Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Nickel Oxide MIM Capacitor
2.2. Glass-Based Three-Dimensional Capacitors
3. Results and Discussion
3.1. Morphological Characterization and Mechanism Analysis: Porous Nickel Oxide MIM Capacitor
3.2. Morphological Characterization and Mechanism Analysis: Glass-Based Three-Dimensional Capacitors
3.3. Electrical Performance Testing of Porous Nickel Oxide MIM Capacitor
3.4. Electrical Performance Testing of Glass-Based Three-Dimensional Capacitors
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Ding, S.-J.; Lim, H.; Zhu, C.; Li, M.; Kim, S.; Yu, X.; Chen, J.; Yong, Y.; Cho, B.J.; et al. Performance ALD HfO2-Al2O3 Laminate MIM Capacitors for RF and Mixed Signal IC Applications. In Proceedings of the Technical Digest-International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2003; pp. 379–382. [Google Scholar]
- Zhu, C.; Hu, H.; Yu, X.; Kim, S.; Chin, A.; Li, M.; Cho, B.J.; Kwong, D. Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: A unified understanding and prediction. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2003; pp. 879–882. [Google Scholar]
- Yang, M.Y.; Huang, C.H.; Chin, A.; Zhu, C.; Cho, B.J.; Li, M.F.; Kwong, D.L. Very high density RF MIM capacitors (17 fF/μm2) using high-k Al2O3-doped Ta2O5 dielectrics. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 431–433. [Google Scholar] [CrossRef]
- Tu, Y.L.; Lin, H.L.; Chao, L.L.; Wu, D.; Tsai, C.S.; Wang, C.; Huang, C.F.; Lin, C.H.; Sun, J. Characterization and comparison of high-k metal insulator-metal (MIM) capacitors in 0.13 μm Cu BEOL for mixed-mode and RF applications. Symposium on VLSI Technology. In Proceedings of the 2003 Symposium on VLSI Technology, Kyoto, Japan, 10–12 June 2003; pp. 79–80. [Google Scholar]
- Ishikawa, T.; Kodama, D.; Matsui, Y.; Hiratani, M.; Furusawa, T.; Hisamoto, D. High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; pp. 940–942. [Google Scholar]
- Wenger, C.; Dąbrowski, J.; Zaumseil, P.; Sorge, R.; Formanek, P.; Lippert, G.; Müssig, H.-J. First investigation of metal-insulator-metal (MIM) capacitor using Pr2O3 dielectrics. Mater. Sci. Semicond. Process. 2004, 7, 227–230. [Google Scholar] [CrossRef]
- Chiang, K.C.; Lai, C.H.; Chin, A.; Wang, T.J.; Chiu, H.F.; Chen, J.R.; McAlister, S.P.; Chi, C.C. Very high-density (23 fF/μm2) RF MIM capacitors using high-k TaTiO as the dielectric. Electron Device Lett. IEEE 2005, 26, 728–730. [Google Scholar] [CrossRef]
- Kaya, C.; Tigelaar, H.; Paterson, J.; de Wit, M.; Fattaruso, J.; Hester, D.; Kiriakai, S.; Tan, K.-S.; Tsay, F. Polycide/metal capacitors for high precision A/D converters. In Proceedings of the Technical Digest, International Electron Devices Meeting, San Francisco, CA, USA, 11–14 December 1988; pp. 782–785. [Google Scholar]
- Jeong, Y.K.; Won, S.J.; Kwon, D.J.; Song, M.W.; Kim, W.H.; Park, M.H. High quality high-k MIM capacitor by Ta2O5/HfO2/Ta2O5 multi-layered dielectric and NH3 plasma interface treatments for mixed signal/RF applications. In Proceedings of the 2004 Symposium on VLSI Technology, Honolulu, HI, USA, 15–19 June 2004; pp. 222–223. [Google Scholar]
- Lee, S.J.; Cho, C.R.; Kang, M.S.; Jang, M.S.; Kang, K.Y. Electrical properties of paraelectric (Pb, La) (Nb, Ti) O3 thin films for dynamic random access memory devices. Appl. Phys. Lett. 1996, 68, 764–766. [Google Scholar] [CrossRef]
- Nagaraj, B.; Sawhney, T.; Perusse, S.; Aggarwal, S.; Ramesh, R.; Kaushik, V.S.; Zafar, S.; Jones, R.E.; Lee, J.-H.; Balu, V. (Ba,Sr)TiO3 thin films with conducting perovskite electrodes for dynamic random access memory applications. Appl. Phys. Lett. 1999, 74, 3194–3196. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, H.; McIntyre, P.C.; Saraswat, K.C.; Byun, J.-S. Atomiclayer deposition of ZrO2 on W for metal-insulator-metal capacitor application. Appl. Phys. Lett. 2003, 82, 2874–2876. [Google Scholar] [CrossRef]
- Pan, T.M.; Hsieh, C.I.; Huang, T.Y.; Yang, J.R.; Kuo, P.S. Good High-Temperature Stability of TiN/Al2O3/WN/TiN Capacitors. IEEE Electron Device Lett. 2007, 28, 954–956. [Google Scholar] [CrossRef]
- Kar-Roy, A.; Hu, C.; Racanelli, M.; Compton, C.; Kempf, P.; Jolly, G.; Sherman, P.; Zheng, J.; Zhang, Z.; Yin, A. High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits. In Proceedings of the IEEE 1999 International Interconnect Technology Conference, San Francisco, CA, USA, 10 May 1999; pp. 245–247. [Google Scholar]
- Hu, H.; Zhu, C.; Lu, Y.; Li, M.; Cho, B.J.; Choi, W. A high performance MIM capacitor using HfO2 dielectrics. IEEE Electron Device Lett. 2002, 23, 514–516. [Google Scholar]
- Chen, S.B.; Lai, C.H.; Chin, A.; Hsieh, J.C.; Liu, J. High-density MIM capacitors using Al2O3 and AlTiOx dielectrics. IEEE Electron Device Lett. 2002, 23, 185–187. [Google Scholar] [CrossRef]
- Cai, W.Z.; Shastri, S.; Grivna, G.; Wu, Y.; Loechelt, G. RF Characteristics of a high-performance, 10-fF/μm2 capacitor in a deep trench. Electron Device Lett. IEEE 2004, 25, 468–470. [Google Scholar] [CrossRef]
- Perng, T.-H.; Chien, C.-H.; Chen, C.-W.; Lehnen, P.; Chang, C.-Y. High-density MIM capacitors with HfO2 dielectrics. Thin Solid Film. 2004, 469, 345–349. [Google Scholar] [CrossRef]
- Triyoso, D.H.; Weinreich, W.; Seidell, K.; Nolan, M.G.; Polakowski, P.; Utess, D.; Ohsiek, S.; Dittmar, K.; Weisheit, M.; Licbau, M.; et al. ALD Ta2O5 and Hf-doped Ta2O5 for BEOL compatible MIM. In Proceedings of the 2014 IEEE International Conference on IC Design & Technology, Austin, TX, USA, 28–30 May 2014; pp. 1–4. [Google Scholar]
- Chen, W.; McCarthy, K.G.; Mathewson, A.; Copuroglu, M.; O’Brien, S.; Winfield, R. High-performance MIM capacitors using novel PMNT thin films. IEEE Electron Device Lett. 2010, 31, 996–998. [Google Scholar] [CrossRef]
- Mariotti, C.; Cook, B.S.; Roselli, L.; Tentzeris, M.M. State-of-the-art inkjet-printed metal-insulator-metal (MIM) capacitors on silicon substrate. IEEE Microw. Wirel. Compon. Lett. 2014, 25, 13–15. [Google Scholar] [CrossRef]
- Cook, B.S.; Cooper, J.R.; Tentzeris, M.M. Multi-layer RF capacitors on flexible substrates utilizing inkjet printed dielectric polymers. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 353–355. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Meng, G.; Zhou, F.; Song, L.; Li, X.; Hu, X.; Zhu, X.; Wu, B.; Wei, B. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 2015, 1, e1500605. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Perez, I.; Henn-Lecordier, L.; Lee, S.B.; Rubloff, G.W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nanotechnol. 2009, 4, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Li, G.; Yao, F.Z.; Cheng, S.D.; Wang, Y.; Ma, R.; Mi, S.-B.; Gu, M.; Wang, K.; Li, J.-F.; et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi (Mg0.5Zr0.5) O3 lead-free relaxor ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar] [CrossRef]
Reference | Insulator | Top Electrode | Capacitance Density | Current Density | Quality Factor |
---|---|---|---|---|---|
3D porous NiO capacitor This work | NiO | Pt | 69.95 nF/cm2 | 1.01 × 10−8 A/cm2 | 186 (1 MHz) |
T.H. Perng et al. [18] | HfO2 | Cu | 340 nF/cm2 | 5 × 10−9 A/cm2 | - |
D.H. Triyoso et al. [19] | Ta2O5 | TiN | 1590 nF/cm2 | 1 × 10−5 A/cm2 | - |
Chen, W.B. et al. [20] | PMNT | Pt | 250 nF/cm2 | 1 × 10−10 A/cm2 | 17.4 (1 MHz) |
Mariotti, C. et al. [21] | PVPh | Ag | 3.3 nF/cm2 | 4 × 10−9 A/cm2 | 25 (1 GHz) |
Cook, B.S. et al. [22] | PVP | Ag | 2.2 nF/cm2 | - | 7.5 (3 GHz) |
Reference | Insulator | Capacitor Structures | Capacitance Density | Breakdown Strength | Energy Efficiency |
---|---|---|---|---|---|
3D Glass-based Capacitor This work | Glass | Interdigital electrodes | 49.6 nF/cm2 | 8.2 MV/cm | 95% |
J. L. Li et al. [23] | NBT-0.45SBT | MLCCs | - | 0.72 MV/cm | 92% |
F. M. Han et al. [24] | AAO | CNTs/AAO/CNTs | 47 μF/cm2 | 8 MV/cm | - |
P. Banerjee et al. [25] | Al2O3 | TiN/Al2O3/TiN | 10~100 μF/cm2 | 4.1 MV/cm | - |
Q. B. Yuan et al. [26] | BaTiO3-Bi(Mg0.5Zr0.5)O3 | Ceramics | - | 3 MV/cm | 89.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Gao, L.; Chen, H.; Zhang, J. Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors. Nanomaterials 2025, 15, 819. https://doi.org/10.3390/nano15110819
Zhang B, Gao L, Chen H, Zhang J. Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors. Nanomaterials. 2025; 15(11):819. https://doi.org/10.3390/nano15110819
Chicago/Turabian StyleZhang, Baichuan, Libin Gao, Hongwei Chen, and Jihua Zhang. 2025. "Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors" Nanomaterials 15, no. 11: 819. https://doi.org/10.3390/nano15110819
APA StyleZhang, B., Gao, L., Chen, H., & Zhang, J. (2025). Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors. Nanomaterials, 15(11), 819. https://doi.org/10.3390/nano15110819