Water Harvesting Performance of Modified Nanostructure Aluminum Using Silica Nanoparticles Coating and Laser Processing
Abstract
:1. Introduction
2. Materials
2.1. Materials Preparation
2.2. Surface Characterization
3. Experimental Setup
4. Results and Discussion
4.1. Surface Characteristics
4.2. Water Harvesting Performance
4.3. Water Harvesting Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Water and conflict: Fresh water resources and international security. In Global Dangers: Changing Dimensions of International Security; Lynn-Jones, S.M., Miller, S.E., Eds.; The MIT Press: Cambridge, MA, USA, 1995; Volume 84, p. 117. [Google Scholar]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Stoltman, J.P.; Lidstone, J.; Dechano, L.M. (Eds.) International Perspectives on Natural Disasters: Occurrence, Mitigation, and Consequences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 21, pp. 147–162. [Google Scholar]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Eslamian, S.; Roknizadeh, H.; Maleki, M.; Koupai, J.A. Surface runoff water harvesting for irrigation. In Handbook of Irrigation Hydrology and Management; CRC Press: Boca Raton, FL, USA, 2023; pp. 323–334. [Google Scholar]
- Verbrugghe, N.; Khan, A.Z. Water harvesting through fog collectors: A review of conceptual, experimental and operational aspects. Int. J. Low-Carbon Technol. 2023, 18, 392–403. [Google Scholar] [CrossRef]
- Lerner, D.N. Groundwater recharge. In Geochemical Processes, Weathering and Groundwater Recharge in Catchments; CRC Press: Boca Raton, FL, USA, 2020; pp. 109–150. [Google Scholar]
- Beysens, D. The formation of dew. Atmos. Res. 1995, 39, 215–237. [Google Scholar] [CrossRef]
- Naganna, S.R.; Deka, P.C.; Ghorbani, M.A.; Biazar, S.M.; Al-Ansari, N.; Yaseen, Z.M. Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water 2019, 11, 742. [Google Scholar] [CrossRef]
- Traipattanakul, B.; Tso, C.Y.; Chao, C.Y. Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces. Int. J. Heat Mass Transf. 2019, 128, 550–561. [Google Scholar] [CrossRef]
- Liu, X.; Beysens, D.; Bourouina, T. Water harvesting from air: Current passive approaches and outlook. ACS Mater. Lett. 2022, 4, 1003–1024. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Liu, X.; Wu, X.; Song, Q.; Min, J.; Ji, B.; Wang, S.; Zhao, J. Droplet impact dynamics on different wettable surfaces at moderate Weber numbers. Colloids Surf. A Physicochem. Eng. Asp. 2024, 695, 134250. [Google Scholar] [CrossRef]
- Merte, H., Jr. Condensation heat transfer. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1973; Volume 9, pp. 181–272. [Google Scholar]
- Yan, X.; Chen, F.; Sett, S.; Chavan, S.; Li, H.; Feng, L.; Li, L.; Zhao, F.; Zhao, C.; Huang, Z.; et al. Hierarchical condensation. ACS Nano 2019, 13, 8169–8184. [Google Scholar] [CrossRef]
- Hussain, S.; Muangnapoh, T.; Traipattanakul, B.; Lekmuenwai, M. Anti-icing property of superhydrophobic nanostructured brass via deposition of silica nanoparticles and nanolaser treatment. Nanomaterials 2023, 13, 1139. [Google Scholar] [CrossRef] [PubMed]
- Muangnapoh, T.; Janampansang, N.; Chuphong, S.; Chevachotivut, C.; Traipattanakul, B.; Kumnorkaew, P.; Sodsai, T. The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates. Colloid Interface Sci. Commun. 2023, 57, 100745. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir 2008, 24, 6262–6269. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef]
- Manoharan, K.; Bhattacharya, S. Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. J. Micromanuf. 2019, 2, 59–78. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self–cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Traipattanakul, B.; Tso, C.Y.; Chao, C.Y. A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets. Int. J. Heat Mass Transf. 2019, 135, 294–304. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Yang, X.; Li, W.; Chen, L.; Tang, J.; Cong, W.; Hu, R.; Tebyetekerwa, M.; Tang, B. Aggregation-induced emission molecules enable characterization of superhydrophobic coatings. Prog. Org. Coat. 2022, 163, 106633. [Google Scholar] [CrossRef]
- Motezakker, A.R.; Sadaghiani, A.K.; Celik, S.; Larsen, T.; Villanueva, L.G.; Koşar, A. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling. Int. J. Heat Mass Transf. 2019, 135, 164–174. [Google Scholar] [CrossRef]
- Bai, H.; Wang, L.; Ju, J.; Sun, R.; Zheng, Y.; Jiang, L. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv. Mater. 2014, 26, 5025–5030. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Peng, Z.; Yao, Y.; Yang, Y.; Chen, S. Flexible functional surface for efficient water collection. ACS Appl. Mater. Interfaces 2020, 12, 12256–12263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, T.; Wu, M.; Wei, W. Durable superhydrophobic surface with hierarchical microstructures for efficient water collection. Surf. Coat. Technol. 2021, 419, 127279. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Ura, D.P.; Berent, K.; Stachewicz, U. Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency. RSC Adv. 2020, 10, 22335–22342. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, M.; Sun, J.; Liu, M.; Du, B.; Liu, Y.; Jin, Y.; Wen, R.; Lan, Z.; Zhou, X.; et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett. 2021, 21, 7411–7418. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wu, J.; Hedhili, M.N.; Wang, P. A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. J. Mater. Chem. A 2015, 3, 18963–18969. [Google Scholar] [CrossRef]
- Gou, X.; Guo, Z. Hybrid hydrophilic–hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir 2019, 36, 64–73. [Google Scholar] [CrossRef]
- Wong, H.Y.; Wong, L.W.; Tsang, C.S.; Yan, Z.; Zhang, X.; Zhao, J.; Ly, T.H. Superhydrophobic Surface Designing for Efficient Atmospheric Water Harvesting Aided by Intelligent Computer Vision. ACS Appl. Mater. Interfaces 2023, 15, 25849–25859. [Google Scholar] [CrossRef]
- Wei, L.; Soo, H.S.; Chen, Z. Patterned Hybrid Surfaces for Efficient Dew Harvesting. ACS Appl. Mater. Interfaces 2024, 16, 51715–51726. [Google Scholar] [CrossRef]
- Piwowarczyk, J.; Jedrzejewski, R.; Moszynski, D.; Kwiatkowski, K.; Niemczyk, A.; Baranowska, J. XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods. Polymers 2019, 11, 1629. [Google Scholar] [CrossRef]
- Kopani, M.; Mikula, M.; Takahashi, M.; Rusnak, J.; Pincik, E. FT IR spectroscopy of silicon oxide layers prepared with perchloric acid. Appl. Surf. Sci. 2013, 269, 106–109. [Google Scholar] [CrossRef]
- Yue, C.; Liu, J.; Zhang, H.; Dai, L.; Wei, B.; Change, Q. Increasing the hydrophobicity of filter medium particles for oily water treatment using coupling agents. Heliyon 2018, 4, e00809. [Google Scholar] [CrossRef]
- Rutkowska, I.; Marchewka, J.; Jelen, P.; Odziomek, M.; Korpys, M.; Paczkowska, J.; Sitarz, M. Chemical and structural characterization of amorphous and crystalline alumina obtained by alternative sol-gel preparation routes. Materials 2021, 14, 1761. [Google Scholar] [CrossRef]
- Zhu, Y.; Tso, C.Y.; Ho, T.C.; Leung, M.K.; Yao, S.; Qiu, H.H. Heat transfer enhancement on tube surfaces with biphilic nanomorphology. Appl. Therm. Eng. 2020, 180, 115778. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, W.; Wong, M.Y.; Wang, W.; Du, J.; Gautam, A.; Pan, A.; Ho, T.C.; Chen, J.; Zhu, Y.; et al. Optimizing micro-grooved biphilic surfaces for enhanced condensation heat transfer and coalescence-induced droplet jumping. Appl. Therm. Eng. 2025, 267, 125839. [Google Scholar] [CrossRef]
- Gurumukhi, Y.; Chavan, S.; Sett, S.; Boyina, K.; Ramesh, S.; Sokalski, P.; Fortelka, K.; Lira, M.; Park, D.; Chen, J.Y.; et al. Dynamic defrosting on superhydrophobic and biphilic surfaces. Matter 2020, 3, 1178–1195. [Google Scholar] [CrossRef]
- Quan, Y.Y.; Zhang, L.Z.; Qi, R.H.; Cai, R.R. Self-cleaning of surfaces: The role of surface wettability and dust types. Sci. Rep. 2016, 6, 38239. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, L.; Li, X.; Cai, Z. Hydrophilic/hydrophobic poly (AA-co-BA-co-BPA) anti-fog coating with excellent water resistance and self-healing properties. Prog. Org. Coat. 2024, 187, 108071. [Google Scholar] [CrossRef]
- Lee, H.; Yang, J.B.; Kim, D.R. Anti-frosting characteristics of superhydrophobic-hydrophilic wettability switchable surfaces. Int. J. Heat Mass Transf. 2024, 221, 125035. [Google Scholar] [CrossRef]
- Eral, H.B.; ’t Mannetje, D.J.C.M.; Oh, J.M. Contact angle hysteresis: A review of fundamentals and applications. Colloid Polym. Sci. 2013, 291, 247–260. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Wu, X.; Min, J. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. Int. J. Heat Mass Transf. 2020, 158, 119997. [Google Scholar] [CrossRef]
Surface Parameters | Unpolished | Polished | Coated | Lasered |
---|---|---|---|---|
Contact Angle () | 94.1 ± 1.0 | 77.7 ± 1.2 | 157.0 ± 1.5 | 35.9 ± 1.4 |
Surface Energy (mN/m) | 21.1 ± 1.9 | 33.5 ± 0.8 | 0.4 ± 0.1 | 78.9 ± 1.3 |
Surface Roughness (μm) | 6.3 ± 0.3 | 5.1 ± 0.1 | 5.5 ± 0.1 | 4.8 ± 0.1 |
Advancing Contact Angle () | 95.3 ± 0.2 | 89.0 ± 0.4 | 152.9 ± 1.4 | 39.0 ± 0.4 |
Receding Contact Angle () | 77.7 ± 0.4 | 68.5 ± 0.4 | 145.9 ± 1.1 | 34.4 ± 0.1 |
Contact Angle Hysteresis () | 17.7 ± 0.2 | 20.5 ± 0.2 | 6.9 ± 0.3 | 4.5 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekmuenwai, M.; Yingkiatinon, P.; Namkotr, W.; Tancharoensup, C.; Muangnapoh, T.; Sodsai, T.; Sreearunothai, P.; Surawathanawises, K.; Traipattanakul, B. Water Harvesting Performance of Modified Nanostructure Aluminum Using Silica Nanoparticles Coating and Laser Processing. Nanomaterials 2025, 15, 828. https://doi.org/10.3390/nano15110828
Lekmuenwai M, Yingkiatinon P, Namkotr W, Tancharoensup C, Muangnapoh T, Sodsai T, Sreearunothai P, Surawathanawises K, Traipattanakul B. Water Harvesting Performance of Modified Nanostructure Aluminum Using Silica Nanoparticles Coating and Laser Processing. Nanomaterials. 2025; 15(11):828. https://doi.org/10.3390/nano15110828
Chicago/Turabian StyleLekmuenwai, Milin, Piyachit Yingkiatinon, Warin Namkotr, Chatchawan Tancharoensup, Tanyakorn Muangnapoh, Tippawan Sodsai, Paiboon Sreearunothai, Krissada Surawathanawises, and Bhawat Traipattanakul. 2025. "Water Harvesting Performance of Modified Nanostructure Aluminum Using Silica Nanoparticles Coating and Laser Processing" Nanomaterials 15, no. 11: 828. https://doi.org/10.3390/nano15110828
APA StyleLekmuenwai, M., Yingkiatinon, P., Namkotr, W., Tancharoensup, C., Muangnapoh, T., Sodsai, T., Sreearunothai, P., Surawathanawises, K., & Traipattanakul, B. (2025). Water Harvesting Performance of Modified Nanostructure Aluminum Using Silica Nanoparticles Coating and Laser Processing. Nanomaterials, 15(11), 828. https://doi.org/10.3390/nano15110828