Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Cs2NaYF6:15Tb (Mol%) NPs
3.2. OA Content and [Cs+]/[Na+] Ratio Effects on NP Structure
3.3. Tb3+ Doping Optimization in Cs2NaYF6 NPs
3.4. Luminescence Performance of Cs2NaYF6 NPs with Eu3+, Dy3+, Er3+, and Tm3+ Doping
3.5. The XEOL Mechanism of Cs2NaYF6:Ln NPs
3.6. Comparison of XEOL Intensities Between Cs2NaYF6:15Tb and NaYF4:15Tb NPs
3.7. High-Resolution X-Ray Imaging Capability of Cs2NaYF6:15Tb NPs
3.8. Dual-Mode X-Ray/UV–Excitable Cs2NaYF6:Tb NPs for High-Sensitivity Spermine Detection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NPs | nanoparticles |
XEOL | X-ray excited optical luminescence |
OA | oleic acid |
EDS | energy-dispersive X-ray spectroscopy |
References
- Yu, R.W.; Fan, S.H. Flashing light with nanophotonics. Science 2022, 375, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.J.; Cao, Y.X.; Ge, X.G.; Zhang, Z.N.; Gao, S.; Song, J.B. X-ray excited luminescence materials for cancer diagnosis and theranostics. Laser Photon. Rev. 2023, 18, 2300565. [Google Scholar] [CrossRef]
- Liang, Y.J.; Liu, F.; Chen, Y.F.; Wang, X.J.; Sun, K.N.; Pan, Z.W. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light Sci. Appl. 2016, 5, e16124. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, L.Y.; Li, Y.Q.; Zhou, K.; Li, L.C.; Cheng, G.H.; Wen, T. EBL: Efficient background learning for X-ray security inspection. Appl. Intell. 2023, 53, 11357–11372. [Google Scholar] [CrossRef]
- Zdesenko, Y.G.; Avignone Iii, F.T.; Brudanin, V.B.; Danevich, F.A.; Nagorny, S.S.; Solsky, I.M.; Tretyak, V.I. Scintillation properties and radioactive contamination of CaWO4 crystal scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 2005, 538, 657–667. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Sobottka, S.E.; Williams, M.B. Performance and fabrication of thin film NaI(Tl) scintillators for use on imaging photomultiplier tubes. IEEE Trans. Nucl. Sci. 1993, 40, 413–416. [Google Scholar] [CrossRef]
- Valais, I.G.; David, S.; Michail, C.; Nomicos, C.D.; Panayiotakis, G.S.; Kandarakis, I.S. Comparative evaluation of single crystal scintillators under X-ray imaging conditions. J. Instrum. 2009, 4, P06013. [Google Scholar] [CrossRef]
- Milbrath, B.D.; Peurrung, A.J.; Bliss, M.; Weber, W.J. Radiation detector materials: An overview. J. Mater. Res. 2008, 23, 2561–2581. [Google Scholar] [CrossRef]
- Chen, Q.S.; Wu, J.; Ou, X.Y.; Huang, B.L.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.W.; Han, S.Y.; Liang, L.L.; Yi, Z.G.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Lei, L.; Yi, M.H.; Wang, Y.B.; Hua, Y.J.; Zhang, J.J.; Prasad, P.N.; Xu, S.Q. Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging. Nat. Commun. 2024, 15, 1140. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Barua, P.; Chiodini, N.; Steigenberger, S.; Abdul Khudus, M.I.M.; Sahu, J.K.; Beresna, M.; Brambilla, G. Ultraviolet photoluminescence in Gd-doped silica and phosphosilicate fibers. APL Photon. 2017, 2, 046101. [Google Scholar] [CrossRef]
- Teng, Y.; Zhou, J.J.; Ma, Z.J.; Smedskjaer, M.M.; Qiu, J.R. Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors. J. Electrochem. Soc. 2010, 158, K17. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Kong, X.G.; Liu, X.M.; Tu, L.P.; Wu, F.; Zhang, Y.L.; Liu, K.; Zeng, Q.H.; Zhang, H. Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 2013, 5, 8084–8089. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, H.R.; Han, Q.Y.; He, E.J.; Gao, F.G.; Wang, R.B. Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals. J. Mater. Chem. C 2014, 2, 5327–5334. [Google Scholar] [CrossRef]
- Cui, X.S.; Cheng, Y.; Lin, H.; Wu, Q.P.; Xu, J.; Wang, Y.S. Boosting single-band red upconversion luminescence in colloidal NaErF4 nanocrystals: Effects of doping and inert shell. J. Rare Earths 2019, 37, 573–579. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.B.; Xu, W.X.; Ye, R.G.; Hua, Y.J.; Deng, D.G.; Chen, L.; Prasad, P.N.; Xu, S.Q. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 2022, 13, 5739. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.Y.; Qin, X.; Huang, B.L.; Zan, J.; Wu, Q.X.; Hong, Z.Z.; Xie, L.L.; Bian, H.Y.; Yi, Z.G.; Chen, X.F.; et al. High-resolution X-ray luminescence extension imaging. Nature 2021, 590, 410–415. [Google Scholar] [CrossRef]
- Chen, X.F.; Song, J.B.; Chen, X.Y.; Yang, H.H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101. [Google Scholar] [CrossRef]
- Chen, J.K.; Shirahata, N.; Sun, H.T. Metal-free scintillators excite X-ray community. Nat. Photon. 2021, 15, 171–172. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhang, Q.Y.; Yang, C.H.; Chen, D.D.; Zhao, C. Comparative investigation on structure and luminescence properties of fluoride phosphors codoped with Er3+/Yb3+. Spectrochim. Acta A 2009, 74, 441–445. [Google Scholar] [CrossRef]
- Yang, Y.M.; Li, Z.Y.; Zhang, J.Y.; Lu, Y.; Guo, S.Q.; Zhao, Q.; Wang, X.; Yong, Z.J.; Li, H.; Ma, J.P.; et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light Sci. Appl. 2018, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lei, L.; Zhu, W.J.; Wang, Y.B.; Guo, H.; Xu, S.Q. Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging. Nano Res. 2023, 16, 3339–3347. [Google Scholar] [CrossRef]
- Zou, H.R.; Zhu, W.J.; Zhao, J.T.; Zhou, S.; Xu, S.Q.; Lei, L. Sub-10 nm Lanthanide-Doped Lu6O5F8 Nanoscintillators for Real-Time High-Resolution Dynamic 3D X-Ray Imaging. Adv. Funct. Mater. 2024, 34, 2409156. [Google Scholar] [CrossRef]
- Duan, C.K.; Ko, C.C.; Jia, G.H.; Chen, X.Y.; Tanner, P.A. 5D3-5D4 cross-relaxation of Tb3+ in a cubic host lattice. Chem. Phys. Lett. 2011, 506, 179–182. [Google Scholar] [CrossRef]
- Liao, F.; Zhang, Y.P.; Hu, J.X. Enhancement of green emission from Ca14Al10Zn6O35: Tb3+ phosphors via cross-relaxation energy transfer by Li+ ions. J. Lumin. 2021, 231, 117791. [Google Scholar] [CrossRef]
- Xu, W.X.; Lei, L.; Wang, Y.B.; Prasad, P.N.; Chen, L.; Xu, S.Q. Spectral Manipulation of X-Ray Excited Optical/Persistent Luminescence by Constructing Metal-Organic Framework@Fluoride Nanoparticles Composites. Laser Photon. Rev. 2023, 17, 2200997. [Google Scholar] [CrossRef]
- Tan, V.D.; Tong, N.B.; Quynh, N.T.V.; Dung, C.T.M.; Chinh, T.D.; Son, L.V.T.; Hanh, T.T.K.; Thang, P.B.; Giang, L.T.T.; Van, L.T.T. Highly efficient latent fingerprint detection from NaYF4:Eu down-shifting microparticles. Ceram. Int. 2023, 49, 39993–40000. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, Z.; Xiao, L.J.; Xie, Y. Synthesis and Optical Properties of Upconversion NaYF4:Dy3+ Nanoparticles. Chin. J. Lumin. 2012, 33, 258–262. [Google Scholar] [CrossRef]
- Renero-Lecuna, C.; Martín-Rodríguez, R.; Valiente, R.; González, J.; Rodríguez, F.; Krämer, K.W.; Güdel, H.U. Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4:2%Er3+,20%Yb3+. Chem. Mater. 2011, 23, 3442–3448. [Google Scholar] [CrossRef]
- Yang, Y.D.; Zhou, P.W.; Xu, W.; Xu, S.; Jiang, Y.D.; Chen, X.; Song, H.W. NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: Synthesis, highly improved upconversion properties and NIR photoelectric response. J. Mater. Chem. C 2016, 4, 659–662. [Google Scholar] [CrossRef]
- Xu, W.X.; Lei, L.; Wang, Y.B.; Liu, E.Y.; Chen, L.; Xu, S.Q. Modulating electron population pathways for time-dependent dynamic multicolor displays. Mater. Horiz. 2021, 8, 3443–3448. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.J.; Ma, W.B.; Su, Y.R.; Chen, Z.; Chen, X.Y.; Ma, Y.G.; Bai, L.Z.; Xiao, W.G.; Liu, T.Y.; Zhu, H.M.; et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl. 2020, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhou, S.; Huang, J.; Ouyang, X.; Liu, J.; Guo, Y.; Wang, J.; Nie, J.; Zhang, X.L.; Ouyang, X.P.; et al. Ultra-flexible and highly sensitive scintillation screen based on perovskite quantum dots for non-flat objects X-ray imaging. Mater. Today Phys. 2021, 18, 100390. [Google Scholar] [CrossRef]
- Zhao, B.Z.; Qin, X.B.; Feng, Z.D.; Wei, C.F.; Chen, Y.; Wang, B.Y.; Wei, L. Performance evaluation of CsI screens for X-ray imaging. Chin. Phys. C 2014, 38, 116003. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Murthy, Z.V.P.; Kailasa, S.K. Fluorescence turn-off detection of spermine in biofluids using pepsin mediated synthesis of gold nanoclusters as a probe. J. Mol. Liq. 2019, 280, 18–24. [Google Scholar] [CrossRef]
- Yuan, D.; Liu, J.J.; Zhang, H.Z.; Wang, N.; Zou, H.Y.; Huang, C.Z.; Wang, J. Highly selective detection of spermine in human urine via a nanometal surface energy transfer platform. Talanta 2018, 188, 218–224. [Google Scholar] [CrossRef]
- Liu, J.L.; Lu, L.L.; Li, A.Q.; Tang, J.; Wang, S.G.; Xu, S.Y.; Wang, L.Y. Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens. Bioelectron. 2015, 68, 204–209. [Google Scholar] [CrossRef]
- Lin, X.F.; Li, C.X.; He, C.X.; Zhou, Y.; Wang, Z.P.; Duan, N.; Wu, S.J. Upconversion nanoparticles assembled with gold nanourchins as luminescence and surface-enhanced Raman scattering dual-mode aptasensors for detection of ochratoxin A. ACS Appl. Nano Mater. 2021, 4, 8231–8240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, K.; Chen, W.; Li, D.; Lei, L. Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection. Nanomaterials 2025, 15, 728. https://doi.org/10.3390/nano15100728
Zhao J, Wang K, Chen W, Li D, Lei L. Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection. Nanomaterials. 2025; 15(10):728. https://doi.org/10.3390/nano15100728
Chicago/Turabian StyleZhao, Jian, Kunyang Wang, Wenhui Chen, Deyang Li, and Lei Lei. 2025. "Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection" Nanomaterials 15, no. 10: 728. https://doi.org/10.3390/nano15100728
APA StyleZhao, J., Wang, K., Chen, W., Li, D., & Lei, L. (2025). Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection. Nanomaterials, 15(10), 728. https://doi.org/10.3390/nano15100728