Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewaters
2.2. Preparation and Characterization of Magnetic Chitosan
2.3. Adsorption Experiments
- (a)
- Effect of pH: Here, 2 mg of adsorbent was put into contact with 20 mL of 40 μmol/L SMX solution at a solid/liquid ratio (S/L) = 1/10,000, g/g for 24 h (this time was shown to be sufficient to attain an equilibrium condition). The pH of this solution varied between 3.0 and 8.0.
- (b)
- Adsorption kinetics: Kinetic studies were performed by putting 2 mg of adsorbent into contact with 20 mL of SMX solution at two different concentrations, 25 and 50 μmol/L, respectively, at a solid/liquid ratio S/L = 1/10,000, at pH 3.0. The suspensions were stirred for a fixed time (5, 10, 15, 30, 60, 120, 240, 480, and 1440 min) and successively subjected to the separation procedure described above.
- (c)
- Sorption isotherm: Here, 2 mg of adsorbent was put into contact with 20 mL of solutions having SMX concentrations of up to 250 μmol/L at S/L = 1/10,000, T = 25 °C, and pH = 3.0, for 24 h.
2.4. Analytical Determination
2.5. Statistical Analysis
3. Results
3.1. Characterization of Magnetic Chitosan
3.2. Effect of the pH
3.2.1. Effect of the pH in the Absence of Wastewater
- In the range of 4.5–8.0, both the chitosan and the SMX are partially under their neutrally charged forms, promoting nonionic interactions such as Van der Waals or hydrophobic interactions between chitosan and SMX. It is worth noting that, according to the supplier, the degree of deacetylation of chitosan is >75%. Consequently, chitosan chains contain a significant fraction of non-deacetylated units that will enhance the hydrophobic interaction, as described in Figure 5a.
- In the range of 4.0–9.5, chitosan is partially in its positively charged form and SMX is partially in its negatively charged form, and the adsorption is enhanced due to the electrostatic attractive forces. This mechanism is described in Figure 5b.
3.2.2. Effect of the pH in the Presence of Wastewater
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Comparison with Previous Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prasannamedha, G.; Kumar, P.S. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J. Clean. Prod. 2020, 250, 119553. [Google Scholar] [CrossRef]
- Kergoat, L.; Besse-Hoggan, P.; Leremboure, M.; Beguet, J.; Devers, M.; Martin-Laurent, F.; Masson, M.; Morin, S.; Roinat, A.; Pesce, S.; et al. Environmental Concentrations of Sulfonamides Can Alter Bacterial Structure and Induce Diatom Deformities in Freshwater Biofilm Communities. Front. Microbiol. 2021, 12, 643719. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, I.; Mosquera-Corral, A.; Rodicio, J.L.; Esplugas, S. Advanced technologies for water treatment and reuse. AIChE J. 2015, 61, 3146–3158. [Google Scholar]
- Kassinos, D.F.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastwater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, D.; Imparato, C.; D’Errico, G.; Vitiello, G.; Aronne, A.; Sannino, F. Three-year lifetime and regeneration of superoxide radicals on the surface of hybrid TiO2 materials exposed to air. J. Hazard. Mater. 2020, 387, 121716. [Google Scholar] [CrossRef] [PubMed]
- Sannino, F.; Pirozzi, D.; Vitiello, G.; D’Errico, G.; Aronne, A.; Fanelli, E.; Pernice, P. Oxidative degradation of phenanthrene in the absence of light irradiatiion by hybrid ZrO2-acetylacetonate gel-derived catalyst. Appl. Catal. B Environ. 2014, 156–157, 101–107. [Google Scholar] [CrossRef]
- Sannino, F.; Pernice, P.; Minieri, L.; Camandona, G.A.; Aronne, A.; Pirozzi, D. Oxidative Degradation of Different Chlorinated Phenoxyalkanoic Acid Herbicides by a Hybrid ZrO2 Gel-Derived Catalyst without Light Irradiation. ACS Appl. Mater. Interfaces 2015, 7, 256–263. [Google Scholar] [CrossRef]
- Rashed, M.N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Addorisio, V.; Pirozzi, D.; Esposito, S.; Sannino, F. Decontamination of waters polluted with simazine by sorption on mesoporous metal oxides. J. Hazard. Mater. 2011, 196, 242–247. [Google Scholar] [CrossRef]
- Badran, A.M.; Utra, U.; Yussof, N.S.; Bashir, M.J.K. Advancements in Adsorption Techniques for Sustainable Water Purification: A Focus on Lead Removal. Separations 2023, 10, 565. [Google Scholar] [CrossRef]
- Sannino, F.; Pansini, M.; Marocco, A.; Cinquegrana, A.; Esposito, S.; Tammaro, O.; Barrera, G.; Tiberto, P.; Allia, P.; Pirozzi, D. Removal of sulfanilamide by tailor-made magnetic metal-ceramic nanocomposite adsorbents. J. Environ. Manag. 2022, 15, 114701. [Google Scholar] [CrossRef]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef] [PubMed]
- Sukmana, H.; Bellahsen, N.; Pantoja, F.; Hodur, C. Adsorption and coagulation in wastewater treatment—Review. Prog. Agric. Eng. Sci. 2021, 17, 49–68. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, G.; Zhang, Q.; Zhao, W. Synergistic activation of sulfidized hemimorphite with copper-lead species for improving surface hydrophobicity and floatability. Sep. Purif. Technol. 2024, 332, 125854. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Li, F.L.; Zhang, Y.W.; Gupta, R.K.; Patel, S.K.S.; Lee, J.K. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers 2022, 14, 1409. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Bautista-Toledo, I.; Ferro-García, M.A.; Moreno-Castilla, C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef]
- Seidi, F.; Salimi, H.; Shamsabadi, A.A.; Shabanian, M. Synthesis of hybrid materials using graft copolymerization on non-cellulosic polysaccharides via homogenous ATRP. Prog. Polym. Sci. 2018, 76, 1–39. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Poirier-Larabie, S.; Segura, P.A.; Gagnon, C. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions. Sci. Total Environ. 2016, 557–558, 257–267. [Google Scholar] [CrossRef]
- Garnero, C.; Aisassa, V.; Longhi, M. Sulfamethoxazole: Hydroxypropyl-b-cyclodextrin complex: Preparation and characterization. J. Pharm. Biomed. Anal. 2012, 63, 74–79. [Google Scholar] [CrossRef]
- Dedinaite, A.; Ernstsson, M. Chitosan−SDS Interactions at a Solid−Liquid Interface: Effects of Surfactant Concentration and Ionic Strength. J. Phys. Chem. B 2003, 107, 8181–8188. [Google Scholar] [CrossRef]
- Yao, S.; Jabeur, F.; Pontoni, L.; Mechri, S.; Jaouadi, B.; Sannino, F. Sustainable removal of arsenic from waters by adsorption on blue crab, Portunus segnis (Forskål, 1775) chitosan-based adsorbents. Environ. Technol. Innov. 2024, 33, 103491. [Google Scholar] [CrossRef]
- da Silva Bruckmann, F.; Schnorr, C.E.; da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854. [Google Scholar] [CrossRef] [PubMed]
- Pylypchuk, I.V.; Kołody’nska, D.; Kozioł, M.; Gorbyk, P.P. Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res. Lett. 2016, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Bol’bukh, Y.N.; Tertykh, V.A.; Yurkov, G.Y.; Ovchenkov, E.A. Synthesis and properties of nanocomposites based on magnetite and biocompatible polymers. Russ. J. Appl. Chem. 2011, 84, 847–853. [Google Scholar] [CrossRef]
- Freire, T.M.; Fechine, L.M.U.D.; Queiroz, D.C.; Freire, R.M.; Denardin, J.C.; Ricardo, N.M.P.S.; Rodrigues, T.N.B.; Gondim, D.R.; Junior, I.J.S.; Fechine, P.B.A. Magnetic Porous Controlled Fe3O4–Chitosan Nanostructure: An Ecofriendly Adsorbent for Efficient Removal of Azo Dyes. Nanomaterials 2020, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Ates, B.; Ulu, A.; Köytepe, S.; Noma, S.A.A.; Kolat, V.S.; Izgi, T. Magnetic-propelled Fe3O4–chitosan carriers enhance L-asparaginase catalytic activity: A promising strategy for enzyme immobilization. RSC Adv. 2018, 8, 36063–36075. [Google Scholar] [CrossRef] [PubMed]
- Jabbar Almukhtar, J.G.; Karam, F.F. Kinetic and Thermodynamic Studies for Mebeverine hydrochloride Adsorption from Aqueous Solution using prepared chitosan polymer in delivery drug system. J. Phys. Conf. Ser. 2020, 1664, 012062. [Google Scholar] [CrossRef]
- Chandra, D.; Molla, M.T.H.; Bashar, M.A.; Islam, M.S.; Ahsan, M.S. Chitosan-based nano-sorbents: Synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Sci Rep. 2023, 13, 6050. [Google Scholar] [CrossRef]
- Massima Mouele, E.S.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; Fatoba, O.O.; et al. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. Int. J. Environ. Res. Public Health 2021, 18, 1683. [Google Scholar] [CrossRef]
- Lara-Pérez, C.; Leyva, E.; Zermeño, B.; Osorio, I.; Montalvo, C.; Moctezuma, E. Photocatalytic degradation of diclofenac sodium salt: Adsorption and reaction kinetic studies. Environ. Earth Sci. 2020, 79, 277. [Google Scholar] [CrossRef]
- Bizi, M. Activated Carbon and the Principal Mineral Constituents of a Natural Soil in the Presence of Carbamazepine. Water 2019, 11, 2290. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larionov, O.G. Theory of adsorption from nonelectrolyte solutions on solid adsorbents. Russ. Chem. Bull. 1962, 11, 198–203. [Google Scholar] [CrossRef]
- Freundlich, H. Adsorption in solution. Phys. Chem. 1906, 57, 384–410. [Google Scholar]
- Ayawei, N.; Angaye, S.S.; Wankasi, D.; Dikio, E.D. Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. J. Phys. Chem. 2015, 5, 56–70. [Google Scholar] [CrossRef]
- Chen, K.L.; Liu, L.C.; Chen, W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Sarker, P.; Lei, X.; Taylor, K.; Holmes, W.; Yan, H.; Cao, D.; Zappi, M.E.; Gang, D.D. Evaluation of the adsorption of sulfamethoxazole (SMX) within aqueous influents onto customized ordered mesoporous carbon (OMC) adsorbents: Performance and elucidation of key adsorption mechanisms. Chem. Eng. J. 2023, 454, 140082. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Liu, Y.; Meng, W.; Zheng, B. Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): Characteristics and mechanism. RSC Adv. 2024, 14, 3636–3646. [Google Scholar] [CrossRef]
- Li, Y.; Shang, H.; Cao, Y.; Yang, C.; Feng, Y.; Yu, Y. High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar 2022, 4, 11. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
TSS (Total suspended solids) | 2.05 | mg/L |
Turbidity | 1.1 | NTU |
pH | 8.7 | / |
E.C. (Electrical conductivity) | 934 | μS/cm |
CODTot (Total chemical oxygen demand) | 26 | mg/L |
CODsol (Soluble chemical oxygen demand) | 24 | mg/L |
BOD5 (Biochemical oxygen demand) | 10.3 | mg/L |
Cl.Free (Free chloride) | 0.1 | mg/L |
Cl.Tot (Total chloride) | 1.1 | mg/L |
TN (Total nitrogen) | 8.92 | mg/L |
N-NH3 (Ammonia) | 0.1 | mg N/L (<DL) |
N-NO2 (Nitrite) | 0.05 | mg N/L |
N-NO3 (Nitrate) | 8.06 | mg N/L |
TP (Total phosphorus) | 3.65 | mg/L |
P-PO4 (Phosphate) | 3.31 | mg/L |
T (Water temperature) | 19.65 | °C |
Compound | Class | Formula | Concentration |
---|---|---|---|
Clarithromycin | Antibiotic | C38H69NO13 | <LOQ |
Sulfamethoxazole | Antibiotic | C10H11N3O3S | <LOQ |
Trimethoprim | Antibiotic | C14H18N4O3 | <LOQ |
Ketoprofen | Anti-inflammatory | C16H14O3 | <LOQ |
Carbamazepine | Antiepileptic | C15H12N2O | 0.5 |
Diclofenac | Anti-inflammatory | C14H11Cl2NO2 | 1.2 |
Triclosan | Disinfectant | C12H7Cl3O2 | <LOQ |
Metoprolol | Betablocker | C15H25NO3 | <LOQ |
Gemfibrozil | Hypolipidemic | C15H22O3 | <LOQ |
Fluconazole | Antifungal | C13H12F2N6O | 0.3 |
Climbazole | Antifungal | C15H17ClN2O2 | 0.1 |
Naproxen | Anti-inflammatory | C14H14O3 | <LOQ |
Flecainide | Antiarrhythmic | C17H20F6N2O3 | 0.7 |
Gabapentin | Antiepileptic | C9H17NO2 | 0.3 |
Olmesartan | Antihypertensive | C24H26N6O3 | 2.1 |
Sitagliptin | Antidiabetic | C16H15F6N5O | 0.5 |
Telmisartan | Antihypertensive | C33H30N4O2 | 2.1 |
Venlafaxine | Antidepressant | C17H27NO2 | 0.3 |
Valsartan | Antihypertensive | C24H29N5O3 | 0.1 |
Element (wt%) | C | O | Fe | N |
---|---|---|---|---|
Magnetic chitosan | 41.1 ± 0.5 | 29.0 ± 0.4 | 20.6 ± 0.3 | 9.2 ± 0.8 |
Magnetic chitosan after adsorption | 44.1 ± 0.4 | 24.0 ± 0.3 | 22.2 ± 0.3 | 9.7 ± 0.8 |
Reference | Particle Size (nm) | Specific Surface (m2/g) | Pore-Size Range (nm) | Magnetic Saturation (emu/g) |
---|---|---|---|---|
This study | 16 | 51.3 | 7.23–18.0 | 36.6 |
[23] | - | 47.6 | 12.6–49.8 | 43 |
[24] | 10 | 101.2 | 4–15 | - |
[25] | 8–10 | 7.31 | 3–27 | 34 |
[26] | 9–10 | 68 | 2–50 | 49 |
[27] | - | - | - | 37 |
Parameter | Co = 25 μmol/L | Co = 50 μmol/L | Units |
---|---|---|---|
α | 2.51 × 107 | 2.30 × 104 | μmol · kg−1 · min−1 |
β | 7.08 × 10−5 | 2.28 × 10−5 | kg · μmol−1 |
R2 | 0.990 | 0.992 | - |
Parameter | Value | Units |
---|---|---|
KF | 5.98 · 104 | μmol(n−1)/n · kg−1 · L1/n |
n | 1.96 | - |
R2 | 0.997 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirozzi, D.; Latte, A.; Yousuf, A.; De Mastro, F.; Brunetti, G.; EL Hassanin, A.; Sannino, F. Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters. Nanomaterials 2024, 14, 406. https://doi.org/10.3390/nano14050406
Pirozzi D, Latte A, Yousuf A, De Mastro F, Brunetti G, EL Hassanin A, Sannino F. Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters. Nanomaterials. 2024; 14(5):406. https://doi.org/10.3390/nano14050406
Chicago/Turabian StylePirozzi, Domenico, Alessandro Latte, Abu Yousuf, Francesco De Mastro, Gennaro Brunetti, Andrea EL Hassanin, and Filomena Sannino. 2024. "Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters" Nanomaterials 14, no. 5: 406. https://doi.org/10.3390/nano14050406
APA StylePirozzi, D., Latte, A., Yousuf, A., De Mastro, F., Brunetti, G., EL Hassanin, A., & Sannino, F. (2024). Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters. Nanomaterials, 14(5), 406. https://doi.org/10.3390/nano14050406