Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
Abstract
1. Introduction
2. Tau-Targeting Nanoplatforms
3. Aβ-Targeting Nanoplatforms
4. αSyn-Targeting Nanoplatforms
5. Summary and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–Liquid Phase Separation in Human Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, Y.; Lim, J.-Y.; Kim, Y.; Cha, B.; Kim, W. Emerging Regulatory Mechanisms and Functions of Biomolecular Condensates: Implications for Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Utami, K.H.; Morimoto, S.; Mitsukura, Y.; Okano, H. The Roles of Intrinsically Disordered Proteins in Neurodegeneration. Biochim. Biophys. Acta (BBA) Gen. Subj. 2025, 1869, 130772. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Pritzkow, S. Protein Misfolding, Aggregation, and Conformational Strains in Neurodegenerative Diseases. Nat. Neurosci. 2018, 21, 1332–1340. [Google Scholar] [CrossRef]
- Trivedi, R.; Nagarajaram, H.A. Intrinsically Disordered Proteins: An Overview. Int. J. Mol. Sci. 2022, 23, 14050. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-Synuclein in Parkinson’s Disease and Other Synucleinopathies: From Overt Neurodegeneration Back to Early Synaptic Dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef]
- Lo, C.H. Heterogeneous Tau Oligomers as Molecular Targets for Alzheimer’s Disease and Related Tauopathies. Biophysica 2022, 2, 440–451. [Google Scholar] [CrossRef]
- Lo, C.H.; Sachs, J.N. The Role of Wild-Type Tau in Alzheimer’s Disease and Related Tauopathies. J Life Sci (Westlake Village) 2021, 2, 17. [Google Scholar] [CrossRef]
- Coskuner-Weber, O.; Mirzanli, O.; Uversky, V.N. Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions in Neurodegenerative Diseases. Biophys. Rev. 2022, 14, 679–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiong, R.; Lai, L. Rational Drug Design Targeting Intrinsically Disordered Proteins. WIREs Comput. Mol. Sci. 2023, 13, e1685. [Google Scholar] [CrossRef]
- Tóth, G.; Neumann, T.; Berthet, A.; Masliah, E.; Spencer, B.; Tao, J.; Jobling, M.F.; Gardai, S.J.; Bertoncini, C.W.; Cremades, N.; et al. Novel Small Molecules Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein Protect Against Diverse α-Synuclein Mediated Dysfunctions. Sci. Rep. 2019, 9, 16947. [Google Scholar] [CrossRef] [PubMed]
- Fantini, J.; Azzaz, F.; Di Scala, C.; Aulas, A.; Chahinian, H.; Yahi, N. Conformationally Adaptive Therapeutic Peptides for Diseases Caused by Intrinsically Disordered Proteins (IDPs). New Paradigm for Drug Discovery: Target the Target, Not the Arrow. Pharmacol. Ther. 2025, 267, 108797. [Google Scholar] [CrossRef]
- Kouhi, A.; Pachipulusu, V.; Kapenstein, T.; Hu, P.; Epstein, A.L.; Khawli, L.A. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int. J. Mol. Sci. 2021, 22, 6442. [Google Scholar] [CrossRef]
- Masoudi Asil, S.; Ahlawat, J.; Guillama Barroso, G.; Narayan, M. Nanomaterial Based Drug Delivery Systems for the Treatment of Neurodegenerative Diseases. Biomater. Sci. 2020, 8, 4109–4128. [Google Scholar] [CrossRef]
- Asimakidou, E.; Tan, J.K.S.; Zeng, J.; Lo, C.H. Blood–Brain Barrier-Targeting Nanoparticles: Biomaterial Properties and Biomedical Applications in Translational Neuroscience. Pharmaceuticals 2024, 17, 612. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen-Thi, P.-T.; Nguyen, T.H.A.; Ho, T.-T.; Tran, N.-M.-A.; Van Vo, T.; Van Vo, G. Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders. Mol. Diagn. Ther. 2023, 27, 457–473. [Google Scholar] [CrossRef]
- Siafaka, P.I.; Okur, N.Ü.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current Update on Nanoplatforms as Therapeutic and Diagnostic Tools: A Review for the Materials Used as Nanotheranostics and Imaging Modalities. Asian J. Pharm. Sci. 2021, 16, 24–46. [Google Scholar] [CrossRef]
- Taverna, C.; Fasolato, C.; Brasili, F.; Ripanti, F.; Rizza, C.; De Marcellis, A.; Postorino, P.; Sennato, S.; Nucara, A.; Capocefalo, A. Probing the Effect of the Molecular Interface of Gold Nanoparticles on the Disassembly of Insulin Amyloid Fibrils. Int. J. Biol. Macromol. 2025, 306, 141735. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, T.; Zhang, W.; Luo, Z.; Zhang, Z.; Gu, Z.; Yu, L.; Mu, Q.; Sun, T. High Efficiency and Related Mechanism of Au(RC) Nanoclusters on Disaggregating Aβ Fibrils. J. Colloid. Interface Sci. 2022, 621, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-H.; Chang, Y.-J.; Yoshiike, Y.; Chang, Y.-C.; Chen, Y.-R. Negatively Charged Gold Nanoparticles Inhibit Alzheimer’s Amyloid-β Fibrillization, Induce Fibril Dissociation, and Mitigate Neurotoxicity. Small 2012, 8, 3631–3639. [Google Scholar] [CrossRef]
- Jagaran, K.; Singh, M. Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. Int. J. Mol. Sci. 2021, 22, 9082. [Google Scholar] [CrossRef] [PubMed]
- Nayab, D.E.; Din, F.U.; Ali, H.; Kausar, W.A.; Urooj, S.; Zafar, M.; Khan, I.; Shabbir, K.; Khan, G.M. Nano Biomaterials Based Strategies for Enhanced Brain Targeting in the Treatment of Neurodegenerative Diseases: An up-to-Date Perspective. J. Nanobiotechnol. 2023, 21, 477. [Google Scholar] [CrossRef]
- Shabani, L.; Abbasi, M.; Azarnew, Z.; Amani, A.M.; Vaez, A. Neuro-Nanotechnology: Diagnostic and Therapeutic Nano-Based Strategies in Applied Neuroscience. Biomed. Eng. Online 2023, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-D.; Hu, Y.-J.; Yu, L.; Zhou, X.-G.; Wu, J.-M.; Tang, Y.; Qin, D.-L.; Fan, Q.-Z.; Wu, A.-G. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front. Pharmacol. 2021, 12, 683935. [Google Scholar] [CrossRef]
- Yasir, M.; Mishra, R.; Tripathi, A.S.; Maurya, R.K.; Shahi, A.; Zaki, M.E.A.; Al Hussain, S.A.; Masand, V.H. Theranostics: A Multifaceted Approach Utilizing Nano-Biomaterials. Discov. Nano 2024, 19, 35. [Google Scholar] [CrossRef]
- Cohen, F.E.; Kelly, J.W. Therapeutic Approaches to Protein-Misfolding Diseases. Nature 2003, 426, 905–909. [Google Scholar] [CrossRef]
- Bartolini, M.; Andrisano, V. Strategies for the Inhibition of Protein Aggregation in Human Diseases. ChemBioChem 2010, 11, 1018–1035. [Google Scholar] [CrossRef]
- Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neurosci. Ther. 2011, 17, 514–524. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y. Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. J. Neuroinflamm. 2023, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.N.; Wang, H.; Guo, J.; Sharma, M.; Luo, W. The Complexity of Tau in Alzheimer’s Disease. Neurosci. Lett. 2019, 705, 183–194. [Google Scholar] [CrossRef]
- Brunello, C.A.; Merezhko, M.; Uronen, R.-L.; Huttunen, H.J. Mechanisms of Secretion and Spreading of Pathological Tau Protein. Cell. Mol. Life Sci. 2020, 77, 1721–1744. [Google Scholar] [CrossRef]
- Didonna, A. Tau at the Interface between Neurodegeneration and Neuroinflammation. Genes Immun. 2020, 21, 288–300. [Google Scholar] [CrossRef]
- Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.-E. Tau Assembly: The Dominant Role of PHF6 (VQIVYK) in Microtubule Binding Region Repeat R3. J. Phys. Chem. B 2015, 119, 4582–4593. [Google Scholar] [CrossRef] [PubMed]
- Mirbaha, H.; Chen, D.; Morazova, O.A.; Ruff, K.M.; Sharma, A.M.; Liu, X.; Goodarzi, M.; Pappu, R.V.; Colby, D.W.; Mirzaei, H.; et al. Inert and Seed-Competent Tau Monomers Suggest Structural Origins of Aggregation. eLife 2018, 7, e36584. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, J.; Zhang, B.; Gao, M.; Su, Z.; Huang, Y. The Structure and Phase of Tau: From Monomer to Amyloid Filament. Cell. Mol. Life Sci. 2021, 78, 1873–1886. [Google Scholar] [CrossRef]
- Sievers, S.A.; Karanicolas, J.; Chang, H.W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J.T.; Münch, J.; Baker, D.; Eisenberg, D. Structure-Based Design of Non-Natural Amino-Acid Inhibitors of Amyloid Fibril Formation. Nature 2011, 475, 96–100. [Google Scholar] [CrossRef]
- Dammers, C.; Yolcu, D.; Kukuk, L.; Willbold, D.; Pickhardt, M.; Mandelkow, E.; Horn, A.H.C.; Sticht, H.; Malhis, M.N.; Will, N.; et al. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. PLoS ONE 2016, 11, e0167432. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, L.; Wu, X.; Deng, F.; Ma, R.; Liu, Y.; Huang, F.; Shi, L. Tau-Targeted Multifunctional Nanoinhibitor for Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2021, 13, 23328–23338. [Google Scholar] [CrossRef]
- Xu, L.; Ding, Y.; Ma, F.; Chen, Y.; Chen, G.; Zhu, L.; Long, J.; Ma, R.; Liu, Y.; Liu, J.; et al. Engineering a Pathological Tau-Targeted Nanochaperone for Selective and Synergetic Inhibition of Tau Pathology in Alzheimer’s Disease. Nano Today 2022, 43, 101388. [Google Scholar] [CrossRef]
- Hou, K.; Pan, H.; Shahpasand-Kroner, H.; Hu, C.; Abskharon, R.; Seidler, P.; Mekkittikul, M.; Balbirnie, M.; Lantz, C.; Sawaya, M.R.; et al. D-Peptide-Magnetic Nanoparticles Fragment Tau Fibrils and Rescue Behavioral Deficits in a Mouse Model of Alzheimer’s Disease. Sci. Adv. 2025, 10, eadl2991. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Shen, Y.; Li, G.; Lv, G.; Li, C. Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer’s Disease Treatment. J. Funct. Biomater. 2023, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega 2019, 4, 12833–12840. [Google Scholar] [CrossRef]
- Vimal, S.K.; Zuo, H.; Wang, Z.; Wang, H.; Long, Z.; Bhattacharyya, S. Self-Therapeutic Nanoparticle That Alters Tau Protein and Ameliorates Tauopathy Toward a Functional Nanomedicine to Tackle Alzheimer’s. Small 2020, 16, 1906861. [Google Scholar] [CrossRef]
- Gharb, M.; Nouralishahi, A.; Riazi, A.; Riazi, G. Inhibition Of Tau Protein Aggregation By a Chaperone-like β-Boswellic Acid Conjugated To Gold Nanoparticles. ACS Omega 2022, 7, 30347–30358. [Google Scholar] [CrossRef]
- Sun, H.; Zhong, Y.; Zhu, X.; Liao, H.; Lee, J.; Chen, Y.; Ma, L.; Ren, J.; Zhao, M.; Tu, M.; et al. A Tauopathy-Homing and Autophagy-Activating Nanoassembly for Specific Clearance of Pathogenic Tau in Alzheimer’s Disease. ACS Nano 2021, 15, 5263–5275. [Google Scholar] [CrossRef]
- Paul, P.S.; Patel, T.; Cho, J.-Y.; Yarahmady, A.; Khalili, A.; Semenchenko, V.; Wille, H.; Kulka, M.; Mok, S.-A.; Kar, S. Native PLGA Nanoparticles Attenuate Aβ-Seed Induced Tau Aggregation under in Vitro Conditions: Potential Implication in Alzheimer’s Disease Pathology. Sci. Rep. 2024, 14, 144. [Google Scholar] [CrossRef]
- Prévot, G.; Soria, F.N.; Thiolat, M.-L.; Daniel, J.; Verlhac, J.B.; Blanchard-Desce, M.; Bezard, E.; Barthélémy, P.; Crauste-Manciet, S.; Dehay, B. Harnessing Lysosomal PH through PLGA Nanoemulsion as a Treatment of Lysosomal-Related Neurodegenerative Diseases. Bioconjug Chem. 2018, 29, 4083–4089. [Google Scholar] [CrossRef]
- Bourdenx, M.; Jonathan, D.; Emilie, G.; Federico, N.S.; Mireille, B.-D.; Erwan, B.; Dehay, B. Nanoparticles Restore Lysosomal Acidification Defects: Implications for Parkinson and Other Lysosomal-Related Diseases. Autophagy 2016, 12, 472–483. [Google Scholar] [CrossRef]
- Sciacca, M.F.M.; La Rosa, C.; Milardi, D. Amyloid-Mediated Mechanisms of Membrane Disruption. Biophysica 2021, 1, 137–156. [Google Scholar] [CrossRef]
- Wu, K.Y.; David, D.; Marco, M.; Chang, C.A. Modeling Structural Interconversion in Alzheimers’ Amyloid Beta Peptide with Classical and Intrinsically Disordered Protein Force Fields. J. Biomol. Struct. Dyn. 2022, 40, 10005–10022. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
- Garbuz, D.G.; Zatsepina, O.G.; Evgen’ev, M.B. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol. Biol. 2021, 55, 670–682. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, X.; Zhang, N.; Gu, H.; Wang, N.; Chen, J.; Yuan, X.; Wang, L. The Dissolution, Reassembly and Further Clearance of Amyloid-β Fibrils by Tailor-Designed Dissociable Nanosystem for Alzheimer’s Disease Therapy. Exploration 2024, 4, 20230048. [Google Scholar] [CrossRef]
- Xiong, N.; Dong, X.-Y.; Zheng, J.; Liu, F.-F.; Sun, Y. Design of LVFFARK and LVFFARK-Functionalized Nanoparticles for Inhibiting Amyloid β-Protein Fibrillation and Cytotoxicity. ACS Appl. Mater. Interfaces 2015, 7, 5650–5662. [Google Scholar] [CrossRef]
- Yang, J.; Liu, W.; Sun, Y.; Dong, X. LVFFARK-PEG-Stabilized Black Phosphorus Nanosheets Potently Inhibit Amyloid-β Fibrillogenesis. Langmuir 2020, 36, 1804–1812. [Google Scholar] [CrossRef]
- Gregori, M.; Taylor, M.; Salvati, E.; Re, F.; Mancini, S.; Balducci, C.; Forloni, G.; Zambelli, V.; Sesana, S.; Michael, M.; et al. Retro-Inverso Peptide Inhibitor Nanoparticles as Potent Inhibitors of Aggregation of the Alzheimer’s Aβ Peptide. Nanomedicine 2017, 13, 723–732. [Google Scholar] [CrossRef]
- Leibrand, C.R.; Paris, J.J.; Ghandour, M.S.; Knapp, P.E.; Kim, W.-K.; Hauser, K.F.; McRae, M. HIV-1 Tat Disrupts Blood-Brain Barrier Integrity and Increases Phagocytic Perivascular Macrophages and Microglia in the Dorsal Striatum of Transgenic Mice. Neurosci. Lett. 2017, 640, 136–143. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Sun, Y.; Dong, X. Serum Albumin-Embedding Copper Nanoclusters Inhibit Alzheimer’s β-Amyloid Fibrillogenesis and Neuroinflammation. J. Colloid. Interface Sci. 2024, 672, 53–62. [Google Scholar] [CrossRef]
- Javed, I.; Peng, G.; Xing, Y.; Yu, T.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C.L.; Ding, F.; Davis, T.P.; et al. Inhibition of Amyloid Beta Toxicity in Zebrafish with a Chaperone-Gold Nanoparticle Dual Strategy. Nat. Commun. 2019, 10, 3780. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, N.; Song, Z.; Wan, X.; Douek, A.M.; Javed, I.; Fu, C.; Xing, Y.; Xin, F.; Li, Y.; Kakinen, A.; et al. Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chem. Mater. 2021, 33, 6484–6500. [Google Scholar] [CrossRef]
- Carradori, D.; Balducci, C.; Re, F.; Brambilla, D.; Le Droumaguet, B.; Flores, O.; Gaudin, A.; Mura, S.; Forloni, G.; Ordoñez-Gutierrez, L.; et al. Antibody-Functionalized Polymer Nanoparticle Leading to Memory Recovery in Alzheimer’s Disease-like Transgenic Mouse Model. Nanomedicine 2018, 14, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liang, X.; Yang, C.; Hu, S.; Luo, Q.; Luo, H. Dual-Targeted Magnetic Mesoporous Silica Nanoparticles Reduce Brain Amyloid-β Burden via Depolymerization and Intestinal Metabolism. Theranostics 2022, 12, 6646–6664. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Li, M.; Ren, J.; Wang, E.; Qu, X. Polyoxometalates as Inhibitors of the Aggregation of Amyloid β Peptides Associated with Alzheimer’s Disease. Angew. Chem. Int. Ed. Engl. 2011, 50, 4184–4188. [Google Scholar] [CrossRef]
- Li, M.; Xu, C.; Wu, L.; Ren, J.; Wang, E.; Qu, X. Self-Assembled Peptide–Polyoxometalate Hybrid Nanospheres: Two in One Enhances Targeted Inhibition of Amyloid β-Peptide Aggregation Associated with Alzheimer’s Disease. Small 2013, 9, 3455–3461. [Google Scholar] [CrossRef]
- Gao, N.; Dong, K.; Zhao, A.; Sun, H.; Wang, Y.; Ren, J.; Qu, X. Polyoxometalate-Based Nanozyme: Design of a Multifunctional Enzyme for Multi-Faceted Treatment of Alzheimer’s Disease. Nano Res. 2016, 9, 1079–1090. [Google Scholar] [CrossRef]
- Guan, Y.; Li, M.; Dong, K.; Gao, N.; Ren, J.; Zheng, Y.; Qu, X. Ceria/POMs Hybrid Nanoparticles as a Mimicking Metallopeptidase for Treatment of Neurotoxicity of Amyloid-β Peptide. Biomaterials 2016, 98, 92–102. [Google Scholar] [CrossRef]
- Chaudhary, H.; Iashchishyn, I.A.; Romanova, N.V.; Rambaran, M.A.; Musteikyte, G.; Smirnovas, V.; Holmboe, M.; Ohlin, C.A.; Svedružić, Ž.M.; Morozova-Roche, L.A. Polyoxometalates as Effective Nano-Inhibitors of Amyloid Aggregation of Pro-Inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS Appl. Mater. Interfaces 2021, 13, 26721–26734. [Google Scholar] [CrossRef]
- Ma, M.; Liu, Z.; Zhao, H.; Zhang, H.; Ren, J.; Qu, X. Polyoxometalates: Metallodrug Agents for Combating Amyloid Aggregation. Natl. Sci. Rev. 2024, 11, nwae226. [Google Scholar] [CrossRef]
- Huang, F.; Wang, J.; Qu, A.; Shen, L.; Liu, J.; Liu, J.; Zhang, Z.; An, Y.; Shi, L. Maintenance of Amyloid β Peptide Homeostasis by Artificial Chaperones Based on Mixed-Shell Polymeric Micelles. Angew. Chem. Int. Ed. Engl. 2014, 53, 8985–8990. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Qu, A.; Yang, H.; Zhu, L.; Zhou, H.; Liu, J.; Long, J.; Shi, L. Self-Assembly Molecular Chaperone to Concurrently Inhibit the Production and Aggregation of Amyloid β Peptide Associated with Alzheimer’s Disease. ACS Macro Lett. 2018, 7, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, X.; Zhu, L.; Wu, X.; Zhang, S.; Huang, F.; Feng, X.; Shi, L. Heat Shock Protein Inspired Nanochaperones Restore Amyloid-β Homeostasis for Preventative Therapy of Alzheimer’s Disease. Adv. Sci. 2019, 6, 1901844. [Google Scholar] [CrossRef] [PubMed]
- Anand, B.G.; Wu, Q.; Karthivashan, G.; Shejale, K.P.; Amidian, S.; Wille, H.; Kar, S. Mimosine Functionalized Gold Nanoparticles (Mimo-AuNPs) Suppress β-Amyloid Aggregation and Neuronal Toxicity. Bioact. Mater. 2021, 6, 4491–4505. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, M.; Liu, Y.; Qin, J.; Fan, Z.; Du, J. A Peptide-Polyphenol Coated Polypyrrole Nanoparticle for Synergetic Attenuation of Aggregation and Cytotoxicity of Amyloid-β Fibrils. Adv. Funct. Mater. 2024, 34, 2401208. [Google Scholar] [CrossRef]
- Anand, B.; Wu, Q.; Nakhaei-Nejad, M.; Karthivashan, G.; Dorosh, L.; Amidian, S.; Dahal, A.; Li, X.; Stepanova, M.; Wille, H.; et al. Significance of Native PLGA Nanoparticles in the Treatment of Alzheimer’s Disease Pathology. Bioact. Mater. 2022, 17, 506–525. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Xia, X.; Chen, Y.; Yang, X.; Xie, R.; Tong, F.; Wang, X.; Gao, H. A Nanocleaner Specifically Penetrates the Blood–brain Barrier at Lesions to Clean Toxic Proteins and Regulate Inflammation in Alzheimer’s Disease. Acta Pharm. Sin. B 2021, 11, 4032–4044. [Google Scholar] [CrossRef]
- Luo, Q.; Lin, Y.-X.; Yang, P.-P.; Wang, Y.; Qi, G.-B.; Qiao, Z.-Y.; Li, B.-N.; Zhang, K.; Zhang, J.-P.; Wang, L.; et al. A Self-Destructive Nanosweeper That Captures and Clears Amyloid β-Peptides. Nat. Commun. 2018, 9, 1802. [Google Scholar] [CrossRef]
- Gao, V.; Briano, J.A.; Komer, L.E.; Burré, J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J. Mol. Biol. 2023, 435, 167714. [Google Scholar] [CrossRef]
- Nielsen, M.S.; Vorum, H.; Lindersson, E.; Jensen, P.H. Ca2+ Binding to α-Synuclein Regulates Ligand Binding and Oligomerization. J. Biol. Chem. 2001, 276, 22680–22684. [Google Scholar] [CrossRef]
- Fan, T.-S.; Liu, S.C.-H.; Wu, R.-M. Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life 2021, 11, 1239. [Google Scholar] [CrossRef]
- Mori, A.; Imai, Y.; Hattori, N. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 3301. [Google Scholar] [CrossRef] [PubMed]
- Brás, I.C.; Outeiro, T.F. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Codolo, G.; Plotegher, N.; Pozzobon, T.; Brucale, M.; Tessari, I.; Bubacco, L.; de Bernard, M. Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE 2013, 8, e55375. [Google Scholar] [CrossRef]
- Grozdanov, V.; Bousset, L.; Hoffmeister, M.; Bliederhaeuser, C.; Meier, C.; Madiona, K.; Pieri, L.; Kiechle, M.; McLean, P.J.; Kassubek, J.; et al. Increased Immune Activation by Pathologic α-Synuclein in Parkinson’s Disease. Ann. Neurol. 2019, 86, 593–606. [Google Scholar] [CrossRef]
- Gharb, M.; Mozafari, F.; Arghavani, P.; Saboury, A.A.; Riazi, G. Anti-Fibrillation Effect of Gold Nanoparticles Conjugated with Boswellic Acid on α-Synuclein. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Maity, A.; Mondal, A.; Kundu, S.; Shome, G.; Misra, R.; Singh, A.; Pal, U.; Mandal, A.K.; Bera, K.; Maiti, N.C. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. Langmuir 2023, 39, 7231–7248. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Morshedi, D.; Shojaosadati, S.A.; Pedersen, J.N.; Marvian, A.T.; Aliakbari, F.; Christiansen, G.; Pedersen, J.S.; Otzen, D.E. Gallic Acid Loaded onto Polyethylenimine-Coated Human Serum Albumin Nanoparticles (PEI-HSA-GA NPs) Stabilizes α-Synuclein in the Unfolded Conformation and Inhibits Aggregation. RSC Adv. 2016, 6, 85312–85323. [Google Scholar] [CrossRef]
- Lamtar Mohammadi, E.; Keikha, R.; Outeiro, T.F.; Jebali, A. Adsorption of Alpha-Synuclein and Inhibition of Fibril Formation by Nanocellulose and Gold-Coated-Nanocellulose. Cellulose 2024, 31, 3797–3804. [Google Scholar] [CrossRef]
- Asthana, S.; Bhattacharyya, D.; Kumari, S.; Nayak, P.S.; Saleem, M.; Bhunia, A.; Jha, S. Interaction with Zinc Oxide Nanoparticle Kinetically Traps α-Synuclein Fibrillation into off-Pathway Non-Toxic Intermediates. Int. J. Biol. Macromol. 2020, 150, 68–79. [Google Scholar] [CrossRef]
- Zand, Z.; Afarinesh Khaki, P.; Salihi, A.; Sharifi, M.; Qadir Nanakali, N.M.; Alasady, A.A.; Mohammad Aziz, F.; Shahpasand, K.; Hasan, A.; Falahati, M. Cerium Oxide NPs Mitigate the Amyloid Formation of α-Synuclein and Associated Cytotoxicity. Int. J. Nanomed. 2019, 14, 6989–7000. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guan, Y.; Wang, J.; Wang, D. Cerium Oxide Nanoparticles Modulating the Parkinson’s Disease Conditions: From the Alpha Synuclein Structural Point of View and Antioxidant Properties of Cerium Oxide Nanoparticles. Heliyon 2024, 10, e21789. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei-Behbahani, B.; Meratan, A.A.; Moosakhani, B.; Mohammad-Zaheri, M.; Mousavi-Jarrahi, Z.; Nikfarjam, N.; Shahsavani, M.B.; Saboury, A.A. Efficient Inhibition of Amyloid Fibrillation and Cytotoxicity of α-Synuclein and Human Insulin Using Biosynthesized Silver Nanoparticles Decorated by Green Tea Polyphenols. Sci. Rep. 2024, 14, 3907. [Google Scholar] [CrossRef] [PubMed]
- Rafiei, Y.; Salmani, B.; Mirzaei-Behbahani, B.; Taleb, M.; Meratan, A.A.; Ramezani, M.; Nikfarjam, N.; Becker, S.; Rezaei-Ghaleh, N. Polyphenols-Based Nanosheets of Propolis Modulate Cytotoxic Amyloid Fibril Assembly of α-Synuclein. ACS Chem. Neurosci. 2022, 13, 3168–3179. [Google Scholar] [CrossRef]
- Ghaeidamini, M.; Bernson, D.; Sasanian, N.; Kumar, R.; Esbjörner, E.K. Graphene Oxide Sheets and Quantum Dots Inhibit α-Synuclein Amyloid Formation by Different Mechanisms. Nanoscale 2020, 12, 19450–19460. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, J.M.; Hwang, H.; Lee, J.; Lee, S.H.; Yun, S.P.; Park, M.J.; Lee, M.; Choi, S.; Kwon, S.H.; et al. Graphene Quantum Dots Prevent α-Synucleinopathy in Parkinson’s Disease. Nat. Nanotechnol. 2018, 13, 812–818. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Hosseini, A.; Adeli, M.; Ejtehadi, M.R.; Christiansen, G.; Sahin, C.; Tu, Z.; Tavakol, M.; Dilmaghani-Marand, A.; Nabipour, I.; et al. Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and α-Synuclein. ACS Nano 2019, 13, 3243–3256. [Google Scholar] [CrossRef]
- Allen, S.G.; Meade, R.M.; White Stenner, L.L.; Mason, J.M. Peptide-Based Approaches to Directly Target Alpha-Synuclein in Parkinson’s Disease. Mol. Neurodegener. 2023, 18, 80. [Google Scholar] [CrossRef]
- Ali, T.T.; Merghani, M.; Al-Azzani, M.; Gatzemeier, L.M.; Hoppert, M.; Kaloyanova, D.; Outeiro, T.F.; Neumann, P.; Popova, B.; Braus, G.H. Rationally Designed Peptides Inhibit the Formation of α-Synuclein Fibrils and Oligomers. Eur. J. Med. Chem. 2025, 289, 117452. [Google Scholar] [CrossRef]
- Reed-Geaghan, E.G.; Savage, J.C.; Hise, A.G.; Landreth, G.E. CD14 and Toll-Like Receptors 2 and 4 Are Required for Fibrillar Aβ-Stimulated Microglial Activation. J. Neurosci. 2009, 29, 11982–11992. [Google Scholar] [CrossRef]
- Scheiblich, H.; Bousset, L.; Schwartz, S.; Griep, A.; Latz, E.; Melki, R.; Heneka, M.T. Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies. J. Immunol. 2021, 207, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Rinauro, D.J.; Chiti, F.; Vendruscolo, M.; Limbocker, R. Misfolded Protein Oligomers: Mechanisms of Formation, Cytotoxic Effects, and Pharmacological Approaches against Protein Misfolding Diseases. Mol. Neurodegener. 2024, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Chen, S.W.; Bigi, A.; Camino, J.D.; Xu, C.K.; Dobson, C.M.; Chiti, F.; Cremades, N.; Cecchi, C. The Release of Toxic Oligomers from α-Synuclein Fibrils Induces Dysfunction in Neuronal Cells. Nat. Commun. 2021, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Emin, D.; Zhang, Y.P.; Lobanova, E.; Miller, A.; Li, X.; Xia, Z.; Dakin, H.; Sideris, D.I.; Lam, J.Y.L.; Ranasinghe, R.T.; et al. Small Soluble α-Synuclein Aggregates Are the Toxic Species in Parkinson’s Disease. Nat. Commun. 2022, 13, 5512. [Google Scholar] [CrossRef]
- Braun, A.R.; Liao, E.E.; Horvath, M.; Kalra, P.; Acosta, K.; Young, M.C.; Kochen, N.N.; Lo, C.H.; Brown, R.; Evans, M.D.; et al. Potent Inhibitors of Toxic Alpha-Synuclein Identified via Cellular Time-Resolved FRET Biosensors. npj Park. Dis. 2021, 7, 52. [Google Scholar] [CrossRef]
- Lo, C.H. Recent Advances in Cellular Biosensor Technology to Investigate Tau Oligomerization. Bioeng. Transl. Med. 2021, 6, e10231. [Google Scholar] [CrossRef]
- Lo, C.H.; Lim, C.K.-W.; Ding, Z.; Wickramasinghe, S.P.; Braun, A.R.; Ashe, K.H.; Rhoades, E.; Thomas, D.D.; Sachs, J.N. Targeting the Ensemble of Heterogeneous Tau Oligomers in Cells: A Novel Small Molecule Screening Platform for Tauopathies. Alzheimer’s Dement. 2019, 15, 1489–1502. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Y.; Xia, D.; Meng, L.; He, M.; Liu, C.; Zhang, Z. Silica Nanoparticles Promote α-Synuclein Aggregation and Parkinson’s Disease Pathology. Front. Neurosci. 2022, 15, 807988. [Google Scholar] [CrossRef]
- Jiang, P.; Gan, M.; Yen, S.-H.; Dickson, D.W. Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Front. Mol. Neurosci. 2021, 14, 738535. [Google Scholar] [CrossRef]
- Nixon, R.A.; Rubinsztein, D.C. Mechanisms of Autophagy–Lysosome Dysfunction in Neurodegenerative Diseases. Nat. Rev. Mol. Cell Biol. 2024, 25, 926–946. [Google Scholar] [CrossRef]
- Bonam, S.R.; Wang, F.; Muller, S. Lysosomes as a Therapeutic Target. Nat. Rev. Drug Discov. 2019, 18, 923–948. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Indajang, J.; Pitt, D.; Lo, C.H. Lysosomal Acidification Impairment in Astrocyte-Mediated Neuroinflammation. J. Neuroinflamm. 2025, 22, 72. [Google Scholar] [CrossRef]
- Quick, J.D.; Silva, C.; Wong, J.H.; Lim, K.L.; Reynolds, R.; Barron, A.M.; Zeng, J.; Lo, C.H. Lysosomal Acidification Dysfunction in Microglia: An Emerging Pathogenic Mechanism of Neuroinflammation and Neurodegeneration. J. Neuroinflamm. 2023, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Asimakidou, E.; Reynolds, R.; Barron, A.M.; Lo, C.H. Autolysosomal Acidification Impairment as a Mediator for TNFR1 Induced Neuronal Necroptosis in Alzheimer’s Disease. Neural Regen. Res. 2024, 19, 1690–1870. [Google Scholar] [CrossRef]
- Rathore, B.; Sunwoo, K.; Jangili, P.; Kim, J.; Kim, J.H.; Huang, M.; Xiong, J.; Sharma, A.; Yang, Z.; Qu, J.; et al. Nanomaterial Designing Strategies Related to Cell Lysosome and Their Biomedical Applications: A Review. Biomaterials 2019, 211, 25–47. [Google Scholar] [CrossRef]
- Mondal, B.; Dutta, T.; Padhy, A.; Das, S.; Sen Gupta, S. Lysosome-Targeting Strategy Using Polypeptides and Chimeric Molecules. ACS Omega 2022, 7, 5–16. [Google Scholar] [CrossRef]
- Zeng, J.; Acin-Perez, R.; Assali, E.A.; Martin, A.; Brownstein, A.J.; Petcherski, A.; Fernández-del-Rio, L.; Xiao, R.; Lo, C.H.; Shum, M.; et al. Restoration of Lysosomal Acidification Rescues Autophagy and Metabolic Dysfunction in Non-Alcoholic Fatty Liver Disease. Nat. Commun. 2023, 14, 2573. [Google Scholar] [CrossRef]
- Lo, C.H.; O’Connor, L.M.; Loi, G.W.Z.; Saipuljumri, E.N.; Indajang, J.; Lopes, K.M.; Shirihai, O.S.; Grinstaff, M.W.; Zeng, J. Acidic Nanoparticles Restore Lysosomal Acidification and Rescue Metabolic Dysfunction in Pancreatic β-Cells under Lipotoxic Conditions. ACS Nano 2024, 18, 15452–15467. [Google Scholar] [CrossRef]
- Cunha, A.; Gaubert, A.; Verget, J.; Thiolat, M.-L.; Barthélémy, P.; Latxague, L.; Dehay, B. Trehalose-Based Nucleolipids as Nanocarriers for Autophagy Modulation: An In Vitro Study. Pharmaceutics 2022, 14, 857. [Google Scholar] [CrossRef]
- Arotcarena, M.-L.; Soria, F.N.; Cunha, A.; Doudnikoff, E.; Prévot, G.; Daniel, J.; Blanchard-Desce, M.; Barthélémy, P.; Bezard, E.; Crauste-Manciet, S.; et al. Acidic Nanoparticles Protect against α-Synuclein-Induced Neurodegeneration through the Restoration of Lysosomal Function. Aging Cell 2022, 21, e13584. [Google Scholar] [CrossRef]
- Brouillard, M.; Barthélémy, P.; Dehay, B.; Crauste-Manciet, S.; Desvergnes, V. Nucleolipid Acid-Based Nanocarriers Restore Neuronal Lysosomal Acidification Defects. Front. Chem. 2021, 9, 736554. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Ren, M.; Loi, G.W.Z.; Saipuljumri, E.N.; Indajang, J.; Lim, K.L.; Zeng, J. Lysosome-Acidifying Nanoparticles Rescue A30P α-Synuclein Induced Neuronal Death in Cellular and Drosophila Models of Parkinsons Disease. bioRxiv 2024. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.A.; Hickey, C.M.; Chavez, J.; Cacace, A.M. New Therapies on the Horizon: Targeted Protein Degradation in Neuroscience. Cell Chem. Biol. 2024, 31, 1688–1698. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, W.; Deng, C. Advancements in Proteolysis Targeting Chimeras for Targeted Therapeutic Strategies in Alzheimer’s Disease. Mol. Neurobiol. 2025. [Google Scholar] [CrossRef]
- Lee, J.; Sung, K.W.; Bae, E.-J.; Yoon, D.; Kim, D.; Lee, J.S.; Park, D.; Park, D.Y.; Mun, S.R.; Kwon, S.C.; et al. Targeted Degradation of ⍺-Synuclein Aggregates in Parkinson’s Disease Using the AUTOTAC Technology. Mol. Neurodegener. 2023, 18, 41. [Google Scholar] [CrossRef]
- Sandhof, C.A.; Murray, H.F.B.; Silva, M.C.; Haggarty, S.J. Targeted Protein Degradation with Bifunctional Molecules as a Novel Therapeutic Modality for Alzheimer’s Disease & Beyond. Neurotherapeutics 2024, 22, e00499. [Google Scholar] [CrossRef]
- Jiang, Z.; Kuo, Y.-H.; Arkin, M.R. Autophagy Receptor-Inspired Antibody-Fusion Proteins for Targeted Intracellular Degradation. J. Am. Chem. Soc. 2023, 145, 23939–23947. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, W.; Cong, W.; Gu, Y.; Ji, W.; Yin, T.; Zhou, H.; Hu, H.; Zhuang, J.; Luo, Y.; et al. Systemic Administration of Neurotransmitter-Derived Lipidoids-PROTACs-DNA Nanocomplex Promotes Tau Clearance and Cognitive Recovery for Alzheimer’s Disease Therapy. Adv. Healthc. Mater. 2024, 13, 2400149. [Google Scholar] [CrossRef]
- Moreira, R.; Nóbrega, C.; de Almeida, L.P.; Mendonça, L. Brain-Targeted Drug Delivery—Nanovesicles Directed to Specific Brain Cells by Brain-Targeting Ligands. J. Nanobiotechnol. 2024, 22, 260. [Google Scholar] [CrossRef]
- Zia, S.; Islam Aqib, A.; Muneer, A.; Fatima, M.; Atta, K.; Kausar, T.; Zaheer, C.-N.F.; Ahmad, I.; Saeed, M.; Shafique, A. Insights into Nanoparticles-Induced Neurotoxicity and Cope up Strategies. Front. Neurosci. 2023, 17, 1127460. [Google Scholar] [CrossRef]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.-K.; Huang, R. Nanoparticles-Induced Potential Toxicity on Human Health: Applications, Toxicity Mechanisms, and Evaluation Models. MedComm 2023, 4, e327. [Google Scholar] [CrossRef]
Tau-Targeting Nanoplatform | |||
Nanoplatform | Structure | Mechanism of Action | Reference |
NanoTLK | Hydrophobic poly (ε-caprolactone) (PCL) in the core and hydrophilic poly (ethylene glycol) (PEG) in the shell | Peptide (D)-TLKIVW binds to prevent tau aggregation | [40] |
Tau-nChap | PEG-PCL and poly (βamino ester) (PAE)-PCL | Peptide VQIINK binds to prevent tau aggregation | [41] |
MNPs-DP | Magnetic nanoparticles (MNPs) conjugated with DP peptide |
| [42] |
UCNPs-LMB/VQIVYK | Upconversion nanoparticles (UCNPs), leucomethylene blue (LMB), and conjugated VQIVYK peptide |
| [43] |
PC-Fe3O4 and PC-CdS | PC-Fe3O4 nanoparticles were coated with hydrolytic proteins, while PC-CdS nanoparticles were capped with sulfate-reducing enzymes | Adsorption of fibrils leads to disassembly of aggregated tau fibrils | [44] |
Au-PEG | Nanogold and polyethylene glycol | Stabilizes misfolded and aggregation prone tau | [45] |
GNP-BA | Gold nanoparticles (GNPs) conjugated to β-boswellic acid (BA) |
| [46] |
PLGA | Poly (lactic-co-glycolic) acid (PLGA) nanoparticles | Electrostatic interactions with tau to prevent further aggregation | [48] |
Aβ-Targeting Nanoplatform | |||
Nanoplatform | Structure | Mechanism of Action | Reference |
LK7@PLGA-NPs | PLGA nanoparticle with LK7 peptide (LVFFARK) | Peptide (LK7) binds to stabilize monomeric Aβ42 and prevent Aβ aggregation | [56] |
PEG-LK7@BP | Black phosphorus (BP) nanoparticles coated with PEGlyated LK7 peptide (LVFFARK), an inhibitor designed to interact with Aβ aggregation motif | Peptide (LK7) binds to stabilize monomeric Aβ42 and prevent Aβ aggregation | [57] |
PINPs | RI-OR2-TAT (Ac-rGffvlkGrrrrqrrkkrGy-NH2) conjugated onto liposome | RI-OR2-TAT binds to Aβ and prevents further aggregation | [58] |
CuNCs@HSA | Human serum albumin (HAS)-embedded ultrasmall copper nanoclusters (CuNCs@HSA) | Binds to inhibit Aβ fibril formation | [60] |
βCas AuNPs | β-Casein (β-Cas) conjugated to gold nanoparticles (AuNPs) | Nonspecific interaction with Aβ42 monomers and oligomers to prevent further aggregation | [61] |
βCas IONPs | βCas-coated iron oxide nanoparticles (IONPs) | Nonspecific interaction with Aβ42 monomers and oligomers to prevent further aggregation | [62] |
B6-PNi NPs | N-isopropylacrylamide (NiPAm) and N-tert-butylacrylamide (tBAm), with reactive oxygen species (ROS)-sensitive group 3-aminophenylboronic acid (APBA), conjugated with B6 peptide (CGHKAKGPRK) to allow for enhanced BBB penetration |
| [55] |
Bio-NPs | Coupling an anti-Aβ1-42 monoclonal antibody to P(HDCA-co-MePEGCA) nanoparticles | Anti-Aβ antibody bind to reduce Aβ aggregation | [63] |
HA-MMSN-1F12 | Magnetic mesoporous silica nanoparticle (MMSN) conjugated with Aβ42-targeting antibody 1F12 and CD44-targeting ligand | Aβ42-targeting antibody 1F12 binds to Aβ42 oligomer and prevents aggregation | [64] |
POMs | Polyoxometalate derivatives |
| [66,67,68] |
Nb10 and TiNb9 | Nanosized niobium POMs | Reduced Aβ formation rate and quantity | [69] |
Nanochaperones | Poly (β-amino ester)-block-poly (ε-caprolactone) (PAE-b-PCL) and poly (ethylene oxide)-block-poly (ε-caprolactone) (PEG-b-PCL) | Hydrophobic surface binds to Aβ to prevent Aβ aggregation, and hydrophilic surface induces steric hindrance between Aβ particles, preventing their aggregation | [73] |
Mimo-AuNPs | Gold nanoparticles conjugated with plant-based amino acid mimosine ((Mimo) AuNPs) | Bind to stabilize Aβ monomer and reduce aggregation | [74] |
PEP NPs | Near-infrared (NIR) photothermal polypyrrole nanoparticles coated with peptide–polyphenol complex |
| [75] |
PLGA | Poly (lactic-co-glycolic) acid (PLGA) nanoparticles in mice | Attenuation of the conformational transition of Aβ1-42 from random coils to β-sheets, preventing the formation and/or triggering the disassembly of Aβ aggregates | [76] |
Nanocleaner | ROS-responsive PLGA core ((Polyol–ox)–PLGA), coated with KLVFF peptide and DAG peptide and encapsulating rapamycin |
| [77] |
Nanosweeper | Cationic chitosan (CS) core coated with PEGylated-GKLVFF, KLVFF peptide, and Beclin-1 |
| [78] |
αSyn-Targeting Nanoplatform | |||
Nanoplatform | Structure | Mechanism of Action | Reference |
GNP-BA | Gold nanoparticles conjugated with β-Boswellic acid (BA) | Electrostatic interactions obstruct binding sites for the addition of new monomers, preventing αSyn aggregation | [86] |
NAR-AuNPs | Naringenin coated onto gold nanoparticles | Interacts with αSyn to prevent aggregation | [87] |
PEI-HSA-GA NPs | Conjugation of gallic acid (GA) onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) | GA binds to αSyn monomer and prevents αSyn aggregation | [88] |
NCCGAs | Nanocellulose (NC) and NC coated with gold atoms (NCCGAs) | Adsorb to αSyn to prevent aggregation | [89] |
ZnO NP | Zinc oxide nanoparticles | Interact with αSyn to prevent aggregation | [90] |
CeO2 NP | Cerium oxide nanoparticles | Interact with αSyn to prevent aggregation | [91,92] |
GTPs-capped AgNPs | Silver nanoparticles capped with green tea polyphenols | Redirect aggregation pathway towards the formation of nontoxic, off-pathway amorphous aggregates | [93] |
PFP nanosheet | Nanosheet formed from polyphenolic compound derived from propolis (PFP) | Binds and redirects αSyn aggregation toward nontoxic, off-pathway amorphous aggregates | [94] |
Graphene oxide nanoparticles | Graphene oxide sheets and quantum dots | Bind αSyn monomers and oligomers to prevent αSyn aggregation | [95] |
GQDs | Graphene quantum dots (GQDs) | Bind to disrupt β-sheet | [96] |
Nano graphene sheets | Graphene sheets with superparamagnetic iron oxide nanoparticles (SPIONs) |
| [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, C.H.; Cheong, L.Y.T.; Zeng, J. Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications. Nanomaterials 2025, 15, 704. https://doi.org/10.3390/nano15100704
Lo CH, Cheong LYT, Zeng J. Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications. Nanomaterials. 2025; 15(10):704. https://doi.org/10.3390/nano15100704
Chicago/Turabian StyleLo, Chih Hung, Lenny Yi Tong Cheong, and Jialiu Zeng. 2025. "Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications" Nanomaterials 15, no. 10: 704. https://doi.org/10.3390/nano15100704
APA StyleLo, C. H., Cheong, L. Y. T., & Zeng, J. (2025). Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications. Nanomaterials, 15(10), 704. https://doi.org/10.3390/nano15100704