 107 | – | 103 | VCM | No | [140] |
PDMS/ITO/FLBP-CsPbBr3/Ag | Inorganic | 1.05/0.2 | 107 | – | – | ECM | – | [59] |
PET/ITO/CsPbBr3: GO/Ag | Inorganic | 2.28/−2.0 | 1.4 × 107 | 500 | 5 × 103 | ECM and VCM | 10,000 | [139] |
PEDOT: PSS/ITO/Rb6Pb5Cl16/Al | Inorganic | −1/1.1 | 106 | 500 | 104 | VCM | No | [153] |
PET/ITO/Cs3Bi2Br9/Al | Inorganic | −0.45/2.2 | 105 | 103 | 104 | VCM and SCLC | 100 | [142] |
ITO/ZnO NCs/b-PEI/Cs1−xFAxPbBr3/V2O5–y/Al | Mixed organic and inorganic | 5.55/−5.5 | – | – | – | VCM | No | [152] |
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; Gao, S.; Xu, L.; Yue, W.; Zhang, C.; Kan, H.; Li, Y.; Shen, G. Nanostructured Perovskites for Nonvolatile Memory Devices. Chem. Soc. Rev. 2022, 51, 3341–3379. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhao, X.; Wang, Z.; Shan, X.; Xu, H.; Liu, Y. Halide Perovskite Memristors for Optoelectronic Memory and Computing Applications. Inf. Funct. Mater. 2024, 1, 265–281. [Google Scholar] [CrossRef]
- Sun, K.; Chen, J.; Yan, X. The Future of Memristors: Materials Engineering and Neural Networks. Adv. Funct. Mater. 2021, 31, 2006773. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Zeng, J.; Fan, F.; Gu, J.; Chen, X.; Yan, L.; Xie, G.; Liu, S.; Yan, Q.; et al. 90% Yield Production of Polymer Nano-Memristor for in-Memory Computing. Nat. Commun. 2021, 12, 1984. [Google Scholar] [CrossRef]
- Cheng, X.; Dou, Z.; Lian, H.; Qin, Z.; Guo, H.; Li, X.; Wong, W.; Dong, Q. Principles, Fabrication, and Applications of Halide Perovskites-based Memristors. FlexMat 2024, 1, 127–149. [Google Scholar] [CrossRef]
- Kim, T.; Choi, C.H.; Hur, J.S.; Ha, D.; Kuh, B.J.; Kim, Y.; Cho, M.H.; Kim, S.; Jeong, J.K. Progress, Challenges, and Opportunities in Oxide Semiconductor Devices: A Key Building Block for Applications Ranging from Display Backplanes to 3D Integrated Semiconductor Chips. Adv. Mater. 2023, 35, 2204663. [Google Scholar] [CrossRef]
- Shalf, J. The Future of Computing beyond Moore’s Law. Phil. Trans. R. Soc. A 2020, 378, 20190061. [Google Scholar] [CrossRef]
- Pazos, S.; Xu, X.; Guo, T.; Zhu, K.; Alshareef, H.N.; Lanza, M. Solution-Processed Memristors: Performance and Reliability. Nat. Rev. Mater. 2024, 9, 358–373. [Google Scholar] [CrossRef]
- Teja Nibhanupudi, S.S.; Roy, A.; Veksler, D.; Coupin, M.; Matthews, K.C.; Disiena, M.; Ansh; Singh, J.V.; Gearba-Dolocan, I.R.; Warner, J.; et al. Ultra-Fast Switching Memristors Based on Two-Dimensional Materials. Nat. Commun. 2024, 15, 2334. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-Based Resistive Switching Memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The Future of Electronics Based on Memristive Systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Kim, S.; Du, C.; Sheridan, P.; Ma, W.; Choi, S.; Lu, W.D. Experimental Demonstration of a Second-Order Memristor and Its Ability to Biorealistically Implement Synaptic Plasticity. Nano Lett. 2015, 15, 2203–2211. [Google Scholar] [CrossRef]
- Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; Van Den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in Redox-Based Resistive Switches Require Extension of Memristor Theory. Nat. Commun. 2013, 4, 1771. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Wang, Z.; Lin, Y.; Liu, Y. Memristors with Organic-inorganic Halide Perovskites. InfoMat 2019, 1, 183–210. [Google Scholar] [CrossRef]
- Mao, S.; Sun, B.; Zhou, G.; Yang, Y.; Zhao, H.; Zhou, Y.; Chen, Y.; Zhao, Y. Analog-to-Digital and Self-Rectifying Resistive Switching Behavior Based on Flower-like δ-MnO2. Appl. Surf. Sci. 2022, 595, 153560. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Shih, L.-C.; Chen, K.-T.; Chen, J.-S. Emerging Higher-Order Memristors for Bio-Realistic Neuromorphic Computing: A Review. Mater. Today 2023, 68, 356–376. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X.; Ye, C. A Review of Memristor: Material and Structure Design, Device Performance, Applications and Prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.; Wang, C.; Zhang, W.; Li, R.-W.; Wang, L. Polymer Memristor for Information Storage and Neuromorphic Applications. Mater. Horiz. 2014, 1, 489. [Google Scholar] [CrossRef]
- Kullmann, D.M.; Lamsa, K.P. Long-Term Synaptic Plasticity in Hippocampal Interneurons. Nat. Rev. Neurosci. 2007, 8, 687–699. [Google Scholar] [CrossRef]
- Fortune, E.S.; Rose, G.J. Short-Term Synaptic Plasticity as a Temporal Filter. Trends Neurosci. 2001, 24, 381–385. [Google Scholar] [CrossRef]
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y.; et al. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef]
- Shi, J.; Ha, S.D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. A Correlated Nickelate Synaptic Transistor. Nat. Commun. 2013, 4, 2676. [Google Scholar] [CrossRef]
- Zhang, L.I.; Tao, H.W.; Holt, C.E.; Harris, W.A.; Poo, M. A Critical Window for Cooperation and Competition among Developing Retinotectal Synapses. Nature 1998, 395, 37–44. [Google Scholar] [CrossRef]
- Liao, K.; Lei, P.; Tu, M.; Luo, S.; Jiang, T.; Jie, W.; Hao, J. Memristor Based on Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and Synaptic Applications. ACS Appl. Mater. Interfaces 2021, 13, 32606–32623. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and Operation of an Integrated Neuromorphic Network Based on Metal-Oxide Memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef]
- Ma, Z.; Ge, J.; Chen, W.; Cao, X.; Diao, S.; Liu, Z.; Pan, S. Reliable Memristor Based on Ultrathin Native Silicon Oxide. ACS Appl. Mater. Interfaces 2022, 14, 21207–21216. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Lee, A.; Park, H.; Jang, J.; Bae, J.; Kang, I.M.; Kim, E.; Lee, S. Organic Memristor-Based Flexible Neural Networks with Bio-Realistic Synaptic Plasticity for Complex Combinatorial Optimization. Adv. Sci. 2023, 10, 2300659. [Google Scholar] [CrossRef]
- Ullah, F.; Tarkhan, M.; Fredj, Z.; Su, Y.; Wang, T.; Sawan, M. A Stable Undoped Low-Voltage Memristor Cell Based on Titania (TiOx). Nano Express 2024, 5, 015003. [Google Scholar] [CrossRef]
- Guan, X.; Hu, W.; Haque, M.A.; Wei, N.; Liu, Z.; Chen, A.; Wu, T. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Adv. Funct. Mater. 2018, 28, 1704665. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Jin, S. Can We Find the Perfect A-Cations for Halide Perovskites? ACS Energy Lett. 2021, 6, 3386–3389. [Google Scholar] [CrossRef]
- Lee, T. Emerging Halide Perovskite Materials and Devices for Optoelectronics. Adv. Mater. 2019, 31, 1905077. [Google Scholar] [CrossRef]
- Acharyya, P.; Kundu, K.; Biswas, K. 2D Layered All-Inorganic Halide Perovskites: Recent Trends in Their Structure, Synthesis and Properties. Nanoscale 2020, 12, 21094–21117. [Google Scholar] [CrossRef]
- Hao, D.; Yang, Z.; Huang, J.; Shan, F. Recent Developments of Optoelectronic Synaptic Devices Based on Metal Halide Perovskites. Adv. Funct. Mater. 2023, 33, 2211467. [Google Scholar] [CrossRef]
- Xue, Z.; Xu, Y.; Jin, C.; Liang, Y.; Cai, Z.; Sun, J. Halide Perovskite Photoelectric Artificial Synapses: Materials, Devices, and Applications. Nanoscale 2023, 15, 4653–4668. [Google Scholar] [CrossRef]
- Han, J.S.; Le, Q.V.; Choi, J.; Hong, K.; Moon, C.W.; Kim, T.L.; Kim, H.; Kim, S.Y.; Jang, H.W. Air-Stable Cesium Lead Iodide Perovskite for Ultra-Low Operating Voltage Resistive Switching. Adv. Funct. Mater. 2018, 28, 1705783. [Google Scholar] [CrossRef]
- Patel, J.B.; Wright, A.D.; Lohmann, K.B.; Peng, K.; Xia, C.Q.; Ball, J.M.; Noel, N.K.; Crothers, T.W.; Wong-Leung, J.; Snaith, H.J.; et al. Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. Adv. Energy Mater. 2020, 10, 1903653. [Google Scholar] [CrossRef]
- Unger, E.L.; Kegelmann, L.; Suchan, K.; Sörell, D.; Korte, L.; Albrecht, S. Roadmap and Roadblocks for the Band Gap Tunability of Metal Halide Perovskites. J. Mater. Chem. A 2017, 5, 11401–11409. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Zhou, L.; Chen, X.; Chen, J.; Zhou, Y.; Roy, V.A.L.; Han, S.-T. Emerging Perovskite Materials for High Density Data Storage and Artificial Synapses. J. Mater. Chem. C 2018, 6, 1600–1617. [Google Scholar] [CrossRef]
- Yu, X.; Shen, T.; Zhu, C.; Zeng, Q.; Yu, A.; Liu, S.; Yi, R.; Weng, Z.; Zhan, Y.; Hou, X.; et al. Memory Devices via Unipolar Resistive Switching in Symmetric Organic–Inorganic Perovskite Nanoscale Heterolayers. ACS Appl. Nano Mater. 2020, 3, 11889–11896. [Google Scholar] [CrossRef]
- Younis, A.; Hu, L.; Sharma, P.; Lin, C.; Mi, Y.; Guan, X.; Zhang, D.; Wang, Y.; He, T.; Liu, X.; et al. Enhancing Resistive Switching Performance and Ambient Stability of Hybrid Perovskite Single Crystals via Embedding Colloidal Quantum Dots. Adv. Funct. Mater. 2020, 30, 2002948. [Google Scholar] [CrossRef]
- Yan, K.; Chen, B.; Hu, H.; Chen, S.; Dong, B.; Gao, X.; Xiao, X.; Zhou, J.; Zou, D. First Fiber-Shaped Non-Volatile Memory Device Based on Hybrid Organic–Inorganic Perovskite. Adv. Elect. Mater. 2016, 2, 1600160. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, L.; Zhu, X.; Zhou, Y.; Han, S. Photonic Memristor for Future Computing: A Perspective. Adv. Opt. Mater. 2019, 7, 1900766. [Google Scholar] [CrossRef]
- Shi, E.; Gao, Y.; Finkenauer, B.P.; Akriti, A.; Coffey, A.H.; Dou, L. Two-Dimensional Halide Perovskite Nanomaterials and Heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhao, B.; Yang, T.; Lai, R.; Lan, D.; Friend, R.H.; Di, D. Toward Stable and Efficient Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2022, 32, 2109495. [Google Scholar] [CrossRef]
- Li, N.; Hu, X.; Tang, Y.; Lei, Y.; Suet Lau, Y.; Chen, Q.; Sui, X.; Zhu, F. Perovskite/Organic Tandem Device to Realize Light Detection and Emission Dual Function. Chem. Eng. J. 2024, 490, 151573. [Google Scholar] [CrossRef]
- Jia, S.; Li, Y.; Gao, C.; Liu, G.; Ren, Y.; He, C.; An, X.-T. Realization of P-Type MA-Based Perovskite Solar Cells Based on Exposure of the (002) Facet. Appl. Phys. Letter. 2025, 126, 023908. [Google Scholar] [CrossRef]
- Gao, C.; Jia, S.; Yin, X.; Li, Z.; Yang, G.; Chen, J.; Li, Z.; An, X. Enhancing Open-Circuit Voltage in FAPbI3 Perovskite Solar Cells via Self-Formation of Coherent Buried Interface FAPbIxCl3−x. Chem. Commun. 2025, 61, 2758–2761. [Google Scholar] [CrossRef] [PubMed]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.; Nazeeruddin, M.K.; Maier, J.; Grätzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151–3157. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Z.; Zhang, Y.; Yu, Z.; Shi, J.; Xiong, R. Low Temperature Fabrication of the Giant Dielectric Material CaCu3Ti4O12 by Oxalate Coprecipitation m Ethod. Mater. Chem. Phys. 2009, 113, 746–748. [Google Scholar] [CrossRef]
- De Quilettes, D.W.; Vorpahl, S.M.; Stranks, S.D.; Nagaoka, H.; Eperon, G.E.; Ziffer, M.E.; Snaith, H.J.; Ginger, D.S. Impact of Microstructure on Local Carrier Lifetime in Perovskite Solar Cells. Science 2015, 348, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guan, X.; Chen, W.; Yang, J.; Hu, L.; Yang, J.; Li, S.; Kalantar-Zadeh, K.; Wen, X.; Wu, T. Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. ACS Appl. Mater. Interfaces 2020, 12, 38376–38385. [Google Scholar] [CrossRef]
- Tang, X.; Van Den Berg, M.; Gu, E.; Horneber, A.; Matt, G.J.; Osvet, A.; Meixner, A.J.; Zhang, D.; Brabec, C.J. Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Lett. 2018, 18, 2172–2178. [Google Scholar] [CrossRef]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Y.; Huang, S.; Xing, X.; Lv, Z.; Wang, J.; Yang, J.-Q.; Zhang, G.; Zhou, Y.; Han, S.-T. Memristor-Based Biomimetic Compound Eye for Real-Time Collision Detection. Nat. Commun. 2021, 12, 5979. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Liu, X.; Shi, Z.; Fang, X.; He, J. Low-Dimensional Metal Halide Perovskite Photodetectors. Adv. Mater. 2021, 33, 2003309. [Google Scholar] [CrossRef]
- Quan, L.N.; García De Arquer, F.P.; Sabatini, R.P.; Sargent, E.H. Perovskites for Light Emission. Adv. Mater. 2018, 30, 1801996. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-Y.; Choi, J.; Kim, H.-S.; Kim, J.; Yang, J.-M.; Cuhadar, C.; Han, J.S.; Kim, S.-J.; Lee, D.; Jang, H.W.; et al. Wafer-Scale Reliable Switching Memory Based on 2-Dimensional Layered Organic–Inorganic Halide Perovskite. Nanoscale 2017, 9, 15278–15285. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Guan, X.; Wang, Y.; Lin, C.; Cui, Y.; Huang, Y.; Zhang, X.; Zhang, R.; Yang, X.; Wu, T. Low-Dimensional Lead-Free Inorganic Perovskites for Resistive Switching with Ultralow Bias. Adv. Funct. Mater. 2020, 30, 2002110. [Google Scholar] [CrossRef]
- Yang, J.; Kim, S.; Seo, J.; Cuhadar, C.; Son, D.; Lee, D.; Park, N. 1D Hexagonal HC(NH2 )2 PbI3 for Multilevel Resistive Switching Nonvolatile Memory. Adv. Elect. Mater. 2018, 4, 1800190. [Google Scholar] [CrossRef]
- Hong, K.; Le, Q.V.; Kim, S.Y.; Jang, H.W. Low-Dimensional Halide Perovskites: Review and Issues. J. Mater. Chem. C 2018, 6, 2189–2209. [Google Scholar] [CrossRef]
- Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A.; et al. Grain Boundary Dominated Ion Migration in Polycrystalline Organic–Inorganic Halide Perovskite Films. Energy Environ. Sci. 2016, 9, 1752–1759. [Google Scholar] [CrossRef]
- Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J.K.; Prasad, S.K.K.; Metin, D.Z.; Laufersky, G.; Gaston, N.; Halpert, J.E.; Hodgkiss, J.M. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals. Chem. Mater. 2017, 29, 3644–3652. [Google Scholar] [CrossRef]
- Sichert, J.A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K.Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J.K.; et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15, 6521–6527. [Google Scholar] [CrossRef]
- Imran, M.; Di Stasio, F.; Dang, Z.; Canale, C.; Khan, A.H.; Shamsi, J.; Brescia, R.; Prato, M.; Manna, L. Colloidal Synthesis of Strongly Fluorescent CsPbBr3 Nanowires with Width Tunable down to the Quantum Confinement Regime. Chem. Mater. 2016, 28, 6450–6454. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Wolf, C.; Kim, Y.-T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C.G.; Rhee, S.-W.; Im, S.H.; et al. Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano 2017, 11, 6586–6593. [Google Scholar] [CrossRef]
- Triana, M.A.; Jaramillo-Quintero, O.A.; Camargo, R.J.; Rincón, M.E. Direct Assembly of Thioacid Capped Quantum Dots in Solid-State Hybrid Photovoltaics, Effect of QDs Size and Thermal Annealing. RSC Adv. 2017, 7, 13543–13551. [Google Scholar] [CrossRef]
- Chi, W.; Banerjee, S.K. Application of Perovskite Quantum Dots as an Absorber in Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202112412. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Chen, J.; Wang, Z.; Zhou, Y.; Zhou, L.; Chen, X.; Han, S. Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Adv. Mater. 2018, 30, 1802883. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.; Park, J.H.; Crawford, M.L.; Sadhanala, A.; Lee, J.; Sadighian, J.C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M.; et al. Ligand-Engineered Bandgap Stability in Mixed-Halide Perovskite LEDs. Nature 2021, 591, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Hassanabadi, E.; Latifi, M.; Gualdrón-Reyes, A.F.; Masi, S.; Yoon, S.J.; Poyatos, M.; Julián-López, B.; Mora-Seró, I. Ligand & Band Gap Engineering: Tailoring the Protocol Synthesis for Achieving High-Quality CsPbI3 Quantum Dots. Nanoscale 2020, 12, 14194–14203. [Google Scholar] [CrossRef]
- Li, T.; Xu, X.; Lin, C.; Guan, X.; Hsu, W.; Tsai, M.; Fang, X.; Wu, T.; He, J. Highly UV Resistant Inch-Scale Hybrid Perovskite Quantum Dot Papers. Adv. Sci. 2020, 7, 1902439. [Google Scholar] [CrossRef]
- Hu, L.; Li, Q.; Yao, Y.; Zeng, Q.; Zhou, Z.; Cazorla, C.; Wan, T.; Guan, X.; Huang, J.-K.; Lin, C.-H.; et al. Perovskite Quantum Dot Solar Cells Fabricated from Recycled Lead-Acid Battery Waste. ACS Mater. Lett. 2022, 4, 120–127. [Google Scholar] [CrossRef]
- Bai, Y.; Hao, M.; Ding, S.; Chen, P.; Wang, L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. Adv. Mater. 2022, 34, 2105958. [Google Scholar] [CrossRef]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H.J.; Galian, R.E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3 NH3 PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, C.; Xu, J.; Li, S.; Cui, M.; Fu, X.; Liu, Y.; Liu, Y.; Wan, H.; Wei, K.; et al. Synthesis-on-Substrate of Quantum Dot Solids. Nature 2022, 612, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, X. Luminescent Perovskite Quantum Dots: Synthesis, Microstructures, Optical Properties and Applications. J. Mater. Chem. C 2019, 7, 1413–1446. [Google Scholar] [CrossRef]
- Rakshit, S.; Piatkowski, P.; Mora-Seró, I.; Douhal, A. Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Adv. Opt. Mater. 2022, 10, 2102566. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, Z.; Zhang, Q.; Zhang, Q.; Gu, M. Laser Technology for Perovskite: Fabrication and Applications. Adv. Mater. Technol. 2024, 9, 2302033. [Google Scholar] [CrossRef]
- Long, Z.; Li, H.; Cao, Q.; Feng, Y.; Liu, H.; Wu, Y.; Lu, G.; Huang, H.; Cai, Q.; Zhang, D.; et al. Large-Scale Synthesis of Perovskite Quantum Dots and Their Application to Inkjet-Printed Highly Stable Microarray. Small 2025, 21, 2410935. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Tang, A.; Tsai, H.; Bao, Z.; Ihara, T.; Yarita, N.; Tahara, H.; Kanemitsu, Y.; Chen, S.; et al. High-Performance CsPb1−xSnxBr3 Perovskite Quantum Dots for Light-Emitting Diodes. Angew. Chem. 2017, 129, 13838–13842. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Hu, J.; Li, C.; Shi, L.; Xia, S.-S.; Cai, Y.; Jia, R.; Chen, Z.; Li, L. Ultra-Small Cesium Silver Bismuth Bromide Quantum Dots Fabricated by Modified Hot-Injection Method for Highly Efficient Degradation of Contaminants in Organic Solvent. J. Environ. Sci. 2025, 152, 577–583. [Google Scholar] [CrossRef]
- Long, Z.; Yang, S.; Pi, J.; Zhou, D.; Wang, Q.; Yang, Y.; Wu, H.; Qiu, J. All-Inorganic Halide Perovskite (CsPbX3, X=Cl, Br, I) Quantum Dots Synthesized via Fast Anion Hot Injection by Using Trimethylhalosilanes. Ceram. Int. 2022, 48, 35474–35479. [Google Scholar] [CrossRef]
- Pan, Q.; Hu, H.; Zou, Y.; Chen, M.; Wu, L.; Yang, D.; Yuan, X.; Fan, J.; Sun, B.; Zhang, Q. Microwave-Assisted Synthesis of High-Quality “All-Inorganic” CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals and Their Application in Light Emitting Diodes. J. Mater. Chem. C 2017, 5, 10947–10954. [Google Scholar] [CrossRef]
- Rao, L.; Tang, Y.; Song, C.; Xu, K.; Vickers, E.T.; Bonabi Naghadeh, S.; Ding, X.; Li, Z.; Zhang, J.Z. Polar-Solvent-Free Synthesis of Highly Photoluminescent and Stable CsPbBr3 Nanocrystals with Controlled Shape and Size by Ultrasonication. Chem. Mater. 2019, 31, 365–375. [Google Scholar] [CrossRef]
- Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A.J.; Kovalenko, M.V. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano. Lett. 2016, 16, 1869–1877. [Google Scholar] [CrossRef]
- Zhan, W.; Meng, L.; Shao, C.; Wu, X.; Shi, K.; Zhong, H. In Situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication. ACS Photonics 2021, 8, 765–770. [Google Scholar] [CrossRef]
- Dai, S.; Hsu, B.; Chen, C.; Lee, C.; Liu, H.; Wang, H.; Huang, Y.; Wu, T.; Manikandan, A.; Ho, R.; et al. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis. Adv. Mater. 2018, 30, 1705532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, M.; Shen, C.; Lian, L.; Hou, L.; Zhang, J. Synchronously Polishing the Lead-Rich Surface and Passivating Surface Defects of CsPb(Br/I)3 Quantum Dots for High-Performance Pure-Red PeLEDs. Nano Lett. 2024, 24, 3719–3726. [Google Scholar] [CrossRef] [PubMed]
- Chiabrera, F.M.; Yun, S.; Li, Y.; Dahm, R.T.; Zhang, H.; Kirchert, C.K.R.; Christensen, D.V.; Trier, F.; Jespersen, T.S.; Pryds, N. Freestanding Perovskite Oxide Films: Synthesis, Challenges, and Properties. Ann. Phys 2022, 534, 2200084. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Zulfiqar, M.W.; Eom, J.; Imran, M.; Akbar, K. A Review on Recent Progress and Challenges in High-Efficiency Perovskite Solar Cells. Nano Energy 2024, 132, 110401. [Google Scholar] [CrossRef]
- Rani, M.; Khan, M.M.; Numan, A.; Khalid, M.; Abbas, S.M.; Iqbal, M.; Mansoor, M.A. Breaking Barriers: Addressing Challenges in Perovskite Solar Cell Development. J. Alloy Compd. 2025, 1010, 177648. [Google Scholar] [CrossRef]
- Ye, J.; Gaur, D.; Mi, C.; Chen, Z.; Fernández, I.L.; Zhao, H.; Dong, Y.; Polavarapu, L.; Hoye, R.L.Z. Strongly-Confined Colloidal Lead-Halide Perovskite Quantum Dots: From Synthesis to Applications. Chem. Soc. Rev. 2024, 53, 8095–8122. [Google Scholar] [CrossRef]
- Sanchez, S.L.; Tang, Y.; Hu, B.; Yang, J.; Ahmadi, M. Understanding the Ligand-Assisted Reprecipitation of CsPbBr3 Nanocrystals via High-Throughput Robotic Synthesis Approach. Matter 2023, 6, 2900–2918. [Google Scholar] [CrossRef]
- Ahirwar, P.; Kumar, R. Synthesis and Investigation of CsPbBr3 Perovskite Quantum Dot Thin-Film on FTO Substrate. Chem. Phys. Lett. 2023, 810, 140180. [Google Scholar] [CrossRef]
- Mejía Vázquez, M.C.; Bernal, W.; Gómez Téllez, A.C.; Camacho Cáceres, J.; Montoya Montoya, D.M.; Pacio, M.; Hu, H. Synthesis, Fabrication, and Characterization of MAPbBr3 Quantum Dots for LED Applications: An Easy Laboratory Practice. J. Chem. Educ. 2024, 101, 5413–5421. [Google Scholar] [CrossRef]
- Kikuchi, K.; Morikawa, Y.; Motomura, S.; Kimura, T.; Oshita, N.; Sato, R.; Asakura, S.; Masuhara, A. Simple Purification for Highly Luminescent MAPbI3 Perovskite Quantum Dots (PeQDs). J. Nanopart. Res. 2022, 24, 259. [Google Scholar] [CrossRef]
- Chen, M.; Zou, Y.; Wu, L.; Pan, Q.; Yang, D.; Hu, H.; Tan, Y.; Zhong, Q.; Xu, Y.; Liu, H.; et al. Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Adv. Funct. Mater. 2017, 27, 1701121. [Google Scholar] [CrossRef]
- Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. From Precursor Powders to CsPbX3 Perovskite Nanowires: One-Pot Synthesis, Growth Mechanism, and Oriented Self-Assembly. Angew. Chem. Int. Ed. 2017, 56, 13887–13892. [Google Scholar] [CrossRef]
- Shamsi, J.; Rastogi, P.; Caligiuri, V.; Abdelhady, A.L.; Spirito, D.; Manna, L.; Krahne, R. Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr3 Nanoplatelets. ACS Nano 2017, 11, 10206–10213. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, J.; Lu, W.D. Iodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects. Adv. Mater. 2017, 29, 1700527. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.; Nirantar, S.; Monshipouri, M.; Low, M.X.; Walia, S.; Sriram, S.; Bhaskaran, M. Device Geometry Insights for Efficient Electrically Driven Insulator-to-Metal Transition in Vanadium Dioxide Thin-Films. Adv. Electron. Mater. 2022, 8, 2100428. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H. -S. P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1800143. [Google Scholar] [CrossRef]
- Seok, J.Y.; Song, S.J.; Yoon, J.H.; Yoon, K.J.; Park, T.H.; Kwon, D.E.; Lim, H.; Kim, G.H.; Jeong, D.S.; Hwang, C.S. A Review of Three-Dimensional Resistive Switching Cross-Bar Array Memories from the Integration and Materials Property Points of View. Adv. Funct. Mater. 2014, 24, 5316–5339. [Google Scholar] [CrossRef]
- Eames, C.; Frost, J.M.; Barnes, P.R.F.; O’Regan, B.C.; Walsh, A.; Islam, M.S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells. Nat. Commun. 2015, 6, 7497. [Google Scholar] [CrossRef]
- Walsh, A.; Stranks, S.D. Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1983–1990. [Google Scholar] [CrossRef]
- Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D.; Moon, C.W.; Park, G.D.; Suh, J.; Hwang, J.; Kim, S.Y.; et al. Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching. Adv. Mater. 2016, 28, 6562–6567. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Lee, J.-S. Flexible Hybrid Organic–Inorganic Perovskite Memory. ACS Nano 2016, 10, 5413–5418. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, J.; Lu, W.D. Perovskite Films: Iodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects (Adv. Mater. 29/2017). Adv. Mater. 2017, 29, adma.201770213. [Google Scholar] [CrossRef]
- Gonzales, C.; Guerrero, A.; Bisquert, J. Spectral Properties of the Dynamic State Transition in Metal Halide Perovskite-Based Memristor Exhibiting Negative Capacitance. Appl. Phys. Lett. 2021, 118, 073501. [Google Scholar] [CrossRef]
- Gonzales, C.; Guerrero, A. Mechanistic and Kinetic Analysis of Perovskite Memristors with Buffer Layers: The Case of a Two-Step Set Process. J. Phys. Chem. Lett. 2023, 14, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Im, I.H.; Baek, J.H.; Kwak, K.J.; Kim, S.J.; Lee, T.H.; Kim, J.Y.; Jang, H.W. α-CsPbI3 Quantum Dots ReRAM with High Air Stability Working by Valance Change Filamentary Mechanism. Small Methods 2025, 9, 2400514. [Google Scholar] [CrossRef]
- Yoo, E.; Lyu, M.; Yun, J.-H.; Kang, C.; Choi, Y.; Wang, L. Bifunctional Resistive Switching Behavior in an Organolead Halide Perovskite Based Ag/CH3 NH3 PbI3−x Clx /FTO Structure. J. Mater. Chem. C 2016, 4, 7824–7830. [Google Scholar] [CrossRef]
- Sun, Y.; Tai, M.; Song, C.; Wang, Z.; Yin, J.; Li, F.; Wu, H.; Zeng, F.; Lin, H.; Pan, F. Competition between Metallic and Vacancy Defect Conductive Filaments in a CH3 NH3 PbI3 -Based Memory Device. J. Phys. Chem. C 2018, 122, 6431–6436. [Google Scholar] [CrossRef]
- Yan, K.; Peng, M.; Yu, X.; Cai, X.; Chen, S.; Hu, H.; Chen, B.; Gao, X.; Dong, B.; Zou, D. High-Performance Perovskite Memristor Based on Methyl Ammonium Lead Halides. J. Mater. Chem. C 2016, 4, 1375–1381. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Y.; Li, Z.; Liu, X.; Cao, G.; Yao, J. Resistive Switching in Nonperovskite-Phase CsPbI3 Film-Based Memory Devices. ACS Appl. Mater. Interfaces 2020, 12, 9409–9420. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liu, Y.; Shen, X.; Wang, M.; Yuan, F.; Chai, Y. Low-Voltage, Optoelectronic CH3NH3PbI3−xClx Memory with Integrated Sensing and Logic Operations. Adv. Funct. Mater. 2018, 28, 1800080. [Google Scholar] [CrossRef]
- Han, J.S.; Le, Q.V.; Choi, J.; Kim, H.; Kim, S.G.; Hong, K.; Moon, C.W.; Kim, T.L.; Kim, S.Y.; Jang, H.W. Lead-Free All-Inorganic Cesium Tin Iodide Perovskite for Filamentary and Interface-Type Resistive Switching toward Environment-Friendly and Temperature-Tolerant Nonvolatile Memories. ACS Appl. Mater. Interfaces 2019, 11, 8155–8163. [Google Scholar] [CrossRef]
- Sawa, A. Resistive Switching in Transition Metal Oxides. Mater Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Shan, Y.; Lyu, Z.; Guan, X.; Younis, A.; Yuan, G.; Wang, J.; Li, S.; Wu, T. Solution-Processed Resistive Switching Memory Devices Based on Hybrid Organic–Inorganic Materials and Composites. Phys. Chem. Chem. Phys. 2018, 20, 23837–23846. [Google Scholar] [CrossRef]
- Robertson, J. Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2000, 18, 1785–1791. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Li, H.; Wu, Y.; Lin, C.-H.; Guan, X.; Hu, L.; Kim, J.; Zhu, X.; Zeng, H.; Wu, T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Lett. 2023, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, Y.; Wu, X.; Liu, Y.; Chen, Q.; Zhang, G.; Chen, S.; Chen, H.; Guo, T. A Multilevel Vertical Photonic Memory Transistor Based on Organic Semiconductor/Inorganic Perovskite Quantum Dot Blends. J. Mater. Chem. C 2020, 8, 2861–2869. [Google Scholar] [CrossRef]
- Wulf, W.A.; McKee, S.A. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Comput. Archit. News 1995, 23, 20–24. [Google Scholar] [CrossRef]
- Cao, Q.; Lü, W.; Wang, X.R.; Guan, X.; Wang, L.; Yan, S.; Wu, T.; Wang, X. Nonvolatile Multistates Memories for High-Density Data Storage. ACS Appl. Mater. Interfaces 2020, 12, 42449–42471. [Google Scholar] [CrossRef]
- Dai, M.; Song, Z.; Lin, C.-H.; Dong, Y.; Wu, T.; Chu, J. Multi-Functional Multi-Gate One-Transistor Process-in-Memory Electronics with Foundry Processing and Footprint Reduction. Commun. Mater. 2022, 3, 41. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Park, R.S.; Howe, R.T.; Saraswat, K.; Wong, H.-S.P.; Mitra, S. Three-Dimensional Integration of Nanotechnologies for Computing and Data Storage on a Single Chip. Nature 2017, 547, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Ding, K.; Zhou, Y.; Zheng, Y.; Xia, M.; Lv, S.; Song, Z.; Feng, S.; Ronneberger, I.; Mazzarello, R.; et al. Reducing the Stochasticity of Crystal Nucleation to Enable Subnanosecond Memory Writing. Science 2017, 358, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, L.; Nan, C. Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials. Adv. Mater. 2016, 28, 15–39. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.-T. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem. Rev. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Yang, K.; Li, F.; Veeramalai, C.P.; Guo, T. A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory. Appl. Phys. Lett. 2017, 110, 083102. [Google Scholar] [CrossRef]
- An, H.; Kim, W.K.; Wu, C.; Kim, T.W. Highly-Stable Memristive Devices Based on Poly(Methylmethacrylate): CsPbCl3 Perovskite Quantum Dot Hybrid Nanocomposites. Org. Electron. 2018, 56, 41–45. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Liao, Q.; Shan, H.; Chen, J.; Zhou, Y.; Zhou, L.; Chen, X.; Roy, V.A.L.; Wang, Z.; et al. Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. Adv. Mater. 2018, 30, 1800327. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Yu, Y.; Cao, M.; Che, Y.; Jin, L.; Li, Y.; Li, Q.; Li, T.; Dai, H.; et al. Light Assisted Multilevel Resistive Switching Memory Devices Based on All-Inorganic Perovskite Quantum Dots. Appl. Phys. Lett. 2019, 114, 181103. [Google Scholar] [CrossRef]
- Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T.H.; Shankar, B.; Redwing, J.M.; Das, S. A Low-Power Biomimetic Collision Detector Based on an in-Memory Molybdenum Disulfide Photodetector. Nat. Electron. 2020, 3, 646–655. [Google Scholar] [CrossRef]
- Cao, X.; Ma, Z.; Cheng, T.; Wang, Y.; Shi, Z.; Wang, J.; Zhang, L. Air-Stable, Eco-Friendly RRAMs Based on Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for High-Performance Information Storage. Energy Environ. Mater. 2023, 6, e12419. [Google Scholar] [CrossRef]
- Xu, N.; Liu, L.; Sun, X.; Liu, X.; Han, D.; Wang, Y.; Han, R.; Kang, J.; Yu, B. Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-Access Memories. Appl. Phys. Lett. 2008, 92, 232112. [Google Scholar] [CrossRef]
- Wu, W.; Wu, H.; Gao, B.; Deng, N.; Yu, S.; Qian, H. Improving Analog Switching in HfOx -Based Resistive Memory With a Thermal Enhanced Layer. IEEE Electron. Device Lett. 2017, 38, 1019–1022. [Google Scholar] [CrossRef]
- Ren, S.; Li, Z.; Liu, X.; Li, Y.; Cao, G.; Zhao, J. Oxygen Migration Induced Effective Magnetic and Resistive Switching Boosted by Graphene Quantum Dots. J. Alloy. Compd. 2021, 863, 158339. [Google Scholar] [CrossRef]
- Saini, P.; Singh, M.; Thakur, J.; Patil, R.; Ma, Y.R.; Tandon, R.P.; Singh, S.P.; Mahapatro, A.K. Probing the Mechanism for Bipolar Resistive Switching in Annealed Graphene Oxide Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 6521–6530. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, J.E.; Kim, S.O.; Choi, S.-Y.; Cho, B.J. Flexible Resistive Switching Memory Device Based on Graphene Oxide. IEEE Electron. Device Lett. 2010, 31, 1005–1007. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, Z.; Li, P.; Zhang, Y.; Song, Y. Flexible and Wearable Optoelectronic Devices Based on Perovskites. Adv. Mater. Technol. 2022, 7, 2101124. [Google Scholar] [CrossRef]
- Liu, X.; Ren, S.; Li, Z.; Guo, J.; Yi, S.; Yang, Z.; Hao, W.; Li, R.; Zhao, J. Flexible Transparent High-Efficiency Photoelectric Perovskite Resistive Switching Memory. Adv. Funct. Mater. 2022, 32, 2202951. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Neuromorphic Nanoelectronic Materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-Dimensional van Der Waals Heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.R.; Wang, G. Learning-Effective Mixed-Dimensional Halide Perovskite QD Synaptic Array for Self-Rectifying and Luminous Artificial Neural Networks. Adv. Funct. Mater. 2024, 34, 2307971. [Google Scholar] [CrossRef]
- Das, U.; Sarkar, P.K.; Das, D.; Paul, B.; Roy, A. Influence of Nanoscale Charge Trapping Layer on the Memory and Synaptic Characteristics of a Novel Rubidium Lead Chloride Quantum Dot Based Memristor. Adv. Elect. Mater. 2022, 8, 2101015. [Google Scholar] [CrossRef]
- Jung, M.-H.; Rhim, S.H.; Moon, D. TiO2/RbPbI3 Halide Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2017, 172, 44–54. [Google Scholar] [CrossRef]
- Lim, D.-H.; Ramasamy, P.; Kwak, D.-H.; Lee, J.-S. Solution-Phase Synthesis of Rubidium Lead Iodide Orthorhombic Perovskite Nanowires. Nanotechnology 2017, 28, 255601. [Google Scholar] [CrossRef]
- Amgar, D.; Wierzbowska, M.; Uvarov, V.; Gutkin, V.; Etgar, L. Novel Rubidium Lead Chloride Nanocrystals: Synthesis and Characterization. Nano Futures 2017, 1, 021002. [Google Scholar] [CrossRef]
- Das, U.; Das, D.; Paul, B.; Rabha, T.; Pattanayak, S.; Kanjilal, A.; Bhattacharjee, S.; Sarkar, P.; Roy, A. Induced Vacancy-Assisted Filamentary Resistive Switching Device Based on RbPbI3–x Clx Perovskite for RRAM Application. ACS Appl. Mater. Interfaces 2020, 12, 41718–41727. [Google Scholar] [CrossRef]
- Das, U.; Nyayban, A.; Paul, B.; Barman, A.; Sarkar, P.; Roy, A. Compliance Current-Dependent Dual-Functional Bipolar and Threshold Resistive Switching in All-Inorganic Rubidium Lead-Bromide Perovskite-Based Flexible Device. ACS Appl. Electron. Mater. 2020, 2, 1343–1351. [Google Scholar] [CrossRef]
- Lin, C.-H.; Cheng, B.; Li, T.-Y.; Retamal, J.R.D.; Wei, T.-C.; Fu, H.-C.; Fang, X.; He, J.-H. Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices. ACS Nano 2018, 13, 1168–1176. [Google Scholar] [CrossRef]
- Kim, H.; Choi, M.-J.; Suh, J.M.; Han, J.S.; Kim, S.G.; Le, Q.V.; Kim, S.Y.; Jang, H.W. Quasi-2D Halide Perovskites for Resistive Switching Devices with ON/OFF Ratios above 109. NPG Asia Mater. 2020, 12, 21. [Google Scholar] [CrossRef]
- Poddar, S.; Zhang, Y.; Gu, L.; Zhang, D.; Zhang, Q.; Yan, S.; Kam, M.; Zhang, S.; Song, Z.; Hu, W.; et al. Down-Scalable and Ultra-Fast Memristors with Ultra-High Density Three-Dimensional Arrays of Perovskite Quantum Wires. Nano Lett. 2021, 21, 5036–5044. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.-B.; Kim, C.-J.; Seo, D.H.; Seo, S.; et al. A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5−x/TaO2−x Bilayer Structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.J.; Torrezan, A.C.; Norris, K.J.; Miao, F.; Strachan, J.P.; Zhang, M.-X.; Ohlberg, D.A.A.; Kobayashi, N.P.; Yang, J.J.; Williams, R.S. Electrical Performance and Scalability of Pt Dispersed SiO2Nanometallic Resistance Switch. Nano Lett. 2013, 13, 3213–3217. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, M.; Zhang, Y.; Liu, Z. Hexagonal Boron Nitride–Graphene Heterostructures: Synthesis and Interfacial Properties. Small 2016, 12, 32–50. [Google Scholar] [CrossRef]
- Zhang, Z.; Dierks, H.; Lamers, N.; Sun, C.; Nováková, K.; Hetherington, C.; Scheblykin, I.G.; Wallentin, J. Single-Crystalline Perovskite Nanowire Arrays for Stable X-Ray Scintillators with Micrometer Spatial Resolution. ACS Appl. Nano Mater. 2022, 5, 881–889. [Google Scholar] [CrossRef]
- Kang, K.; Ahn, H.; Song, Y.; Lee, W.; Kim, J.; Kim, Y.; Yoo, D.; Lee, T. High-Performance Solution-Processed Organo-Metal Halide Perovskite Unipolar Resistive Memory Devices in a Cross-Bar Array Structure. Adv. Mater. 2019, 31, 1804841. [Google Scholar] [CrossRef]
- Im, I.H.; Kim, S.J.; Baek, J.H.; Kwak, K.J.; Lee, T.H.; Yang, J.W.; Lee, D.E.; Kim, J.Y.; Kwon, H.R.; Heo, D.Y.; et al. Controlling Threshold and Resistive Switch Functionalities in Ag-Incorporated Organometallic Halide Perovskites for Memristive Crossbar Array. Adv. Funct. Mater. 2023, 33, 2211358. [Google Scholar] [CrossRef]
Device Structure | Switching Voltage (V) | Retention (s) | Filament Material | Ref. |
---|---|---|---|---|
Ag/CH3NH3PbI3/Pt | 0.13 | 1.1 × 104 | Ag | [112] |
Au/CH3NH3PbI3/ITO/PET | 0.7 | 104 | VI | [113] |
Au/CH3NH3PbI3/Au | 0.32 | 1.17 × 104 | VI | [114] |
Au/Ag/(PEA)2(MEA)n−1PbnI3n+1/PEDOT:PSS/FTO | 0.9 | 104 | Formation/dissolution of an AgI monolayer | [115] |
Au/Ag/PCBM/CH3NH3PbI3/PEDOT:PSS/FTO | 0.25, 0.56 | 105 | Ag+ | [116] |
Au/α-CsPbI3 QDs/PEDOT:PSS/ITO | 1.02 | 4 × 104 | VI | [117] |
Au/CH3NH3PbClXI3−X/FTO | 1.0 | 2.5 × 104 | – | [120] |
Ag/CH3NH3PbI3−xClx/FTO | 1.4 | 4 × 104 | Ag | [118] |
Ag/CH3NH3PbI3/Pt | – | 105 | VI | [119] |
Ag/PMMA@CsPbI3/FTO | 0.31 | 105 | Ag+ | [121] |
Au/CH3NH3PbBr3/ITO | −0.5 | 104 | MA+ | [30] |
Au/CH3NH3PbI3−xClx/ITO | 0.1 | 4.68 × 104 | hole trapping at PVK/Au interface | [122] |
Ag/PMMA/CsSnI3/Pt | 0.13 | 7 × 103 | Ag | [123] |
Configuration | Architecture | Retention (s) | Endurance (Cycles) | Switching Speed | Ref. |
---|---|---|---|---|---|
Oxide-RRAM | Pt/Ta2O5−x/TaO2−x/Pt | – | 1012 | 10 ns | [162] |
Pt/SiOx:Pt/Ta | 107 | 3 × 107 | <100 ps | [163] | |
PVK QDs-RRAM | PET/ITO/PMMA/CsPbBr3 /PMMA/Ag | 4 × 105 | 5 × 103 | – | [139] |
2D-RRAM | Pt/h-BN/Ag | – | 107 | 50 ns | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, F.; Fredj, Z.; Sawan, M. Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends. Nanomaterials 2025, 15, 873. https://doi.org/10.3390/nano15110873
Ullah F, Fredj Z, Sawan M. Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends. Nanomaterials. 2025; 15(11):873. https://doi.org/10.3390/nano15110873
Chicago/Turabian StyleUllah, Fateh, Zina Fredj, and Mohamad Sawan. 2025. "Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends" Nanomaterials 15, no. 11: 873. https://doi.org/10.3390/nano15110873
APA StyleUllah, F., Fredj, Z., & Sawan, M. (2025). Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends. Nanomaterials, 15(11), 873. https://doi.org/10.3390/nano15110873