Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sui, M.; Yu, X.; Zhang, F. The evaluation of modulation techniques for underwater wireless optical communications. In Proceedings of the 2009 International Conference on Communication Software and Networks, Chengdu, China, 27–28 February 2009; pp. 138–142. [Google Scholar]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Yu, D.; Cao, F.; Gu, Y.; Han, Z.; Liu, J.; Huang, B.; Xu, X.; Zeng, H. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Res. 2021, 14, 1210–1217. [Google Scholar] [CrossRef]
- Kang, C.H.; Dursun, I.; Liu, G.; Sinatra, L.; Sun, X.; Kong, M.; Pan, J.; Maity, P.; Ooi, E.-N.; Ng, T.K.; et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ooi, B.S.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Jiang, L.; Ma, Y.; Yang, G.; Qian, Y.; Lei, W. Advanced 2D-2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano Energy 2022, 98, 107192. [Google Scholar] [CrossRef]
- Li, X.; Gao, C.; Duan, H.; Lu, B.; Pan, X.; Xie, E. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy 2012, 1, 640–645. [Google Scholar] [CrossRef]
- Sang, Y.; Zhao, Z.; Zhao, M.; Hao, P.; Leng, Y.; Liu, H. From UV to Near-Infrared, WS2 Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation. Adv. Mater. 2015, 27, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xin, K.; Yang, J.; Xu, Q.; Shan, C.; Wei, Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. Small Methods 2022, 6, 2101348. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, D.; Kang, Y.; Liu, X.; Fang, S.; Memon, M.H.; Yu, H.; Zhang, H.; Luo, D.; Sun, X.; et al. Demonstration of Photoelectrochemical-Type Photodetectors Using Seawater as Electrolyte for Portable and Wireless Optical Communication. Adv. Opt. Mater. 2022, 10, 2102839. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Li, T.; Biswas, K.; Patanè, A.; Zhang, L. New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties. Adv. Funct. Mater. 2020, 30, 2001920. [Google Scholar] [CrossRef]
- Kang, J.; Wells, S.; Sangwan, V.; Lam, D.; Liu, X.; Luxa, J.; Sofer, Z.; Hersam, M. Solution-Based Processing of Optoelectronically Active Indium Selenide. Adv. Mater. 2018, 30, 1802990. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Chen, P.; Liu, Y.; Li, X.; Liu, K.; Yin, X.; Frisenda, R.; Zhao, Q.; Wang, T. Research progress on two-dimensional indium selenide crystals and optoelectronic devices. J. Mater. Chem. A 2024, 12, 16952–16986. [Google Scholar] [CrossRef]
- Li, Z.; Qiao, H.; Guo, Z.; Ren, X.; Huang, Z.; Qi, X.; Dhanabalan, S.C.; Ponraj, J.S.; Zhang, D.; Li, J.; et al. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705237. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Qu, L.; Gao, F.; Xu, Y.; Cui, M.; Yu, H.; Wang, Y.; Hu, P.; Feng, W. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping. ACS Nano 2022, 16, 8440–8448. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, H.; Zhang, P.; Liao, Z.; Wang, M.; Zhong, H.; Schwotzer, F.; Nia, A.; Zschech, E.; Zhou, S.; et al. Phthalocyanine-Based 2D Conjugated Metal-Organic Framework Nanosheets for High-Performance Micro-Supercapacitors. Adv. Funct. Mater. 2020, 30, 2002664. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Q.; Zheng, T.; Xu, Y.; Dai, R.; Qiao, Z.; Ruan, D.; Wang, Y. Enhancing Sodium-Ion Energy Storage of Commercial Activated Carbon by Constructing Closed Pores via Ball Milling. Nanomaterials 2024, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, J.; Wu, C.; Wu, K. Ball-Mill-Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small 2019, 15, 1805567. [Google Scholar] [CrossRef] [PubMed]
- Tamalampudi, S.R.; Lu, Y.-Y.; Upadhyay, R.K.; Sankar, R.; Liao, C.-D.; Cheng, C.-H.; Chou, F.C.; Chen, Y.-T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806. [Google Scholar] [CrossRef]
- Panda, R.; Singh, U.; Naik, R.; Mishra, N. Growth of indium selenide thin films by thermal annealing of In/Se bilayer. AIP Conf. Proc. 2019, 2115, 030272. [Google Scholar]
- Zhou, Y.; Xu, L.; Liu, M.; Qi, Z.; Wang, W.; Zhu, J.; Chen, S.; Yu, K.; Su, Y.; Ding, B.; et al. Viscous Solvent-Assisted Planetary Ball Milling for the Scalable Production of Large Ultrathin Two-Dimensional Materials. ACS Nano 2022, 16, 10179–10187. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, Q.; Zhao, Y.; Ouyang, Y.; Ling, C.; Li, Q.; Wang, J. Oxidation Mechanism and Protection Strategy of Ultrathin Indium Selenide: Insight from Theory. J. Phys. Chem. Lett. 2017, 8, 4368–4373. [Google Scholar] [CrossRef] [PubMed]
- Balitskii, O.A.; Berchenko, N.N.; Savchyn, V.P.; Stakhira, J. Physics, Characteristics of phase formation during indium selenides oxidation. Mater. Chem. Phys. 2000, 65, 130–135. [Google Scholar] [CrossRef]
- Yang, Z.; Jie, W.; Mak, C.-H.; Lin, S.; Lin, H.; Yang, X.; Yan, F.; Lau, S.P.; Hao, J. Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. ACS Nano 2017, 11, 4225–4236. [Google Scholar] [CrossRef] [PubMed]
- Vorobeva, N.S.; Lipatov, A.; Torres, A.; Dai, J.; Abourahma, J.; Le, D.; Dhingra, A.; Gilbert, S.J.; Galiy, P.V.; Nenchuk, T.M.; et al. Anisotropic Properties of Quasi-1D In4Se3: Mechanical Exfoliation, Electronic Transport, and Polarization-Dependent Photoresponse. Adv. Funct. Mater. 2021, 31, 2106459. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, J.; Wang, G.; Chen, J.; Gan, H.; Zhu, J.; Ke, Y.; Chai, Y.; Lin, J.; Zhang, W. Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS Nano 2020, 14, 11373–11382. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hussain, S.; Wang, Y.; Huang, C.; Li, P.; Wang, M.; He, T. ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 2021, 286, 119887. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Y.; Kan, S.; Deng, S.; Ren, Z.; Jiang, X.; Yao, C. Modulating ultrafast carrier dynamics behavior via vacancy engineering of ReSe2 with Se vacancy for efficient electrochemical activity. Chem. Eng. J. 2024, 487, 150724. [Google Scholar] [CrossRef]
- Zou, J.; Ke, Y.; Zhou, X.; Huang, Y.; Du, W.; Lin, L.; Wei, S.; Luo, L.; Liu, H.; Li, C.; et al. Broadband Visible-Near Infrared Two-Dimensional WSe2/In2Se3 Photodetector for Underwater Optical Communications. Adv. Opt. Mater. 2022, 10, 2200143. [Google Scholar] [CrossRef]
- Wang, K.; Qiao, H.; Li, J.; Qi, X. A robust photoelectrochemical photodetectors based on the self-healing properties of Bi2O2S nanoplates. Appl. Surf. Sci. 2021, 565, 150444. [Google Scholar] [CrossRef]
- Liao, L.; Wu, B.; Kovalska, E.; Oliveira, F.M.; Azadmanjiri, J.; Mazanek, V.; Valdman, L.; Spejchalova, L.; Xu, C.; Levinsky, P.; et al. InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors. Nanoscale 2022, 14, 5412–5424. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Zhang, Y.; Sun, Y.; Ma, K.; Xie, Y.; Zheng, W.; Tian, Z.; Kang, Z.; Zhang, Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. Adv. Mater. 2023, 35, 2206576. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qu, L.; Gao, F.; Hu, Y.; Yu, H.; Wang, Y.; Cui, M.; Zhang, Y.; Fu, Z.; Huang, Y.; et al. High-Performance Broadband Photoelectrochemical Photodetectors Based on Ultrathin Bi2O2S Nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.; Fang, S.; Huang, C.; Kang, Y.; Yu, H.; Liu, Z.; Zhang, H.; Long, R.; Xiong, Y.; et al. Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. Nano Lett. 2021, 21, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Qiao, H.; Xu, K.; Xi, Y.; Ren, L.; Cheng, N.; Cui, D.; Qi, X.; Xu, X.; Hao, W.; et al. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16, 2000283. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.; Chang, Y.; Chu, Y.; Li, M.; Tsai, C.; Wang, W.; Ho, C.; Chen, C.; Chiu, P. High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano 2017, 11, 7362–7370. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, M.; Bian, L.; Wu, D.; Qin, H.; Yang, W.; Zhao, Y.; Wu, Y.; Zhou, M.; Lu, S. A Self-Powered Transparent Photodetector Based on Detached Vertical (In, Ga) N Nanowires with 360° Omnidirectional Detection for Underwater Wireless Optical Communication. Nanomaterials 2021, 11, 2959. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhou, J.; Tian, D.; Fu, Z.; Huang, Y.; Feng, W. Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices. Nanomaterials 2025, 15, 3. https://doi.org/10.3390/nano15010003
Xu Y, Zhou J, Tian D, Fu Z, Huang Y, Feng W. Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices. Nanomaterials. 2025; 15(1):3. https://doi.org/10.3390/nano15010003
Chicago/Turabian StyleXu, Yi, Junxin Zhou, Dongyue Tian, Zhendong Fu, Yuewu Huang, and Wei Feng. 2025. "Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices" Nanomaterials 15, no. 1: 3. https://doi.org/10.3390/nano15010003
APA StyleXu, Y., Zhou, J., Tian, D., Fu, Z., Huang, Y., & Feng, W. (2025). Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices. Nanomaterials, 15(1), 3. https://doi.org/10.3390/nano15010003