Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterizations of the Perovskite Films
2.2. Composition of the Layer
2.3. Layer Formation Process
2.4. Characterization of the Solar Cells
2.5. Stability Study of the Perovskite Layers and Devices
3. Conclusions
4. Experimental Section
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.H.; Wen, X.M.; Zheng, G.H.J.; Wang, Y.F.; Li, Y.H.; Li, B.L.; Yang, Y.Z.; Liang, J.S.; Chen, D.C.; Hou, L.T.; et al. High-Quality Lead Acetate-Based Ruddlesden-Popper Perovskite Films for Efficient Solar Cells. Sol. RRL 2023, 7, 2300111. [Google Scholar] [CrossRef]
- Liu, M.; Pauporté, T. Additive Engineering for Stable and Efficient Dion–Jacobson Phase Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 134. [Google Scholar] [CrossRef]
- Meftahi, N.; Surmiak, M.A.; Fuerer, S.O.; Rietwyk, K.J.; Lu, J.F.; Raga, S.R.; Evans, C.; Michalska, M.; Deng, H.; McMeekin, D.P.; et al. Machine Learning Enhanced High-Throughput Fabrication and Optimization of Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2203859. [Google Scholar] [CrossRef]
- Koh, T.M.; Febriansyah, B.; Mathews, N. Ruddlesden-Popper Perovskite Solar Cells. Chem 2017, 2, 326–327. [Google Scholar] [CrossRef]
- Liang, C.; Zhao, D.D.; Li, Y.; Li, X.J.; Peng, S.M.; Shao, G.S.; Xing, G.C. Ruddlesden-Popper Perovskite for Stable Solar Cells. Energy Environ. Mater. 2018, 1, 221–231. [Google Scholar] [CrossRef]
- Li, P.W.; Yan, L.F.; Cao, Q.L.; Liang, C.; Zhu, H.; Peng, S.H.; Yang, Y.P.; Liang, Y.C.; Zhao, R.D.; Zang, S.Q.; et al. Dredging the Charge-Carrier Transfer Pathway for Efficient Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2023, 62, e202217910. [Google Scholar] [CrossRef]
- Oesinghaus, L.; Schlipf, J.; Giesbrecht, N.; Song, L.; Hu, Y.; Bein, T.; Docampo, P.; Müller-Buschbaum, P. Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Adv. Mater. Interfaces 2016, 3, 1600403. [Google Scholar] [CrossRef]
- Yan, L.F.; Ma, J.J.; Li, P.W.; Zang, S.Q.; Han, L.Y.; Zhang, Y.Q.; Song, Y.L. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Adv. Mater. 2022, 34, 2106822. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Yang, Y.F.; Jiang, H.S.; Chen, F.C. Asymmetrical Single Crystals Containing Tilted Ruddlesden-Popper Phases for Efficient Perovskite Solar Cells. Sol. RRL 2022, 6, 2200562. [Google Scholar] [CrossRef]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem.-Int. Ed. 2014, 53, 11232–11235. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Ran, C.X.; Hu, J.F.; Lin, Y.X.; Xia, Y.D.; Chen, Y.H. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 34189–34197. [Google Scholar] [CrossRef]
- Li, X.C.; Hu, W.P.; Shang, Y.B.; Yu, X.; Wang, X.; Zhou, W.R.; Wang, M.T.; Luo, Q.; Ma, C.Q.; Lu, Y.L.; et al. Phenylformamidinium-Enabled Quasi-2D Ruddlesden-Popper Perovskite Solar Cells with Improved Stability. J. Energy Chem. 2022, 66, 680–688. [Google Scholar] [CrossRef]
- Kong, W.Y.; Zeng, F.; Su, Z.H.; Wang, T.; Qiao, L.; Ye, T.S.; Zhang, L.; Sun, R.T.; Barbaud, J.; Li, F.; et al. Oriented Low-n Ruddlesden-Popper Formamidinium-Based Perovskite for Efficient and Air Stable Solar Cells. Adv. Energy Mater. 2022, 12, 2202704. [Google Scholar] [CrossRef]
- Chen, H.R.; Xia, Y.D.; Wu, B.; Liu, F.; Niu, T.T.; Chao, L.F.; Xing, G.C.; Sum, T.; Chen, Y.H.; Huang, W. Critical Role of Chloride in Organic Ammonium Spacer on the Performance of Low-dimensional Ruddlesden-Popper Perovskite Solar Cells. Nano Energy 2019, 56, 373–381. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, W.; Jung, J.W. A Cascade Bilayer Electron Transport Layer Toward Efficient and Stable Ruddlesden-Popper Perovskite Solar Cells. Int. J. Energy Res. 2022, 46, 8229–8239. [Google Scholar] [CrossRef]
- Du, Y.T.; Wu, J.H.; Li, G.D.; Wang, X.B.; Song, Z.Y.; Deng, C.Y.; Chen, Q.; Zou, Y.; Sun, W.H.; Lan, Z. Bulky Ammonium Iodide and In-Situ Formed 2D Ruddlesden-Popper Layer Enhances the Stability and Efficiency of Perovskite Solar Cells. J. Colloid Interface Sci. 2022, 614, 247–255. [Google Scholar] [CrossRef]
- Du, J.Y.; Zhang, M.Q.; Tian, J.J. Controlled Crystal Orientation of Two-Dimensional Ruddlesden-Popper Halide Perovskite Films for Solar Cells. Int. J. Miner. Metall. Mater. 2022, 29, 49–58. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, B.X.; Huang, G.S.; Li, Y.X.; Li, X.; Chen, J.Y.; Yue, S.L.; Li, K.; Zhang, H.; Zhang, Y.; et al. Impact of Strain Relaxation on 2D Ruddlesden-Popper Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2022, 61, e202208264. [Google Scholar] [CrossRef]
- Caiazzo, A.; Janssen, R.A.J. High Efficiency Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2202830. [Google Scholar] [CrossRef]
- Liu, P.Y.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z.P. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. Adv. Mater. 2021, 33, 2002582. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Wang, Z.J.; Yang, G.J.; Yu, J.S. Anion Regulation Engineering for Efficient Ruddlesden-Popper Inverted Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2021, 232, 111345. [Google Scholar] [CrossRef]
- Fu, P.; Liu, Y.; Yu, S.W.; Yin, H.; Yang, B.W.; Ahmad, S.; Guo, X.; Li, C. Dion-Jacobson and Ruddlesden-Popper Double-Phase 2D Perovskites for Solar Cells. Nano Energy 2021, 88, 106249. [Google Scholar] [CrossRef]
- Zhang, X.; Munir, R.; Xu, Z.; Liu, Y.C.; Tsai, H.; Nie, W.Y.; Li, J.B.; Niu, T.Q.; Smilgies, D.M.; Kanatzidis, M.G.; et al. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells. Adv. Mater. 2018, 30, 1707166. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Xiong, S.B.; Song, J.N.; Wu, H.B.; Zeng, Y.H.; Lu, L.Y.; Shen, K.C.; Hao, T.Y.; Ma, Z.F.; Liu, F.; et al. Energetics and Energy Loss in 2D Ruddlesden-Popper Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2000687. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Zhu, T.; Zheng, D.; Liu, J.; Coolen, L.; Pauporte, T. PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACl-Mediated Grown FA(0.94)MA(0.06)PbI(3) Perovskite. ACS Appl. Mater. Interfaces 2020, 12, 37197–37207. [Google Scholar] [CrossRef]
- Shi, J.S.; Gao, Y.R.; Gao, X.; Zhang, Y.; Zhang, J.J.; Jing, X.; Shao, M. Fluorinated Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability. Adv. Mater. 2019, 31, 1901673. [Google Scholar] [CrossRef]
- Lee, J.W.; Dai, Z.H.; Han, T.H.; Choi, C.; Chang, S.Y.; Lee, S.J.; De Marco, N.; Zhao, H.X.; Sun, P.Y.; Huang, Y.; et al. 2D Perovskite Stabilized Phase-Pure Formamidinium Perovskite Solar Cells. Nat. Commun. 2018, 9, 3021. [Google Scholar] [CrossRef]
- Tsai, H.H.; Nie, W.Y.; Blancon, J.C.; Toumpos, C.C.S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-Efficiency Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef]
- Huang, F.; Siffalovic, P.; Li, B.; Yang, S.X.; Zhang, L.X.; Nadazdy, P.; Cao, G.Z.; Tian, J.J. Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti- solvent for solar cells. Chem. Eng. J. 2020, 394, 124959. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, D.; Zhu, T.; Vegso, K.; Siffalovic, P.; Pauporté, T. 2D Halide Perovskite Phase Formation Dynamics and Their Regulation by Co-Additives for Efficient Solar Cells. Adv. Mater. Interfaces 2024, 11, 2300773. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, F.; Rager, M.N.; Gollino, L.; Zhang, B.; Pauporté, T. What are Methylammonium and Solvent Fates upon Halide Perovskite Thin-Film Preparation and Thermal Aging? Adv. Mater. Interfaces 2022, 9, 2201436. [Google Scholar] [CrossRef]
- Cresp, M.; Liu, M.; Rager, M.N.; Zheng, D.; Pauporté, T. 2D Ruddlesden-Popper versus 2D Dion-Jacobson Perovskites: Of the Importance of Determining the “True” Average n-Value of Annealed Layers. Adv. Funct. Mater. 2024, 35, 2413671. [Google Scholar] [CrossRef]
- Zheng, D.; Schwob, C.; Prado, Y.; Ouzit, Z.; Coolen, L.; Pauporté, T. How do gold nanoparticles boost the performance of perovskite solar cells? Nano Energy 2022, 94, 106934. [Google Scholar] [CrossRef]
- Zheng, D.; Volovitch, P.; Pauporté, T. What Can Glow Discharge Optical Emission Spectroscopy (GD-OES) Technique Tell Us about Perovskite Solar Cells? Small Methods 2022, 6, e2200633. [Google Scholar] [CrossRef]
- Zheng, D.; Raffin, F.; Volovitch, P.; Pauporté, T. Control of Perovskite Film Crystallization and Growth Direction to Target Homogeneous Monolithic Structures. Nat. Commun. 2022, 13, 6655. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.M.; Zhu, T.; Yan, Y.F.; Pauporté, T. Controlling the Formation Process of Methylammonium-Free Halide Perovskite Films for a Homogeneous Incorporation of Alkali Metal Cations Beneficial to Solar Cell Performance. Adv. Energy Mater. 2022, 12, 2103618. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Liu, G.Z.; Zhu, L.Z.; Ye, J.J.; Zhang, X.H.; Alsaedi, A.; Hayat, T.; Pan, X.; Dai, S.Y. The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi-2D Perovskite Materials in Moist Condition. Adv. Energy Mater. 2018, 8, 1800051. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.H.; Niu, T.Q.; Bu, N.; Zhang, Y.L.; Wang, S.Q.; Fang, J.J.; Chang, X.M.; Luo, T.; Wen, J.L.; et al. Formamidinium-Based Ruddlesden-Popper Perovskite Films Fabricated via Two-Step Sequential Deposition: Quantum Well Formation, Physical Properties and Film-Based Solar Cells. Energy Environ. Sci. 2022, 15, 1144–1155. [Google Scholar] [CrossRef]
- Ulfa, M.; Zhu, T.; Goubard, F.; Pauporté, T. Molecular versus Polymeric Hole Transporting Materials for Perovskite Solar Cell Application. J. Mater. Chem. A 2018, 6, 13350–13358. [Google Scholar] [CrossRef]
- Shao, M.; Bie, T.; Yang, L.; Gao, Y.; Jin, X.; He, F.; Zheng, N.; Yu, Y.; Zhang, X. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Adv. Mater. 2022, 34, 2107211. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, H.; Li, J.; Yang, L.; Ma, Y.; Liu, H.; Hu, Z.; Liu, Y. Semiconductor Spacer with Donor-Acceptor Structure Drives 2D Ruddlesden-Popper Perovskite Solar Cells Beyond 20% Efficiency. Angew. Chem. Int. Ed. 2025, e202501210. [Google Scholar]
- Xu, C.; Cheng, L.; Li, Z.; Zheng, X.; Shan, S.; Chen, T.; Fu, W.; Yang, Y.; Zuo, L.; Chen, H. Fast Solidification and Slow Growth Strategy for High-Performance Quasi-2D Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300168. [Google Scholar] [CrossRef]
- Zeng, F.; Kong, W.; Liang, Y.; Li, F.; Lvtao, Y.; Su, Z.; Wang, T.; Peng, B.; Ye, L.; Chen, Z.; et al. Highly Stable and Efficient Formamidinium-Based 2D Ruddlesden–Popper Perovskite Solar Cells via Lattice Manipulation. Adv. Mater. 2023, 35, 2306051. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Yang, L.; Hu, Z.; Liu, H.; Liu, Y. Modulating the Dipole Moment of Secondary Ammonium Spacers for Efficient 2D Ruddlesden-Popper Perovskite Solar Cells. Angew. Chem., Int. Ed. 2024, 63, e202318206. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, D.; Vegso, K.; Siffalovic, P.; Pauporté, T. Improvement of Formamidinium-based Ruddlesden–Popper Perovskite Solar Cells by Combined Co-Additives and Treatment Engineering Strategies. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, Q.; Huang, G.; Yue, Y.; Zhang, W.; Li, X.; Li, Y.; Du, W.; Liu, X.; Zhang, H.; et al. Sulfonium-Cations-Assisted Intermediate Engineering for Quasi-2D Perovskite Solar Cells. Adv. Mater. 2023, 35, 2207345. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Syzgantseva, O.A.; Syzgantseva, M.A.; Ma, S.; Ding, Y.; Cai, M.; Liu, X.; Dai, S.; Nazeeruddin, M.K. Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway. Adv. Energy Mater. 2021, 11, 2002966. [Google Scholar] [CrossRef]
- Yang, R.; Li, R.; Cao, Y.; Wei, Y.; Miao, Y.; Tan, W.L.; Jiao, X.; Chen, H.; Zhang, L.; Chen, Q.; et al. Oriented Quasi-2D Perovskites for High Performance Optoelectronic Devices. Adv. Mater. 2018, 30, 1804771. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, J.; Wang, M.; Bai, Y.; Zou, H.; Keum, J.K.; Tao, R.; Xu, H.; Yu, H.; Haacke, S.; et al. Uniform Permutation of Quasi-2D Perovskites by Vacuum Poling for Efficient, High-Fill-Factor Solar Cells. Joule 2019, 3, 3061–3071. [Google Scholar] [CrossRef]
- Chen, B.; Meng, K.; Qiao, Z.; Zhai, Y.; Yu, R.; Fang, Z.; Yan, P.; Xiao, M.; Pan, L.; Zheng, L.; et al. Surface Crystallization Modulation toward Highly-Oriented and Phase-Pure 2D Perovskite Solar Cells. Adv. Mater. 2024, 36, 2312054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, X.; Liu, B.; Munir, R.; Zhu, X.; Yang, D.; Li, J.; Liu, Y.; Smilgies, D.; Li, R.; et al. Stable High Efficiency Two-Dimensional Perovskite Solar Cells via Cesium Doping. Energy Environ. Sci. 2017, 10, 2095–2102. [Google Scholar] [CrossRef]
System | Composition | SUS-2 a | SLS-2 b | GI c [%] | Growth Direction |
---|---|---|---|---|---|
(PMA)2FAn−1PbnI3n+1 | n = 5 | −0.02653 | −0.01093 | +58.8 | Downward |
n = 9 | −0.01486 | −0.01067 | +28.2 | Lateral | |
n = 100 | −0.01052 | −0.01414 | −25.6 | Lateral |
Cell | Scan Direction | Voc/V | Jsc mA/cm2 | FF/% | PCE/% | HI/% |
---|---|---|---|---|---|---|
n = 1 | Reverse | 0.785 | 1.53 | 44.91 | 0.53 | / |
Forward | / | / | / | / | ||
n = 2 | Reverse | 0.779 | 8.93 | 41.45 | 2.88 | / |
Forward | / | / | / | / | ||
n = 3 | Reverse | 0.885 | 10.83 | 30.93 | 2.96 | / |
Forward | / | / | / | / | ||
n = 5 | Reverse | 1.081 | 20.81 | 61.29 | 13.78 | 14.9 |
Forward | 1.071 | 20.83 | 52.54 | 11.72 | ||
n = 5 * | Reverse | 1.091 | 23.28 | 68.20 | 17.32 | 10.1 |
Forward | 1.076 | 22.89 | 63.17 | 15.56 | ||
n = 9 | Reverse | 1.022 | 24.72 | 76.72 | 19.38 | 14.7 |
Forward | 1.003 | 23.65 | 69.70 | 16.53 | ||
n = 100 | Reverse | 1.023 | 25.68 | 80.56 | 21.16 | 8.1 |
Forward | 1.009 | 25.28 | 76.23 | 19.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Liu, M.; Cresp, M.; Zheng, D.; Vegso, K.; Siffalovic, P.; Pauporté, T. Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances. Nanomaterials 2025, 15, 750. https://doi.org/10.3390/nano15100750
Zhu T, Liu M, Cresp M, Zheng D, Vegso K, Siffalovic P, Pauporté T. Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances. Nanomaterials. 2025; 15(10):750. https://doi.org/10.3390/nano15100750
Chicago/Turabian StyleZhu, Tao, Min Liu, Marie Cresp, Daming Zheng, Karol Vegso, Peter Siffalovic, and Thierry Pauporté. 2025. "Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances" Nanomaterials 15, no. 10: 750. https://doi.org/10.3390/nano15100750
APA StyleZhu, T., Liu, M., Cresp, M., Zheng, D., Vegso, K., Siffalovic, P., & Pauporté, T. (2025). Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances. Nanomaterials, 15(10), 750. https://doi.org/10.3390/nano15100750