Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Plain βCD-Based Polymer (βCD_BDE)
2.2. Synthesis of Plain GLU2-Based Polymer (GLU2_BDE)
2.3. Synthesis of Cationic βCD-Based Polymer (βCD_BDE_Q+)
2.4. Synthesis of Cationic GLU2-Based Polymer (GLU2_BDE_Q+)
2.5. Characterization
2.6. Salicylic Acid Adsorption Tests and HPLC-UV/Vis Detection
3. Results and Discussion
3.1. Characterization of the Adsorbents
3.2. SA Batch Adsorption Test
3.3. SA Fixed Bed Adsorption Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastas, P.T.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Cyclodextrin-Based Adsorbents for the Removal of Pollutants from Wastewater: A Review. Environ. Sci. Pollut. Res. 2021, 28, 1317–1340. [Google Scholar] [CrossRef]
- Fenyvesi, É.; Sohajda, T. Cyclodextrin-Enabled Green Environmental Biotechnologies. Environ. Sci. Pollut. Res. 2022, 29, 20085–20097. [Google Scholar] [CrossRef]
- Chodankar, D.; Vora, A.; Kanhed, A. β-Cyclodextrin and Its Derivatives: Application in Wastewater Treatment. Environ. Sci. Pollut. Res. 2022, 29, 1585–1604. [Google Scholar] [CrossRef]
- Bayatloo, M.R.; Salehpour, N.; Alavi, A.; Nojavan, S. Introduction of Maltodextrin Nanosponges as Green Extraction Phases: Magnetic Solid Phase Extraction of Fluoroquinolones. Carbohydr. Polym. 2022, 297, 119992. [Google Scholar] [CrossRef]
- Gupta, R.; Pathak, D.D. Surface Functionalization of Mesoporous Silica with Maltodextrin for Efficient Adsorption of Selective Heavy Metal Ions from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127695. [Google Scholar] [CrossRef]
- Hoang, B.N.; Nguyen, T.T.; Bui, Q.P.T.; Bach, L.G.; Vo, D.V.N.; Trinh, C.D.; Bui, X.T.; Nguyen, T.D. Enhanced Selective Adsorption of Cation Organic Dyes on Polyvinyl Alcohol/Agar/Maltodextrin Water-Resistance Biomembrane. J. Appl. Polym. Sci. 2020, 137, 48904. [Google Scholar] [CrossRef]
- Cecone, C.; Caldera, F.; Anceschi, A.; Scalarone, D.; Trotta, F.; Bracco, P.; Zanetti, M. One-Step Facile Process to Obtain Insoluble Polysaccharides Fibrous Mats from Electrospinning of Water-Soluble PMDA/Cyclodextrin Polymer. J. Appl. Polym. Sci. 2018, 135, 46490. [Google Scholar] [CrossRef]
- Anceschi, A.; Caldera, F.; Bertasa, M.; Cecone, C.; Trotta, F.; Bracco, P.; Zanetti, M.; Malandrino, M.; Mallon, P.E.; Scalarone, D. New Poly(β-Cyclodextrin)/Poly(Vinyl Alcohol) Electrospun Sub-Micrometric Fibers and Their Potential Application for Wastewater Treatments. Nanomaterials 2020, 10, 482. [Google Scholar] [CrossRef]
- Dokic-Baucal, L.; Dokic, P.; Jakovljevic, J. Influence of Different Maltodextrins on Properties of O/W Emulsions. Food Hydrocoll. 2004, 18, 233–239. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Is Starch or Maltodextrin “Glucose?”. Starch/Staerke 2018, 70, 10–14. [Google Scholar] [CrossRef]
- Connors, K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997, 97, 1325–1357. [Google Scholar] [CrossRef]
- Schneider, H.J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998, 98, 1755–1785. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-Based Pharmaceutics: Past, Present and Future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking Biopolymers for Biomedical Applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef]
- O’Connor, N.A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H.-P. The Crosslinking of Polysaccharides with Polyamines and Dextran-Polyallylamine Antibacterial Hydrogels. Int. J. Biol. Macromol. 2015, 72, 88–93. [Google Scholar] [CrossRef]
- Castro-Cabado, M.; Parra-Ruiz, F.J.; Casado, A.L. San r Thermal Crosslinking of Maltodextrin and Citric Acid. Methodology to Control Polycondensation Reaction under Processing Conditions. Polym. Polym. Compos. 2016, 24, 643–654. [Google Scholar]
- Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin-Based Nanosponges for Improving Solubility and Sustainable Release of Curcumin. ChemistrySelect 2020, 5, 1734–1738. [Google Scholar] [CrossRef]
- Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-Based Nanosponges: A Critical Review. Carbohydr. Polym. 2017, 173, 37–49. [Google Scholar] [CrossRef]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid Removal of Organic Micropollutants from Water by a Porous β-Cyclodextrin Polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef]
- Concheiro, A.; Alvarez-Lorenzo, C. Chemically Cross-Linked and Grafted Cyclodextrin Hydrogels: From Nanostructures to Drug-Eluting Medical Devices. Adv. Drug Deliv. Rev. 2013, 65, 1188–1203. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of Hyaluronic Acid Hydrogels by Crosslinking the Mixture of High-Molecular-Weight Hyaluronic Acid and Low-Molecular-Weight Hyaluronic Acid with 1,4-Butanediol Diglycidyl Ether. RSC Adv. 2020, 10, 7206–7213. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, A.; Xu, X.; Wang, M.; Shang, S.; Liu, S.; Song, J. Porous Aerogels Prepared by Crosslinking of Cellulose with 1,4-Butanediol Diglycidyl Ether in NaOH/Urea Solution. RSC Adv. 2016, 6, 42854–42862. [Google Scholar] [CrossRef]
- Li, P.; Wang, T.; He, J.; Jiang, J.; Lei, F. Diffusion of Water and Protein Drug in 1,4-Butanediol Diglycidyl Ether Crosslinked Galactomannan Hydrogels and Its Correlation with the Physicochemical Properties. Int. J. Biol. Macromol. 2021, 183, 1987–2000. [Google Scholar] [CrossRef]
- Blanco-Fernandez, B.; Lopez-Viota, M.; Concheiro, A.; Alvarez-Lorenzo, C. Synergistic Performance of Cyclodextrin-Agar Hydrogels for Ciprofloxacin Delivery and Antimicrobial Effect. Carbohydr. Polym. 2011, 85, 765–774. [Google Scholar] [CrossRef]
- Cecone, C.; Costamagna, G.; Ginepro, M.; Trotta, F. One-Step Sustainable Synthesis of Cationic High-Swelling Polymers Obtained from Starch-Derived Maltodextrins. RSC Adv. 2021, 11, 7653–7662. [Google Scholar] [CrossRef]
- Rizzi, V.; Gubitosa, J.; Signorile, R.; Fini, P.; Cecone, C.; Matencio, A.; Trotta, F.; Cosma, P. Cyclodextrin Nanosponges as Adsorbent Material to Remove Hazardous Pollutants from Water: The Case of Ciprofloxacin. Chem. Eng. J. 2021, 411, 128514. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; BarcelÓ, D. Hospital Effluents as a Source of Emerging Pollutants: An Overview of Micropollutants and Sustainable Treatment Options. J. Hydrol. 2010, 389, 416–428. [Google Scholar] [CrossRef]
- Lee, B.C.Y.; Lim, F.Y.; Loh, W.H.; Ong, S.L.; Hu, J. Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. Water 2021, 13, 2340. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Almeida, C.M.R.; Salgado, M.A.; Carvalho, M.F.; Mucha, A.P. Pharmaceutical Compounds in Aquatic Environments— Occurrence, Fate and Bioremediation Prospective. Toxics 2021, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Manzetti, S.; Ghisi, R. The Environmental Release and Fate of Antibiotics. Mar. Pollut. Bull. 2014, 79, 7–15. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of Risk from Potential Emerging Contaminants in UK Groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Collado, S.; Garrido, L.; Laca, A.; Diaz, M. Wet Oxidation of Salicylic Acid Solutions. Environ. Sci. Technol. 2010, 44, 8629–8635. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Madan, R.K.; Levitt, J. A Review of Toxicity from Topical Salicylic Acid Preparations. J. Am. Acad. Dermatol. 2014, 70, 788–792. [Google Scholar] [CrossRef]
- Szabó, L.; Tóth, T.; Homlok, R.; Rácz, G.; Takács, E.; Wojnárovits, L. Hydroxyl Radical Induced Degradation of Salicylates in Aerated Aqueous Solution. Radiat. Phys. Chem. 2014, 97, 239–245. [Google Scholar] [CrossRef]
- Arif, T. Salicylic Acid as a Peeling Agent: A Comprehensive Review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Cices, A.; Bayers, S.; Verzì, A.E.; Schachner, L.A.; West, D.P.; Micali, G. Poisoning Through Pediatric Skin: Cases from the Literature. Am. J. Clin. Dermatol. 2017, 18, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Salicylate Toxicity. N. Engl. J. Med. 2020, 382, 2544–2555. [Google Scholar] [CrossRef] [PubMed]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation. Environ. Technol. 2006, 27, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.; Lema, J.M.; Omil, F. Pre-Treatment of Hospital Wastewater by Coagulation-Flocculation and Flotation. Bioresour. Technol. 2009, 100, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef]
- Hofman-Caris, R.; ter Laak, T.; Huiting, H.; Tolkamp, H.; de Man, A.; van Diepenbeek, P.; Hofman, J. Origin, Fate and Control of Pharmaceuticals in the Urban Water Cycle: A Case Study. Water 2019, 11, 1034. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Cecone, C.; Zanetti, M.; Anceschi, A.; Caldera, F.; Trotta, F.; Bracco, P. Microfibers of Microporous Carbon Obtained from the Pyrolysis of Electrospun β-Cyclodextrin/Pyromellitic Dianhydride Nanosponges. Polym. Degrad. Stab. 2019, 161, 277–282. [Google Scholar] [CrossRef]
- Patel, H. Comparison of Batch and Fixed Bed Column Adsorption: A Critical Review. Int. J. Environ. Sci. Technol. 2022, 19, 10409–10426. [Google Scholar] [CrossRef]
- Dichiara, A.B.; Weinstein, S.J.; Rogers, R.E. On the Choice of Batch or Fixed Bed Adsorption Processes for Wastewater Treatment. Ind. Eng. Chem. Res. 2015, 54, 8579–8586. [Google Scholar] [CrossRef]
- Karimi, S.; Tavakkoli Yaraki, M.; Karri, R.R. A Comprehensive Review of the Adsorption Mechanisms and Factors Influencing the Adsorption Process from the Perspective of Bioethanol Dehydration. Renew. Sustain. Energy Rev. 2019, 107, 535–553. [Google Scholar] [CrossRef]
- Dabrowski, A. Adsorption from Theory to Practice. Adv. Colloid. Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.P.; Thomas, R.C. The effects of chloride substitution on intracellular pH in crab muscle. J. Physiol. 1981, 312, 71–80. [Google Scholar] [CrossRef]
- Belyakova, L.A.; Varvarin, A.M.; Lyashenko, D.Y.; Khora, O.V.; Oranskaya, E.I. Complexation in a β-Cyclodextrin-Salicylic Acid System. Colloid. J. 2007, 69, 546–551. [Google Scholar] [CrossRef]
- Rotich, M.K.; Brown, M.E.; Glass, B.D. Thermal studies on mixtures of benzoic and salicylic acids with cyclodextrins. J. Therm. Anal. Calorim. 2003, 73, 671–686. [Google Scholar] [CrossRef]
- Belyakova, L.A.; Lyashenko, D.Y. Complex formation between benzene carboxylic acids and β-cyclodextrin. J. Appl. Spectrosc. 2008, 75, 314–318. [Google Scholar] [CrossRef]
- Mura, P. Analytical Techniques for Characterization of Cyclodextrin Complexes in the Solid State: A Review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Sadaquat, H.; Akhtar, M. Comparative Effects of β-Cyclodextrin, HP-β-Cyclodextrin and SBE7-β-Cyclodextrin on the Solubility and Dissolution of Docetaxel via Inclusion Complexation. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 333–351. [Google Scholar] [CrossRef]
- Xiao, G.; Wen, R.; Liu, A.; He, G.; Wu, D. Adsorption Performance of Salicylic Acid on a Novel Resin with Distinctive Double Pore Structure. J. Hazard. Mater. 2017, 329, 77–83. [Google Scholar] [CrossRef]
- Arshadi, M.; Mousavinia, F.; Abdolmaleki, M.K.; Amiri, M.J.; Khalafi-Nezhad, A. Removal of Salicylic Acid as an Emerging Contaminant by a Polar Nano-Dendritic Adsorbent from Aqueous Media. J. Colloid. Interface Sci. 2017, 493, 138–149. [Google Scholar] [CrossRef]
- Li, H.; Fu, Z.; Yang, L.; Yan, C.; Chen, L.; Huang, J.; Liu, Y.N. Synthesis and Adsorption Property of Hydrophilic-Hydrophobic Macroporous Crosslinked Poly(Methyl Acryloyl Diethylenetriamine)/Poly(Divinylbenzene) (PMADETA/PDVB) Interpenetrating Polymer Networks (IPNs). RSC Adv. 2015, 5, 26616–26624. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Adsorption Behavior of Salicylic Acid on Biochar as Derived from the Thermal Pyrolysis of Barley Straws. J. Clean. Prod. 2018, 195, 1162–1169. [Google Scholar] [CrossRef]
- Karunanayake, A.G.; Todd, O.A.; Crowley, M.L.; Ricchetti, L.B.; Pittman, C.U.; Anderson, R.; Mlsna, T.E. Rapid Removal of Salicylic Acid, 4-Nitroaniline, Benzoic Acid and Phthalic Acid from Wastewater Using Magnetized Fast Pyrolysis Biochar from Waste Douglas Fir. Chem. Eng. J. 2017, 319, 75–88. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive Removal of Salicylic Acid and Ibuprofen from Aqueous Solutions Using Pine Wood Fast Pyrolysis Biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Kayranli, B.; Ugurlu, A. Effects of Temperature and Biomass Concentration on the Performance of Anaerobic Sequencing Batch Reactor Treating Low Strength Wastewater. Desalination 2011, 278, 77–83. [Google Scholar] [CrossRef]
Conc t0 (mg/L) | Ads Exp (mg/g) | Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|---|---|
Ads Cal (mg/g) | k1 | R2 | Ads Cal (mg/g) | k2 | R2 | ||
1 | 2.05 | 2.00 | 3.05 × 10−4 | 0.973 | 2.43 | 2.15 × 10−2 | 0.989 |
10 | 17.12 | 16.49 | 3.45 × 10−4 | 0.989 | 20.63 | 2.63 × 10−3 | 0.993 |
Adsorbent | Ads(mg/g) | SA (mg/L) | m (g/L) | T (°C) | t(h) | pH | Ref. |
---|---|---|---|---|---|---|---|
Cross-linked PS | 396.8 | 700 | 4.0 | 10 | 24 | 2.6 | [60] |
Modified SiO2/Al2O3 | 256.1 | 1000 | 1.6 | 25 | 0.5 | 3.5 | [61] |
Cross-linked PMADETA/PDVB | 238.3 | 1000 | 2.0 | 45 | 8 | \ | [62] |
Barely straw biochar | 210.5 | 250 | 0.5 | 45 | 11 | 3.0 | [63] |
Douglas fir biochar | 108.8 | >350 | 2.0 | 45 | 0.03 | 5.0 | [64] |
Pine wood biochar | 22.7 | >400 | 4.0 | 45 | 16 | 3.0 | [65] |
Dextrin-based polymer | 17.1 | 10 | 0.4 | 25 | 2 | 7.0 | This work |
Composition | Drinking Water | Simulated Domestic Wastewater | |
---|---|---|---|
High Salinity | Low Salinity | ||
SA (mg/L) | 1 | 1 | 1 |
Ca+2 (mg/L) | 400 | 9.5 | - |
Na+ (mg/L) | 50 | 1.2 | - |
Mg+2 (mg/L) | 25 | 2.6 | - |
K+ (mg/L) | 49 | 0.53 | - |
SO4−2 (mg/L) | 4.7 | 4.4 | - |
Cl− (mg/L) | 16 | 0.25 | - |
NO3− (mg/L) | 3.5 | - | - |
F− (mg/L) | 1 | - | - |
Fixed residue (mg/L) | 1323 | 45.9 | - |
pH | 6.2 | 7.2 | 7.1 |
Milk powder (mg/L) | - | - | 150 |
Starch (mg/L) | - | - | 80 |
Sodium acetate (mg/L) | - | - | 103 |
Yeast (mg/L) | - | - | 24 |
NH4Cl (mg/L) | - | - | 21.7 |
Urea (mg/L) | - | - | 12.8 |
KH2PO4 (mg/L) | - | - | 13.2 |
NaHCO3 (mg/L) | - | - | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecone, C.; Iudici, M.; Ginepro, M.; Zanetti, M.; Trotta, F.; Bracco, P. Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water. Nanomaterials 2023, 13, 2805. https://doi.org/10.3390/nano13202805
Cecone C, Iudici M, Ginepro M, Zanetti M, Trotta F, Bracco P. Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water. Nanomaterials. 2023; 13(20):2805. https://doi.org/10.3390/nano13202805
Chicago/Turabian StyleCecone, Claudio, Mario Iudici, Marco Ginepro, Marco Zanetti, Francesco Trotta, and Pierangiola Bracco. 2023. "Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water" Nanomaterials 13, no. 20: 2805. https://doi.org/10.3390/nano13202805