Enhancing Catalytic Removal of N-Nitrosodimethylamine from Drinking Water Matrices with One-Step-Carbonized Ferric Ammonium Citrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Carbonized FAC Nanomaterials
2.3. Batch Experiment
2.4. Analytical Methods
2.5. Tap Water Sampling and Environmental Implications
2.6. Characterization
3. Results
3.1. Creation of One-Step-Carbonized FAC
3.2. NDMA Removal Behaviors
3.2.1. Catalytic Effect and Reaction Kinetics of FAC-600 in NDMA Degradation
3.2.2. Effect of pH and Anions on NDMA Removal
3.3. Mechanisms for Removal of NDMA
3.4. Environmental Implications
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NDMA | N-Nitrosodimethylamine |
AOPs | Advanced oxidation processes |
FAC | Ferric ammonium citrate |
PS | Persulfate |
NF | Nanofiltration |
RO | Reverse osmosis |
DMA | Dimethylamine |
UDMH | Unsymmetrical dimethylhydrazine |
UV | Ultraviolet |
ZVI | Zero-valent iron |
HA | Humic acid |
UPLC | Liquid chromatograph |
GC | Gas chromatography |
MS | Mass spectrometry |
SIM | Selected ion mode |
SEM | Scanning electron microscope |
TEM | Transmission electron microscope |
XRD | X-ray diffraction |
FTIR | Fourier-transform infrared |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
XPS | X-ray photoelectron spectroscopy |
EDS | Energy-dispersive X-ray spectroscopy |
EPR | Electron paramagnetic resonance |
References
- Sgroi, M.; Vagliasindi, F.G.A.; Snyder, S.A.; Roccaro, P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. Chemosphere 2018, 191, 685–703. [Google Scholar] [CrossRef] [PubMed]
- Ersan, M.S.; Ladner, D.A.; Karanfil, T. N-Nitrosodimethylamine (NDMA) Precursors Leach from Nanofiltration Membranes. Environ. Sci. Technol. Lett. 2015, 2, 66–69. [Google Scholar] [CrossRef]
- Lee, C.; Yoon, J.; Von Gunten, U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res. 2007, 41, 581–590. [Google Scholar] [CrossRef]
- Szczuka, A.; Huang, N.; MacDonald, J.A.; Nayak, A.; Zhang, Z.; Mitch, W.A. N-Nitrosodimethylamine Formation during UV/Hydrogen Peroxide and UV/Chlorine Advanced Oxidation Process Treatment Following Reverse Osmosis for Potable Reuse. Environ. Sci. Technol. 2020, 54, 15465–15475. [Google Scholar] [CrossRef]
- Qin, H.; Guan, X.; Tratnyek, P.G. Effects of Sulfidation and Nitrate on the Reduction of N-Nitrosodimethylamine by Zerovalent Iron. Environ. Sci. Technol. 2019, 53, 9744–9754. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Li, J.; Chen, Z.; Li, W.; Jiang, B.; Yao, J. Copper Corrosion Products Catalyzed Reduction of N-Nitrosodimethylamine with Iron. Environ. Sci. Technol. 2018, 52, 11735–11742. [Google Scholar] [CrossRef]
- Fujioka, T.; Masaki, S.; Kodamatani, H.; Ikehata, K. Degradation of N-Nitrosodimethylamine by UV-Based Advanced Oxidation Processes for Potable Reuse: A Short Review. Curr. Pollut. Rep. 2017, 3, 79–87. [Google Scholar] [CrossRef]
- Roback, S.L.; Ishida, K.P.; Chuang, Y.-H.; Zhang, Z.; Mitch, W.A.; Plumlee, M.H. Pilot UV-AOP Comparison of UV/Hydrogen Peroxide, UV/Free Chlorine, and UV/Monochloramine for the Removal of N-Nitrosodimethylamine (NDMA) and NDMA Precursors. ACS EST Water 2021, 1, 396–406. [Google Scholar] [CrossRef]
- Velo-Gala, I.; Farré, M.J.; Radjenovic, J.; Gernjak, W. N-Nitrosodimethylamine (NDMA) Degradation by the Ultraviolet/Peroxodisulfate Process. Environ. Sci. Technol. Lett. 2019, 6, 106–111. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, Z.; Duan, X.; Long, M.; Spinney, R.; Dionysiou, D.D.; Xiao, R.; Alvarez, P.J.J. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. Environ. Sci. Technol. 2023, 57, 12153–12179. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, L.; Xue, Y.; Lv, J.; Yu, Q.; Yuan, X. Nitrogen-doped carbon material as a catalyst for the degradation of direct red23 based on persulfate oxidation. Sep. Purif. Technol. 2017, 184, 213–219. [Google Scholar] [CrossRef]
- Zhang, S.; Hedtke, T.; Zhu, Q.; Sun, M.; Weon, S.; Zhao, Y.; Stavitski, E.; Elimelech, M.; Kim, J.-H. Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. Environ. Sci. Technol. 2021, 55, 9266–9275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, M.; Tang, C.; Wang, H.; Zhang, X.; Wang, J.; Li, H.; Mahtab, M.S.; Yue, D. Mechanistic Insights into the Removal of Surfactant-Like Contaminants on Mesoporous Polydopamine Nanospheres from Complex Wastewater Matrices. Environ. Sci. Technol. 2024, 58, 18435–18445. [Google Scholar] [CrossRef]
- Kong, X.; Wang, J.; Zheng, K.; Shao, Y.; Cui, D.; Wang, C.; Zhang, L.; Jiang, B.; Wang, C.; Yue, D.; et al. Deciphering the transport, retention, and mechanisms of stabilized sulfidated microscale zerovalent iron for in situ remediation of vanadium (V). Sep. Purif. Technol. 2025, 360, 131134. [Google Scholar] [CrossRef]
- Feng, H.; Tang, L.; Tang, J.; Zeng, G.; Dong, H.; Deng, Y.; Wang, L.; Liu, Y.; Ren, X.; Zhou, Y. Cu-Doped Fe@Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater. Environ. Sci. Nano 2018, 5, 1595–1607. [Google Scholar] [CrossRef]
- Li, J.; Qin, H.; Guan, X. Premagnetization for Enhancing the Reactivity of Multiple Zerovalent Iron Samples toward Various Contaminants. Environ. Sci. Technol. 2015, 49, 14401–14408. [Google Scholar] [CrossRef]
- Zhou, H.; Zhong, S.; Chen, J.; Ren, S.; Ren, W.; Lai, B.; Guan, X.; Ma, T.; Wang, S.; Duan, X. Overlooked Complexation and Competition Effects of Phenolic Contaminants in a Mn(II)/Nitrilotriacetic Acid/Peroxymonosulfate System: Inhibited Generation of Primary and Secondary High-Valent Manganese Species. Environ. Sci. Technol. 2024, 58, 19080–19089. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tian, J.; Guo, Y.; Zhou, Z.; Liu, Z.; Zhao, Z.; Liu, B.; Li, J. Generating 1O2 and CoIV=O through efficient peroxymonosulfate activation by ZnCo2O4 nanosheets for pollutant control. Nano Res. 2024, 17, 8025–8035. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Hicks, R.G.; Hooper, R. Synthesis and EPR Characterization of “Phosphaverdazyl” Radicals. Inorg. Chem. 1999, 38, 284–286. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Zhang, J.; Yan, S.; Qin, C. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals. Appl. Catal. B Environ. 2019, 259, 118030. [Google Scholar] [CrossRef]
- Ferreira, M.B.; Muñoz-Morales, M.; Sáez, C.; Cañizares, P.; Martínez-Huitle, C.A.; Rodrigo, M.A. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis. Sci. Total Environ. 2020, 713, 136647. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhang, P.; Luo, H.; Hu, Y.; Norouzi Banis, M.; Yuan, X.; Liu, N. Nitrogen-Doped Carbon Materials as Metal-Free Catalyst for the Dechlorination of Trichloroethylene by Sulfide. Environ. Sci. Technol. 2018, 52, 14286–14293. [Google Scholar] [CrossRef]
- Luo, Z.; Yan, Y.; Spinney, R.; Dionysiou, D.D.; Villamena, F.A.; Xiao, R.; Vione, D. Environmental implications of superoxide radicals: From natural processes to engineering applications. Water Res. 2024, 261, 122023. [Google Scholar] [CrossRef]
- Dai, X.; Zou, L.; Yan, Z.; Millikan, M. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons. J. Hazard. Mater. 2009, 168, 51–56. [Google Scholar] [CrossRef]
- Zhu, J.H.; Yan, D.; Rong Xai, J.; Ma, L.L.; Shen, B. Attempt to adsorb N-nitrosamines in solution by use of zeolites. Chemosphere 2001, 44, 949–956. [Google Scholar] [CrossRef]
- Lin, L.; Xu, B.; Lin, Y.-L.; Yan, L.; Shen, K.-Y.; Xia, S.-J.; Hu, C.-Y.; Rong, R. Reduction of N-Nitrosodimethylamine (NDMA) in Aqueous Solution by Nanoscale Fe/Al2(SO4)3. Water Air Soil Pollut. 2013, 224, 1632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Zhang, L.; Li, J.; Zhang, Y.; Wang, R.; Tang, R.; Wang, J.; Hong, M.; Liu, N. Enhancing Catalytic Removal of N-Nitrosodimethylamine from Drinking Water Matrices with One-Step-Carbonized Ferric Ammonium Citrate. Nanomaterials 2025, 15, 831. https://doi.org/10.3390/nano15110831
Lv J, Zhang L, Li J, Zhang Y, Wang R, Tang R, Wang J, Hong M, Liu N. Enhancing Catalytic Removal of N-Nitrosodimethylamine from Drinking Water Matrices with One-Step-Carbonized Ferric Ammonium Citrate. Nanomaterials. 2025; 15(11):831. https://doi.org/10.3390/nano15110831
Chicago/Turabian StyleLv, Jing, Lingyue Zhang, Jialu Li, Yuting Zhang, Ruofan Wang, Rui Tang, Jianchao Wang, Mei Hong, and Na Liu. 2025. "Enhancing Catalytic Removal of N-Nitrosodimethylamine from Drinking Water Matrices with One-Step-Carbonized Ferric Ammonium Citrate" Nanomaterials 15, no. 11: 831. https://doi.org/10.3390/nano15110831
APA StyleLv, J., Zhang, L., Li, J., Zhang, Y., Wang, R., Tang, R., Wang, J., Hong, M., & Liu, N. (2025). Enhancing Catalytic Removal of N-Nitrosodimethylamine from Drinking Water Matrices with One-Step-Carbonized Ferric Ammonium Citrate. Nanomaterials, 15(11), 831. https://doi.org/10.3390/nano15110831