In Situ Lubrication in Forging of Pure Titanium Using Carbon Supersaturated Die Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two Carbon Supersaturation Processes
2.2. Work Materials
2.3. Upsetting Experiments
2.4. Material and Mechanical Characterization
3. Results
3.1. Carbon Supersaturation to SKD11 and βSiC Coating Dies
3.2. Dry Forging of Pure Titanium Bar by CS-SKD11 Punch and Die
3.3. Upsetting by Using CS-βSiC Coated SiC Punch and Die
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirkhorn, L.; Gutnichenko, O.; Bihagen, S.; Staehl, J.-E. Minimum quantity lubrication with carbon nanostructured additives in sheet metal forming. Procedia Manuf. 2018, 25, 375–381. [Google Scholar] [CrossRef]
- Vollertsen, F.; Schmidt, F. Dry metal forming: Definition, chances and challenges. Int. J. Prec. Eng. Manuf.-Green Technol. 2014, 1, 59–62. [Google Scholar] [CrossRef]
- Sivarajan, S.; Padmanabhan, R. Green machining and forming by the use of surface coated tools. Procedia Eng. 2014, 97, 15–21. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. Friction mechanisms and fundamental aspects in solid lubricant coatings. In Materials Surface Processing by Directed Energy Techniques; Elsevier: London, UK, 2006; Chapter 17; pp. 573–593. [Google Scholar]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid lubrication with MoS2: A review. J. Lubr. 2019, 7, 57. [Google Scholar] [CrossRef]
- Tasdemir, H.A.; Wakayama, M.; Tokoroyama, T.; Kousaka, H.; Umehara, N.; Mabuchi, Y.; Higuchi, T. Ultra-low friction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives. Tribol. Int. 2013, 65, 286–294. [Google Scholar] [CrossRef]
- Aizawa, T.; Akhadejdamrong, T.; Mitsuo, A. Self-lubrication of nitride ceramic coating by the chlorine ion implantation. Surf. Coat. Technol. 2004, 178, 573–581. [Google Scholar] [CrossRef]
- Dohda, K.; Aizawa, T. Tribo-characterization of silicon doped and nano-structured DLC coatings by metal forming simulators. Manuf. Lett. 2014, 2, 82–85. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, L.; Hu, L. Tribology optimization by laser surface texturing: From bulk materials to surface coatings. In Laser Surface Engineering, Processes and Applications; Woodhead Publishing: Sawston, UK, 2015; Chapter 16; pp. 405–422. [Google Scholar]
- Kataoka, S.; Murakawa, M.; Aizawa, T.; Ike, H. Tribology of dry deep-drawing of various metal sheets with used of ceramic tools. Surf. Coat. Technol. 2004, 178, 582–590. [Google Scholar] [CrossRef]
- Kihara, T. Visualization of deforming process of titanium and titanium alloy using high speed camera. Proc. 2019 JSTP Conf. 2019, 52, 41–42. [Google Scholar]
- Dohda, K.; Yamamoto, M.; Hu, C.; Dubar, L.; Ehman, K.F. Galling phenomena in metal forming. Friction 2020, 9, 686–696. [Google Scholar] [CrossRef]
- Cao, Y.; Ernst, F.; Michal, G.M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature. Acta Mater. 2003, 51, 4171–4181. [Google Scholar] [CrossRef]
- Rementeria, R.; Poplawsky, J.D.; Urones-Garrote, E.; Domínguez-Reyes, R.; Garcia-Mateo, C.; Caballero, F.G. Carbon supersaturation and clustering in bainitic ferrite at low temperature. In Proceedings of the 5th International Symposium on Steel Science (ISSS 2017), Kyoto, Japan, 13–16 November 2017; pp. 29–34. [Google Scholar]
- Speer, J.G.; Edmonds, D.V.; Rizzo, F.C.; Matlock, D.K. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr. Opin. Solid State Mater. Sci. 2004, 8, 219–237. [Google Scholar] [CrossRef]
- Aizawa, T.; Yoshino, T.; Suzuki, Y.; Shiratori, T. Anti-galling cold dry forging of pure titanium by plasma carburized AISI420J2 dies. J. Appl. Sci. 2021, 11, 595. [Google Scholar] [CrossRef]
- Chandrasekaran, M. Forging of metals and alloys for biomedical applications. In Metals for Biomedical Devices, 2nd ed.; Woodhead Publishing: Sawston, UK, 2019; Chapter 10; pp. 293–310. [Google Scholar]
- Aizawa, T.; Yoshino, T.; Ito, K.-I.; Fukuda, T. Thick β-SiC CVD-coated SiC die system for dry cold forging of metals. J. Cryst. 2020, 10, 539. [Google Scholar] [CrossRef]
- Rai, A.K.; Srinivasulu, B.; Paul, C.P.; Singh, R.; Rai, S.K.; Mishra, G.K.; Bontha, S.; Bindra, K.S. Development of thick SiC coating on thin wall tube of zircaloy-4 using laser based directed energy deposition technique. Surf. Coat. Technol. 2020, 398, 126088. [Google Scholar] [CrossRef]
- Zhang, B.; Yi, M.; Ning, Y.; Xie, A.; Zhou, Z.; Feng, Z. A thick SiC-Si coating prepared by one-step pack cementation for long-term protection of carbon/carbon composites against oxidation at 1773 K. Corros. Sci. 2022, 200, 110223. [Google Scholar] [CrossRef]
- Seki, I.; Nagata, K. Lattice constant of iron and austenite including its supersaturation phase of carbon. ISIJ Int. 2005, 45, 1789–1794. [Google Scholar] [CrossRef]
- Ortiz, A.L.; Sánchez-Bajo, F.; Cumbrera, F.L.; Guiberteau, F. X-ray powder diffraction analysis of a silicon carbide-based ceramic. Mater. Lett. 2001, 49, 137–145. [Google Scholar] [CrossRef]
- Hong, J.J.; Yeh, W.C. Application of response surface methodology to establish friction model of upset forging. Adv. Mech. Eng. 2018, 10, 1687814018766744. [Google Scholar] [CrossRef]
- Fitzner, A.; Palmer, J.; Gardner, B.; Thomas, M.; Preuss, M.; da Fonseca, J.Q. On the work hardening of titanium: New insights from nanoindentation. J. Mater. Sci. 2019, 54, 7961–7974. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Griffiths, J.R.; Pakdel, A.R.; Davidson, C.J. Microhardness mapping and the hardness-yield strength relationship in high-pressure die cast magnesium alloy AZ91. Mater. Sci. Eng. A 2005, 402, 258–268. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1999, 2, 557–563. [Google Scholar] [CrossRef]
- Raman Spectroscopy Data. Available online: https://www.researchgate.net/figure/Micro-Raman-spectra-of-TiO-2-and-TiO-2-SiC-composites_fig3_260938953 (accessed on 3 June 2022).
- Wills, R.G.A.; Walsh, F.C. A review of the continued development of Magneli phase titanium oxides and Ebonex® for electrochemical applications. Electrochim. Acta 2010, 55, 6342–6351. [Google Scholar]
- Domain, C.; Becquart, C.S.; Foct, J. Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe. Phys. Rev. B 2004, 69, 144122. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacco, T. Low temperature nitriding of AISI300 and 200 series austenitic stainless steels. Vacuum 2016, 12, 51–60. [Google Scholar] [CrossRef]
- Hosford, W.F.; Caddell, R.M. Slip-line field analysis. In Metal Forming: Mechanics and Metallurgy; Cambridge University Press: Cambridge, UK, 2012; Chapter 10; pp. 132–166. [Google Scholar]
- Aizawa, T.; Shiratori, T.; Yoshino, T.; Suzuki, Y.; Komatsu, T. Nitrogen supersaturation of AISI316 base stainless steels at 673 K and 623 K for hardening and microstructure control. In Stainless Steels; IntechOpen: London, UK, 2021; pp. 21–35. [Google Scholar]
- Moskalioviene, T.; Galdikas, A. Stress induced and concentration dependent diffusion of nitrogen in nitrided austenitic stainless steel. Comp. Mater. Sci. 2012, 86, 1552–1557. [Google Scholar] [CrossRef]
- Sankar, K.M.; Kakkar, D.; Dubey, S. Theoretical and computational studies on nanofriction: A review. J. Eng. Tribol. 2019, 234, 23–36. [Google Scholar] [CrossRef]
Parameter | Temperature | Pressure | Duration | RF-Voltage |
---|---|---|---|---|
Presputtering | 673 K | 70 Pa | 1.8 ks | - |
Nitriding | 673 K | 70 Pa | 14.4 ks | 250 V |
Parameter | DC-Bias | Argon flow rate | Hydrogen flow rate | Methane flow rate |
Presputtering | −500 V | 160 mL/min | 20 mL/min | - |
Nitriding | −500 V | 160 mL/min | 20 mL/min | 20 mL/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aizawa, T.; Funazuka, T.; Shiratori, T. In Situ Lubrication in Forging of Pure Titanium Using Carbon Supersaturated Die Materials. Nanomaterials 2024, 14, 363. https://doi.org/10.3390/nano14040363
Aizawa T, Funazuka T, Shiratori T. In Situ Lubrication in Forging of Pure Titanium Using Carbon Supersaturated Die Materials. Nanomaterials. 2024; 14(4):363. https://doi.org/10.3390/nano14040363
Chicago/Turabian StyleAizawa, Tatsuhiko, Tatsuya Funazuka, and Tomomi Shiratori. 2024. "In Situ Lubrication in Forging of Pure Titanium Using Carbon Supersaturated Die Materials" Nanomaterials 14, no. 4: 363. https://doi.org/10.3390/nano14040363
APA StyleAizawa, T., Funazuka, T., & Shiratori, T. (2024). In Situ Lubrication in Forging of Pure Titanium Using Carbon Supersaturated Die Materials. Nanomaterials, 14(4), 363. https://doi.org/10.3390/nano14040363