Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates
Abstract
:1. Introduction
2. Methods
2.1. Substrate Pretreatment
2.2. Flame Synthesis
2.3. Material Characterization
2.4. Vanadium Oxide Reduction
3. Results and Discussion
3.1. FVD Growth of V2O5
3.2. FVD Growth of V2O5 on Diverse Substrates
3.3. Two-Dimensional V2O5 Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devan, R.S.; Patil, R.A.; Lin, J.H.; Ma, Y.R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370. [Google Scholar] [CrossRef]
- Alrammouz, R.; Lazerges, M.; Pironon, J.; Bin Taher, I.; Randi, A.; Halfaya, Y.; Gautier, S. V2O5 gas sensors: A review. Sens. Actuators A Phys. 2021, 332, 113179. [Google Scholar] [CrossRef]
- George, A.; Raj, A.D.; Yang, Q.Q. Structural characteristics and gas sensing response of V2O5 nanorod thinfilms deposited by hot filament CVD. Sens. Actuators B Chem. 2023, 378, 133078. [Google Scholar] [CrossRef]
- Wachs, I.E. Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 2013, 42, 11762–11769. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gao, Y.; Zhou, J.; Liu, X.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. Growth of oriented vanadium pentaoxide nanostructures on transparent conducting substrates and their applications in photocatalysis. J. Solid State Chem. 2014, 214, 79–85. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W.; Fujishima, A.; Terashima, C. Enhanced photocatalytic degradation activity using the V2O5/RGO composite. Nanomaterials 2023, 13, 338. [Google Scholar] [CrossRef]
- Shankar, V.U.; Govindarajan, D.; Christuraj, P.; Salethraj, M.J.; Johanson, F.J.; Raja, M.D. Enhanced the electrochemical properties of Ni doped V2O5 as a electrode material for supercapacitor applications. Mater. Today Proc. 2022, 50, 2675–2678. [Google Scholar] [CrossRef]
- Balboni, R.D.C.; Cholant, C.M.; Kruger, L.U.; Moura, E.A.; Maron, G.K.; Flores, W.H.; Gundel, A.; Gatto, D.A.; Pawlicka, A.; Avellaneda, C.A.O.; et al. Influence of weathering and temperature on the electrochemical and microscopical characteristics of CeO2 and CeO2:V2O5 sol-gel thin films. Mater. Res. Bull. 2021, 142, 111432. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.Y.; Liu, L.H.; Yu, W.W.; Chen, J.W.; Zhu, Q.Q.; Li, H.Z. Interlayer spacing expansion for V2O5 towards ultra-stable zinc anode-based flexible electrochromic displays in Zn2+/Li+-PC organic electrolyte. Chem. Commun. 2024, 60, 14585–14588. [Google Scholar] [CrossRef]
- Li, G.; Pang, S.; Jiang, L.; Guo, Z.; Zhang, Z. Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries. J. Phys. Chem. B 2006, 110, 9383–9386. [Google Scholar] [CrossRef]
- Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.Y.; Qiu, M.D.; Xu, J.Z.; Liu, Y.C.; Jiao, L.F.; Cheng, F.Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372. [Google Scholar] [CrossRef]
- Zhou, J.; Shan, L.T.; Wu, Z.X.; Guo, X.; Fang, G.Z.; Liang, S.Q. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 2018, 54, 4457–4460. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Wang, L.B.; Li, H.; Cheng, F.Y.; Chen, J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 2019, 38, 20–25. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mumtaz, A. Unravelling the charge storage mechanism in V2O5 nanorods through Systematic structural and electrochemical study. J. Electroanal. Chem. 2024, 974, 118745. [Google Scholar] [CrossRef]
- Gamal, H.; Elshahawy, A.M.; Medany, S.S.; Hefnawy, M.A.; Shalaby, M.S. Recent advances of vanadium oxides and their derivatives in supercapacitor applications: A comprehensive review. J. Energy Storage 2024, 76, 109788. [Google Scholar] [CrossRef]
- Sarkar, M.; Baral, A.; Mukherjee, N. Synergistically active V5+/V4+ couple in nanoribbon like rGO/V2O5 composite for enhanced supercapacitive energy storage attributes: Optimization of electrode composition and electrolyte. J. Energy Storage 2024, 84, 110662. [Google Scholar] [CrossRef]
- Ferhati, F.; Simo, A.; Belkaid, M.S.; Maaza, M.; Boussoum, O.; Hocine, D. Fast growth of pure V2O5 nanoparticles by low-cost hydrothermal process. Eur. Phys. J. Appl. Phys. 2021, 96, 30101. [Google Scholar] [CrossRef]
- Ramos, J.M.; Wang, J.A.; Flores, S.O.; Chen, L.F.; Arellano, U.; Norena, L.E.; Gonzalez, J.; Navarrete, J. Ultrasound-assisted hydrothermal synthesis of V2O5/Zr-SBA-15 catalysts for production of ultralow sulfur fuel. Catalysts 2021, 11, 408. [Google Scholar] [CrossRef]
- Sahraeian, N.; Esmaeilzadeh, F.; Mowla, D. Hydrothermal synthesis of V2O5 nanospheres as catalyst for hydrogen sulfide removal from sour water. Ceram. Int. 2021, 47, 923–934. [Google Scholar] [CrossRef]
- Cao, P.J.; Gui, X.G.; Navale, S.T.; Han, S.; Xu, W.Y.; Fang, M.; Liu, X.K.; Zeng, Y.X.; Liu, W.J.; Zhu, D.L.; et al. Design of flower-like V2O5 hierarchical nanostructures by hydrothermal strategy for the selective and sensitive detection of xylene. J. Alloys Compd. 2020, 815, 152378. [Google Scholar] [CrossRef]
- Ng, S.H.; Chew, S.Y.; Wang, J.; Wexler, D.; Tournayre, Y.; Konstantinov, K.; Liu, H.K. Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J. Power Sources 2007, 174, 1032–1035. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhao, R.Z.; Zhang, X.H.; Wei, Q.F.; Ren, X.L.; Ying, Z.W. A novel technology for producing high-purity V2O5 from hazardous vanadium-containing solutions using precipitation and solvent extraction. Process Saf. Environ. Prot. 2023, 173, 567–578. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Q.W. Recovery of V2O5 from spent SCR catalyst by H2SO4-ascorbic acid leaching and chemical precipitation. J. Environ. Chem. Eng. 2022, 10, 108719. [Google Scholar] [CrossRef]
- Raj, A.D.; Kumar, P.S.; Yang, Q.; Mangalaraj, D. Synthesis and gas sensors behavior of surfactants free V2O5 nanostructure by using a simple precipitation method. Phys. E Low-Dimens. Syst. Nanostructures 2012, 44, 1490–1494. [Google Scholar] [CrossRef]
- Santos, R.; Loureiro, J.; Nogueira, A.; Elangovan, E.; Pinto, J.V.; Veiga, J.P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I. Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Appl. Surf. Sci. 2013, 282, 590–594. [Google Scholar] [CrossRef]
- Jain, R.K.; Khanna, A. Structural, optical and electrical properties of crystalline V2O5 films deposited by thermal evaporation and effects of temperature on UV-vis and Raman spectra. Optik 2017, 144, 271–280. [Google Scholar] [CrossRef]
- Fatehmulla, A.; Aslam, M.; Farooq, W.A.; Ali, S.M.; Atif, M.; AlDhafiri, A.M.; Yakuphanoglu, F. Influence of laser exposure on the physical properties of nano V2O5 films grown by thermal evaporation. Theor. Exp. Chem. 2016, 51, 375–379. [Google Scholar] [CrossRef]
- Abd-Alghafour, N.M.; Naeem, G.A.; Ahmed, N.M.; Afzal, N.; Muslim, R.F. Thermal evaporation based V2O5 thin film for extended gate field effect transistor pH sensor. Mater. Res. Express 2019, 6, 125423. [Google Scholar] [CrossRef]
- Raj, P.D.; Gupta, S.; Sridharan, M. Nanostructured V2O5 thin films deposited at low sputtering power. Mater. Sci. Semicond. Process. 2015, 39, 426–432. [Google Scholar] [CrossRef]
- Benmoussa, M.; Outzourhit, A.; Bennouna, A.; Ameziane, E.L. Electrochromism in sputtered V2O5 thin films: Structural and optical studies. Thin Solid Film. 2002, 405, 11–16. [Google Scholar] [CrossRef]
- de Castro, M.S.B.; Ferreira, C.L.; de Avillez, R.R. Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature. Infrared Phys. Technol. 2013, 60, 103–107. [Google Scholar] [CrossRef]
- George, A.; Raj, D.; Yang, Q.Q. Gas sensing performance of tungsten doped V2O5 nanorod thin-films deposited by hot filament CVD combined with DC sputtering. Sens. Actuators B Chem. 2023, 394, 134371. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Kuznetsov, N.T. Preparation of V2O5 thin film by sol-gel technique and pen plotter printing. Colloids Interfaces 2023, 7, 20. [Google Scholar] [CrossRef]
- Liu, H.Y.; Liang, X.P.; Jiang, T.; Zhang, Y.Y.; Liu, S.W.; Wang, X.Z.; Fan, X.W.; Huai, X.G.; Fu, Y.D.; Geng, Z.B.; et al. High-performance self-doped V4+-V2O5 ion storage films grown in situ using a novel hydrothermal-assisted sol-gel composite method. Electrochim. Acta 2022, 404, 139784. [Google Scholar] [CrossRef]
- Lee, H.S.; Yang, J.H.; Lee, H.J.; Lee, H.; Jeon, S.C. Integrated sol-gel and hydrothermal synthesis of V2O5 -TiO2 nanocatalysts for enhanced catalytic removal of H2S. J. Clean. Prod. 2021, 329, 129791. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Fisenko, N.A.; Solovey, V.R.; Simonenko, N.P.; Simonenko, E.P.; Volkov, I.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films. Colloid Interface Sci. Commun. 2021, 43, 100452. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y.; Wu, Y.D.; Zhang, X.; Zou, M.D.; Zhuang, J.Q.; Li, J.X.; Zhao, W.Q.; Fan, L.N.; Mei, J.C.; et al. Electrical and optical properties of W-doped V2O5/FTO composite films fabricated by sol-gel method. Infrared Phys. Technol. 2021, 116, 103807. [Google Scholar] [CrossRef]
- Trommer, R.M.; Bergmann, C.P. Flame Spray Technology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–5. [Google Scholar]
- Rao, P.M.; Zheng, X. Flame synthesis of tungsten oxide nanostructures on diverse substrates. Proc. Combust. Inst. 2011, 33, 1891–1898. [Google Scholar] [CrossRef]
- Inamdar, A.K.; Hulsure, N.R.; Kadam, A.S.; Rajenimbalkar, R.S.; Karpoormath, R.; Shelke, S.B.; Inamdar, S.N. Flame synthesized tetragonal TiO2 nanoparticles for Methylene Blue and Congo Red dye removal applications. Results Chem. 2023, 5, 100854. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, S.S. High temperature synthesis of TiO2 nanoparticles as a photochemical catalyst for hydrogen generation using premixed flame burner. J. Mech. Sci. Technol. 2023, 37, 2657–2665. [Google Scholar] [CrossRef]
- Li, Z.; Qin, Z.D.; Li, C.X.; Zhang, G.M.; Zhang, A.Z.; Li, S.S.; Liang, G.Q.; Wang, X.; Tang, W.F. Fabrication of NiO and TiO2 supported nano calcium carbonate and its effect on the flame retardancy and thermal stability of epoxy resin composites. Polym. Degrad. Stab. 2023, 210, 110296. [Google Scholar] [CrossRef]
- Cai, L.; McClellan, C.J.; Koh, A.L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett. 2017, 17, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, D.; Vonnegut, B. Nucleation Catalysis. Ind. Eng. Chem. 1952, 44, 1292–1298. [Google Scholar] [CrossRef]
- Shvets, P.; Dikaya, O.; Maksimova, K.; Goikhman, A. A review of Raman spectroscopy of vanadium oxides. J. Raman Spectrosc. 2019, 50, 1226–1244. [Google Scholar] [CrossRef]
- Tadeo, I.J.; Bhardwaj, D.; Sheela, D.; Krupanidhi, S.B.; Umarji, A.M. Highly photoresponsive VO2(M1) thin films synthesized by DC reactive sputtering. J. Mater. Sci. Mater. Electron. 2020, 31, 4687–4695. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, P.; Reddy, G.B. Effect of Ar, O2, and N2 plasma on the growth and composition of vanadium oxide nanostructured thin films. Adv. Mater. Interfaces 2018, 5, 1800612. [Google Scholar] [CrossRef]
- Ramana, C.V.; Smith, R.J.; Hussain, O.M.; Massot, M.; Julien, C.M. Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy. Surf. Interface Anal. 2005, 37, 406–411. [Google Scholar] [CrossRef]
- Raja, S.; Alphin, M.S. Systematic effects of Fe doping on the activity of V2O5/TiO2-carbon nanotube catalyst for NH3-SCR of NOx. J. Nanopart. Res. 2020, 22, 190. [Google Scholar] [CrossRef]
- Przesniak-Welenc, M.; Nadolska, M.; Jurak, K.; Li, J.; Gornicka, K.; Mielewczyk-Gry, A.; Rutkowska, M.; Nowak, A.P. The valance state of vanadium-key factor in the flexibility of potassium vanadates structure as cathode materials in Li-ion batteries. Sci. Rep. 2022, 12, 18751. [Google Scholar] [CrossRef]
- Ao, X.Z.; Li, B.W.; Zhao, B.; Hu, M.K.; Ren, H.; Yang, H.L.; Liu, J.; Cao, J.Y.; Feng, J.S.; Yang, Y.J.; et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proc. Natl. Acad. Sci. USA 2022, 119, e2120557119. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, T.; Meng, Y.; Yang, R.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Wang, X.; Dong, K.; Li, Y.; Li, J.; Sun, B.; Zhang, X.; Dames, C.; Qiu, C.; Yao, J.; et al. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal–Insulator Transition. Adv. Mater. 2020, 32, 1907071. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Z.W.; Ren, H.; Chen, Y.L.; Yan, W.S.; Wang, C.M.; Li, B.W.; Jiang, J.; Zou, C.W. Gate-controlled VO2 phase transition for high-performance smart windows. Sci. Adv. 2019, 5, eaav6815. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ji, H.; Guo, W.H.; Nevidomskyy, A.H.; Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nat. Nanotechnol. 2012, 7, 357–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Cai, L. Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates. Nanomaterials 2025, 15, 709. https://doi.org/10.3390/nano15100709
Zhou K, Cai L. Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates. Nanomaterials. 2025; 15(10):709. https://doi.org/10.3390/nano15100709
Chicago/Turabian StyleZhou, Kai, and Lili Cai. 2025. "Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates" Nanomaterials 15, no. 10: 709. https://doi.org/10.3390/nano15100709
APA StyleZhou, K., & Cai, L. (2025). Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates. Nanomaterials, 15(10), 709. https://doi.org/10.3390/nano15100709