Sub-Diffraction Readout Method of High-Capacity Optical Data Storage Based on Polarization Modulation
Abstract
:1. Introduction
2. Method
2.1. Sub-Diffraction Readout Method
2.2. Polarization Encoding and Decoding Method
Number | Polarizations Pair | Number | Polarizations Pair | Number | Polarizations Pair |
---|---|---|---|---|---|
0 | a space and a space | 3 | 0° and a space | 6 | 0° and 90° |
1 | a space and 0° | 4 | 90° and a space | 7 | 90° and 0° |
2 | a space and 90° | 5 | 0° and 0° | 8 | 90° and 90° |
3. Experiment and Results
3.1. Polarization-Selective Feature of DR 13
3.2. Experiment Process
- Writing by a High NA Objective Lens
- B.
- Reading by a Low NA Objective Lens
- C.
- The Potential of Our Sub-diffraction Readout Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Gecevicius, M.; Beresna, M.; Kazansky, P.G. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys. Rev. Lett. 2014, 112, 033901. [Google Scholar] [CrossRef] [PubMed]
- Shimotsuma, Y.; Sakakura, M.; Kazansky, P.G.; Beresna, M.; Qiu, J.; Miura, K.; Hirao, K. Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass. Adv. Mater. 2010, 22, 4039–4043. [Google Scholar] [CrossRef]
- Shen, Y.; Heacock, L.; Elias, J.; Hentel, K.D.; Reig, B.; Shih, G.; Moy, L. ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology 2023, 307, e230163. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Webb, W.W. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett. 1991, 16, 1780. [Google Scholar] [CrossRef] [PubMed]
- Toriumi, A.; Kawata, S.; Gu, M. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt. Lett. 1998, 23, 1924. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, N. Overview of Blu-Ray DiscTM recordable/rewritable media technology. Front. Optoelectron. 2014, 7, 409–424. [Google Scholar] [CrossRef]
- Mansfield, S.M.; Studenmund, W.R.; Kino, G.S.; Osato, K. High-numerical-aperture lens system for optical storage. Opt. Lett. 1993, 18, 305. [Google Scholar] [CrossRef]
- Ichimura, I.; Maeda, F.; Osato, K.; Yamamoto, K.; Kasami, Y. Optical Disk Recording Using a GaN Blue-Violet Laser Diode. Jpn. J. Appl. Phys. 2000, 39, 937. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Krenn, J.R.; Lamprecht, B.; Leitner, A.; Aussenegg, F.R. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 2000, 25, 563. [Google Scholar] [CrossRef]
- Franklin, D.; Modak, S.; Vázquez-Guardado, A.; Safaei, A.; Chanda, D. Covert infrared image encoding through imprinted plasmonic cavities. Light. Sci. Appl. 2018, 7, 93. [Google Scholar] [CrossRef]
- Dai, Q.; Ouyang, M.; Yuan, W.; Li, J.; Guo, B.; Lan, S.; Liu, S.; Zhang, Q.; Lu, G.; Tie, S.; et al. Encoding Random Hot Spots of a Volume Gold Nanorod Assembly for Ultralow Energy Memory. Adv. Mater. 2017, 29, 1701918. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Ishitobi, H.; Sekkat, Z.; Kawata, S. Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films. Appl. Phys. Lett. 2004, 85, 351–353. [Google Scholar] [CrossRef]
- Li, X.; Chon, J.W.M.; Wu, S.; Evans, R.A.; Gu, M. Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer. Opt. Lett. 2007, 32, 277. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z.; Zhang, H.; Fan, Y.; Zhang, F. Independent Luminescent Lifetime and Intensity Tuning of Upconversion Nanoparticles by Gradient Doping for Multiplexed Encoding. Angew. Chem. 2021, 133, 7117–7121. [Google Scholar] [CrossRef]
- Sun, K.; Tan, D.; Fang, X.; Xia, X.; Lin, D.; Song, J.; Lin, Y.; Liu, Z.; Gu, M.; Yue, Y.; et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Huang, X.; Yang, Z.; Qiu, J.; Song, Z.; Zhang, J.; Dong, G. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium. Light. Sci. Appl. 2021, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, Y.; Gu, M. Superresolution-focal-volume induced 30 Tbytes/disk capacity by focusing a radially polarized beam. Opt. Lett. 2011, 36, 2510. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhao, M.; Guo, X.; Li, Y.; Yu, Y.; Gan, Z.; Ruan, H. Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape. Opt. Lett. 2020, 45, 1535. [Google Scholar] [CrossRef]
- Chen, W.; Yan, Z.; Tian, J.; Liu, S.; Gao, J.; Zhang, J. Flexible four-dimensional optical data storage enabled by single-pulse femtosecond laser irradiation in thermoplastic polyurethane. Opt. Lett. 2021, 46, 3211. [Google Scholar] [CrossRef]
- Zijlstra, P.; Chon, J.W.M.; Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009, 459, 410–413. [Google Scholar] [CrossRef]
- Gu, M.; Li, X.; Cao, Y. Optical storage arrays: A perspective for future big data storage. Light. Sci. Appl. 2014, 3, e177. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Rutten, M.G.T.A.; Vaandrager, F.W.; Elemans, J.A.A.W.; Nolte, R.J.M. Encoding information into polymers. Nat. Rev. Chem. 2018, 2, 365–381. [Google Scholar] [CrossRef]
- Gan, Z.; Cao, Y.; Evans, R.A.; Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 2013, 4, 2061. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, Y.; Tian, N.; Fu, L.; Gu, M. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2015, 2, 567. [Google Scholar] [CrossRef]
- Scott, T.F.; Kowalski, B.A.; Sullivan, A.C.; Bowman, C.N.; Mcleod, R.R. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography. Science 2009, 324, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Wu, Y.; Zhang, Q.; Liu, X.; Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 2021, 7, eabe2209. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cote, L.J.; Kim, F.; Huang, J. Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J. Am. Chem. Soc. 2010, 132, 260–267. [Google Scholar] [CrossRef]
- Stöhr, R.J.; Kolesov, R.; Xia, K.; Reuter, R.; Meijer, J.; Logvenov, G.; Wrachtrup, J. Super-resolution Fluorescence Quenching Microscopy of Graphene. ACS Nano 2012, 6, 9175–9181. [Google Scholar] [CrossRef]
- Brakemann, T.; Stiel, A.C.; Weber, G.; Andresen, M.; Testa, I.; Grotjohann, T.; Leutenegger, M.; Plessmann, U.; Urlaub, H.; Eggeling, C.; et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 2011, 29, 942–947. [Google Scholar] [CrossRef]
- Grotjohann, T.; Testa, I.; Reuss, M.; Brakemann, T.; Eggeling, C.; Hell, S.W.; Jakobs, S. rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 2012, 1, e00248. [Google Scholar] [CrossRef] [PubMed]
- Uno, K.; Bossi, M.L.; Konen, T.; Belov, V.N.; Irie, M.; Hell, S.W. Asymmetric Diarylethenes with Oxidized 2-Alkylbenzothiophen-3-yl Units: Chemistry, Fluorescence, and Photoswitching. Adv. Opt. Mater. 2019, 7, 1801746. [Google Scholar] [CrossRef]
- Grotjohann, T.; Testa, I.; Leutenegger, M.; Bock, H.; Urban, N.T.; Lavoie-Cardinal, F.; Willig, K.I.; Eggeling, C.; Jakobs, S.; Hell, S.W. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 2011, 478, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Yoo, Y.J.; Kim, Y.J.; Lee, S.S.; Song, Y.M. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film. Adv. Funct. Mater. 2020, 30, 1908592. [Google Scholar] [CrossRef]
- Alasfar, S.; Ishikawa, M.; Kawata, Y.; Egami, C.; Sugihara, O.; Okamoto, N.; Tsuchimori, M.; Watanabe, O. Polarization-multiplexed optical memory with urethane–urea copolymers. Appl. Opt. 1999, 38, 6201–6204. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Z.; Chen, Y.; Huang, W.; Zhang, Q. Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film. J. Laser Micro Nanoeng. 2010, 5, 64–67. [Google Scholar] [CrossRef]
- Pedersen, T.G.; Johansen, P.M. Mean-Field Theory of Photoinduced Molecular Reorientation in Azobenzene Liquid Crystalline Side-Chain Polymers. Phys. Rev. Lett. 1997, 79, 2470–2473. [Google Scholar] [CrossRef]
- Zhanghao, K.; Chen, L.; Yang, X.; Wang, M.; Jing, Z.; Han, H.; Zhang, M.Q.; Jin, D.; Gao, J.; Xi, P. Super-resolution dipole orientation mapping via polarization demodulation. Light. Sci. Appl. 2016, 5, e16166. [Google Scholar] [CrossRef]
- Zhanghao, K.; Gao, J.; Jin, D.; Zhang, X.; Xi, P. Super-resolution fluorescence polarization microscopy. J. Innov. Opt. Health Sci. 2018, 11, 1730002. [Google Scholar] [CrossRef]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Y.; Luo, Y.; Zhang, Q.; Huang, W.; Zou, G. Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film. Opt. Commun. 2009, 282, 3282–3285. [Google Scholar] [CrossRef]
- Mendonça, C.R.; Neves, U.M.; De Boni, L.; Andrade, A.A.; Dos Santos, D.S.; Pavinatto, F.J.; Zilio, S.C.; Misoguti, L.; Oliveira, O.N. Two-photon induced anisotropy in PMMA film doped with Disperse Red 13. Opt. Commun. 2007, 273, 435–440. [Google Scholar] [CrossRef]
- Landraud, N.; Peretti, J.; Chaput, F.; Lampel, G.; Boilot, J.-P.; Lahlil, K.; Safarov, V.I. Near-field optical patterning on azo-hybrid sol–gel films. Appl. Phys. Lett. 2001, 79, 4562–4564. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Chen, Y.; Zhang, Q.; Huang, W. Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film. Opt. Lett. 2010, 35, 46. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Shevchenko, A. Azopolymer-based micro- and nanopatterning for photonic applications. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 163–182. [Google Scholar] [CrossRef]
- Lee, S.; Kang, H.S.; Park, J.-K. Directional Photofluidization Lithography: Micro/Nanostructural Evolution by Photofluidic Motions of Azobenzene Materials. Adv. Mater. 2012, 24, 2069–2103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B.; Sun, P.; Hu, H.; Yuan, C.; Huang, M.; Zheng, Z. Optical Steganography via Programmable Anchoring Boundary of Soft Materials. Adv. Opt. Mater. 2023, 11, 2202971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, W.; Wang, Z. Sub-Diffraction Readout Method of High-Capacity Optical Data Storage Based on Polarization Modulation. Nanomaterials 2024, 14, 364. https://doi.org/10.3390/nano14040364
Zhang L, Li W, Wang Z. Sub-Diffraction Readout Method of High-Capacity Optical Data Storage Based on Polarization Modulation. Nanomaterials. 2024; 14(4):364. https://doi.org/10.3390/nano14040364
Chicago/Turabian StyleZhang, Li, Wenwen Li, and Zhongyang Wang. 2024. "Sub-Diffraction Readout Method of High-Capacity Optical Data Storage Based on Polarization Modulation" Nanomaterials 14, no. 4: 364. https://doi.org/10.3390/nano14040364
APA StyleZhang, L., Li, W., & Wang, Z. (2024). Sub-Diffraction Readout Method of High-Capacity Optical Data Storage Based on Polarization Modulation. Nanomaterials, 14(4), 364. https://doi.org/10.3390/nano14040364